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Foreword

By Ahmed H. Zewail �

In molecular sciences, if we were to reduce into two words the fundamental
contributions made over the past century, they would be the chemical
bond „ speci“cally its structure and its dynamics. We now know how to
visualize static atomic bonding and describe covalent, ionic or hydrogen
bond interactions, both theoretically and experimentally. With advanced
methods in computations it is also possible to predict the structure of
medium-sized molecules in their ground state and, with less certainty, in
the excited state.

For dynamics, we have already reached the time scale of molecular vibra-
tions (femtoseconds) and rotations (picoseconds), developed concepts of
classical motions of atoms (wave packets) and predicted their persistence
(coherence) in di�erent states of molecular interactions. Experimental, theo-
retical and computational methods have made possible not only the probing
of dynamics, but also some control over the outcome of atomic and frag-
ment separations. It is the induced coherence among quantum states that
allows for probing and controlling of motion at the atomic scale, without
violation of the uncertainty principle!

Bond dynamics of excited states, especially in complex systems, become
challenging when considering the myriad of interactions possible among
the di�erent vibrations and electrons involved. However, it was possible,
because of di�erence in time scales, to separate electronic and nuclear
motions (Born…Oppenheimer approximation) and this approximation has

� The author is currently the Linus Pauling Chair Professor and the Director of the
Physical Biology Center for Ultrafast Science & Technology at Caltech in Pasadena,
California 91125, USA.
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vi Foreword

become the cardinal concept in molecular spectroscopy. Similarly, the divi-
sion of the system•s modes into •relevantŽ and •irrelevant,Ž or bath modes,
was proven powerful in the description of nonradiative processes. These
approximations become invalid whenthe electronic states become closer
in energy and the nuclear motion involves more than one potential-energy
surface with possible crossings or avoided crossings.

Early on, theoretical photochemists realized the importance of these
nonadiabatic interactions (avoided crossings and conical intersections) in
order to account for product formations occurring on di�erent potential
energy asymptotes. In the 1980s, the direct experimental visualization of
nuclear motions in the adiabatic and nonadiabatic regimes „ exempli“ed
by the case of covalent-ionic surfaces crossing in alkali halides „ on the
femtosecond time scale stimulated the development of numerous theoretical
methods for the description of dynamics of systems at far-from-equilibrium
geometries, and away from the initially-excited Franck…Condon region (see
the contribution by Bonacic…Koutecky and co-workers). Theoretical devel-
opments led to the realization that conical intersections are ubiquitous in
photochemistry and photobiology (see contributions in Parts I and II), espe-
cially among systems excited to high energies with an energetically-dense
number of states, and have created a new branch of study that is the subject
of this volume.

Nature utilizes conical intersections (CIs) e�ectively, and in many cases
CIs have useful functions. Because they can facilitate an e�cient cascade
of energy on the femtosecond time scale, photobiological chromophores
•utilizeŽ them to dissipate the absorbed excess energy „ otherwise bonds
would break and give rise to unwanted chemical fragments (see the contri-
butions by Robb, Domcke and collaborators).

In retrospect, the origin of such nonadiabatic behavior can be traced
to the geometric-phase property around the intersection, known as Berry
phase (see contribution by Althorpe). In molecular systems, the well-known
Longuet…Higgins and Herzberg account of degeneracy lifting with change
in boundary conditions can provide the needed elucidation of the nature
of the wave function (with proper phases) around the intersection in small
systems, but new approaches were needed to compute the dynamics •on
the ”yŽ and to predict consequences and relevance to experiments in real,
complex systems (see the contributions by Yarkony, Martinez and co-
workers). Over the past two decades, the combination of experimental and
theoretical techniques has uncovered the ubiquity and signi“cance of conical
intersections in organic, inorganic and biological systems.
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Foreword vii

The editors of this volume (Domcke, Yarkony and Köppel) are among
the leaders in the theory and computation of conical intersections. The book
covers three parts (I, II and III) with contributions in the fundamentals,
dynamics and experimental manifestations. The theory and computation
span the small and large molecular systems as well as those in”uenced
by the environment. The experimental approaches are highlighted with
examples of femtosecond photoelectron spectroscopy (see the contribu-
tion by Schuurman and Stolow), femtosecond polarization and vibronic
spectroscopy (see the contributions by Jonas, Temps and collaborators),
and photodissociation dynamics (see the contribution by Ashfold and co-
workers).

In the coming years, e�orts should perhaps be directed toward the devel-
opment (hopefully) of •simple theoretical expressionsŽ that will highlight
the key parameters describing energy redistribution, extent of temporal
and spatial coherence, and branching of populations. The powerful compu-
tational machinery available becomes a tool for reaching this goal. On the
experimental side, it is important to know the structure around intersec-
tions and it is now feasible to probe such structures in isolated (gas phase)
molecules using ultrafast electron di�raction. And, progress is being made
to address the question: What is the nature of the electronic distribution
on the attosecond time scale? Unlike in femtochemistry, the critical issue
in this case is the nature of the initial electronic state prepared, because of
the huge energy uncertainty on this time scale. Perhaps theory can become
an enlightening guide in this endeavor.

Given the importance of conical intersections in determining the fate of
photon-induced reactions, I recommend this volume to all concerned with
photochemical and photobiological molecular sciences. Indeed, the book
represents an expos´e of a unique dimension in the study of the dynamics
of the chemical bond.
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Preface

The Born…Oppenheimer adiabatic approximation represents one of the
cornerstones of molecular physics and chemistry. The concept of adia-
batic potential-energy surfaces, de“ned by the Born…Oppenheimer approx-
imation, is fundamental to our understanding of molecular spectroscopy
and chemical reaction dynamics. Many chemical processes can be ratio-
nalized in terms of the dynamics of the atomic nuclei on a single Born…
Oppenheimer potential-energy surface. Nonadiabatic processes, that is,
chemical processes which involve nuclear dynamics on at least two coupled
potential-energy surfaces and thus cannot be rationalized within the Born…
Oppenheimer approximation, are nevertheless ubiquitous in chemistry,
most notably in photochemistry and photobiology. Typical phenomena
associated with a violation of the Born…Oppenheimer approximation are
the radiationless relaxation of excited electronic states, charge-transfer
processes, photoinduced unimolecular decay and isomerization processes
of polyatomic molecules.

The last few decades have witnessed a change of paradigms in
nonadiabatic chemistry. This paradigm shift is the result of advances in
experimental techniques and the concomitant development of new compu-
tational tools. First, the remarkable advances achieved in femtosecond
laser technology and time-resolved spectroscopy revealed that the radi-
ationless decay of excited electronic states may take place much faster
than previously thought. The traditional theory of radiationless decay
processes, developed in the 1960s and 1970s, cannot explain electronic
decay occurring on a time scale of a few tens of femtoseconds. Second, the
development and widespread application of multireference electronic struc-
ture methods for the calculation of excited-state potential-energy surfaces
and the availability of analytic gradient-based search methods have shown

ix
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x Preface

that CONICAL INTERSECTIONS of these multidimensional surfaces,
predicted by von Neumann and Wigner in 1929, are the rule rather than
the exception in polyatomic molecules. As a result, the concept of conical
intersections has becomewidely known in recent years. That conical inter-
sections may be responsible for ultrafast radiationless processes had been
surmised as early as 1937 by Teller. Today, it is increasingly recognized that
conical intersections play a key mechanistic role in molecular spectroscopy
and chemical reaction dynamics.

This second edited volume on conical intersections in polyatomic
molecules complements the “rst volume (Conical Intersections: Electronic
Structure, Dynamics and Spectroscopy, Vol. 15 in the Advanced Series
in Physical Chemistry, World Scienti“c) published in 2004. In the past
six years, developments in molecular spectroscopy, photochemistry and
computational chemistry have considerably extended our insight into
the role of conical intersections in nonadiabatic chemistry. For example,
signi“cant progress has been achieved with the simulation of ultrafast
processes at conical intersections by quantum dynamics calculations and
especially also by classical surface-hopping trajectory calculations. These
topics are therefore covered by several chapters in this book. This volume
further includes four chapters on the experimental detection of ultrafast
dynamics at conical intersections, covering the techniques of photofrag-
ment translational spectroscopy, time-resolved photoelectron spectroscopy,
as well as several variants of femtosecond pump-probe spectroscopy. Various
other recent developments, concerning fundamental methodological aspects
(more than two-state intersections, spin-orbit coupling, as well as geometric-
phase e�ects) and extensions of established and new “elds of application
(organic photochemistry, photostability of biomolecules, conical intersec-
tions embedded in an environment), are also addressed in the 18 chapters
of this book.

The editors hope that this second volume on conical intersections will be
of value to a wide readership in the chemical physics and physical chemistry
communities.

Wolfgang Domcke, Munich
David R. Yarkony, Baltimore

Horst K öppel, Heidelberg
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Chapter 1

Conical Intersections in Organic
Photochemistry

Michael A. Robb�

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2. Exploring the Intersection Space: The Extended Conical Inter-

section Seam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1. Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3. Extended Seam Benchmarks . . . . . . . . . . . . . . . . . . . . 14
3.1. Fulvene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2. The 2A1/1A 1 conical intersection seam in butadiene . . . . 16

4. Applications of the Extended Seam of a Conical
Intersection to Photochemical Mechanisms . . . . . . . . . . . . 18
4.1. The photoinduced isomerization of 1,3-cyclohexadiene

(CHD) to cZc-hexatriene (HT) . . . . . . . . . . . . . . . . 18
4.2. Diarylethylenes . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3. The keto-enol tautomerism of

o-hydroxyphenyl-(1,3,5)-triazine . . . . . . . . . . . . . . . 23
5. Valence Bond Analysis of Conical Intersections . . . . . . . . . 26

5.1. Twisted intermolecular charge transfer (T-(ICT)) in
aminobenzonitrile (ABN) compounds . . . . . . . . . . . . 27

5.2. What happens when one does a conical intersection circuit
in the branching plane? . . . . . . . . . . . . . . . . . . . . 32

� Chemistry Department, Imperial College London, London SW7 2AZ, UK.
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6. Exploring the Conical Intersection Seam using Dynamics . . . . 40
6.1. A model cyanine system: The extended seam for cis-trans

double bond isomerization . . . . . . . . . . . . . . . . . . . 40
6.2. Benzene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.3. Biological chromophores: PYP . . . . . . . . . . . . . . . . 44

7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 46
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

1. Introduction

It has now been about 20 years1 since we published our “rst paper on a
conical intersection in the prototypical organic photochemical problem: the
2 + 2 face-to-face cycloaddition of two ethylenes. In the intervening period,
conical intersections have become an essential part of the thought process
or paradigm of organic photochemistry (see, for example, the textbooks
of Klessinger2 or Turro 3). In the previous volume of this series on conical
intersections, Migani and Olivucci4 not only have given an extensive review
of the history of the subject and the theory of conical intersections asso-
ciated with the mechanisms of organic photochemistry, but also discussed
many examples that cover the complete range of functional groups that are
important in organic photochemistry. The subject is now growing so rapidly
that to simply update the Migani article with the photochemical problems
that have been studied in the last “ve years would be almost impossible
within the space allowed (but see recent reviews5Š 7). Rather, we limit our
discussion to those areas identi“ed by Migani and Olivucci as areas of major
growth into the future. These areas include the relationship between the
intersection space or the conical intersection seam and photochemical mech-
anisms, the use of dynamics to investigate organic photochemistry, and the
extension to biological chromophores. In addition to these topics, we shall
discuss a little about the use of qualitative methods to rationalise compu-
tations because this area remains important for the organic chemist.

In writing this section, our target was to produce a more general discus-
sion that seemed to be appropriate for a section focussed on •fundamental
aspectsŽ. Thus the intention was to be rather broad with most of the exam-
ples chosen (mainly from our own work) so as to illustrate conceptual ideas.
In the examples, we will choose to discuss the concepts, we will omit the
computational details and refer the reader to the original literature. In
general, the results are from the CASSCF method where both gradients
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and hessian can be computed analytically so that we do not need to use
•distinguished variablesŽ but rather full geometry optimization is possible.
Since most of our discussions are focussed on the general shape of the poten-
tial surface near a conical intersection, there is not a requirement for high
accuracy.

2. Exploring the Intersecti on Space: The Extended Conical
Intersection Seam

2.1. Theory

It is our intention in this section to discuss the mechanistic implications
of the extended conical intersection seam.7Š 16 We start with a theoretical
discussion adapted from the work of Sicila and co-workers.15

One often starts a discussion of conical intersections in organic photo-
chemistry with •sand in a funnelŽ picture for a photochemical mechanism
involving excited and ground state branches (with two ground state reaction
pathways) and a conical intersection (Fig. 1). We shall use cartoons of this
form to illustrate many aspects of nonadiabatic chemistry in this article.

Fig. 1. Cartoon of a •classicŽ double cone conical intersection, showing the excited-state
reaction path and two ground-state reaction paths. (Adapted from Paterson et al. 12 )
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We begin by o�ering a few comments on how such cartoons should be
interpreted. We have plotted the energy in two geometrical coordinates, X1
and X2. In general, these two coordinates will be combinations of changes
in the bond lengths and bond angles of the molecular species under investi-
gation. We are limited in such cartoons to using two or three combinations
of molecular variables. However, we must emphasise that these are just
cartoons used to illustrate a mechanistic idea. All the computations we
shall discuss are done in the full space of molecular geometries without any
constraint.

The coordinates X1 and X2 in Fig. 1 correspond to the space of molec-
ular geometrical deformations that lift the degeneracy. These coordinates
are precisely de“ned quantities that can be computed explicitly.17 Simi-
larly, the apex of the cone corresponds in general to an optimised molec-
ular geometry.18 (See also the more recent work of Sicila,13 Martinez19 and
Theil. 20) The shape or topology in the region of the apex of the double
cone will change from one photochemical system to another,9 and it is the
generalities associated with the shape that form part of the mechanistic
scenario that we will discuss.

Conical intersections are normally thought of as points on a (m Š 2)-
dimensional hyperline. While the degeneracy is lifted by motion in
branching space X1 and X2 in Fig. 1, motions in the intersection space
X3 shown in Fig. 2 preserve the degeneracy. Thus in Fig. 2, we show the
conical intersection hyperline traced out by a coordinate X3 plotted, this
time, in a plane containing the distinguished intersection space coordinate
X3 and one coordinate from the degeneracy-lifting (or branching) space X1
X2. We shall call X3 the •reaction coordinateŽ because this might be chosen
as the path of steepest decent on the potential surface and this would be a
gradient-determined choice of this distinguished coordinate. In this “gure,
the conical intersection line now appears as a seam. In contrast to the •sand
in the funnelŽ model shown in Fig. 1, it is clear that the reaction path could
be almost parallel to this seam. Of course this “gure can be misunderstood,
because each point on the seam line lies in the space of the double-cone
X1 X2 as suggested by the insert. Thus it is essential to appreciate that
decay at the conical intersection is associated with three coordinates, the
branching space X1 X2 and the reaction path X3 that may or may not lie
in the space X1 X2.

In Fig. 3, we have presented another cartoon that attempts to show
the potential energy surfaces in the space of the degeneracy lifting coor-
dinates as one traverses a third coordinate X3. Of course, this is really
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Fig. 2. The conical intersection hyperline traced out by a coordinate X 3 plotted in a
space containing the coordinate X 3 and one coordinate from the degeneracy-lifting space
X 1 X 2. (Adapted from Paterson et al. 12 )

Fig. 3. A cartoon showing the conical intersection hyperline traced out by a degeneracy-
preserving coordinate X 3. The system remains degenerate as one traverses the coordinate
X 3, but the energy and the shape of the double-cone must change in X 1X 2.
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a four-dimensional picture, which is not easy to assimilate. Nevertheless
it should be clear that the degeneracy persists along the coordinate X3.
However, the energy will change and so will the •shapeŽ of the double-cone
near the apex.

Figures 2 and 3 establish two important mechanistic points:

(1) The important points on a conical intersection hyperline are those
where the reaction path meets with the seam (see Fig. 2) and this
may not be at the minimum of the seam.

(2) Radiationless decay takes place in the coordinates X1 X2 as one passes
through the conical intersection diabatically.

In Fig. 2, this second principle appears to be violated since the reaction
path appears to pass through the hyperline adiabatically. However, we
emphasise „ as indicated by the double-cone insert „ that as one passes
through the hyperline, decay takes place in the coordinates X1 X2 and in
general their VB structure does not change. We shall use both Figs. 2 and
3 as models in subsequent discussions, but the reader needs to remember
the conceptual limitations.

The statement that motion in the inter section space preserves the degen-
eracy is only true to “rst order and, in fact, the degeneracy can be lifted
at second order by “nite steps along coordinates spanning the intersection
space. We now develop this idea and show that it can be used to further
characterise conical intersections (for further details, the reader is referred
to the literature 9Š 16).

A second-order descriptionof conical intersections allows one to charac-
terise optimised conical intersection geometries as either minima or saddle
points on the crossing hyperline. We will now present15 a simpli“ed devel-
opment of the second-order descriptionof conical intersections. However,
“rst we brie”y introduce the ideas behind such description in a nonmath-
ematical way with the aid of Fig. 4. In numerical computations, one “nds
that the degeneracy is, in practice, lifted for a “nite displacement along any
intersection space coordinate (X3 in Fig. 2 and Qi in Fig. 4). Figure 4(a)
shows a minimum on the extended seam while Fig. 4(b) shows a saddle
point. The curve f i corresponds to the projection of the seamU(f i ) on the
coordinate space consisting of one coordinate from the branching plane,
Q̄x 12 , and one from the intersection space,Q̄i . Thus, the crossing seam is
curved so that the seam bends towards the branching plane coordinate,
with a mixing of branching space and intersection space coordinates. This
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Fig. 4. The locus of the conical intersection seam U(f i ) and the corresponding curvi-
linear coordinate f i : (a) minimum, (b) saddle point, (c) cross section of (a) along “rst-
order intersection space coordinate Q̄i , and (d) cross section of (b) along “rst-order
intersection space coordinate Q̄i . (Adapted from Sicilia et al. 15 )

curvature is required to describe “nite displacements where the degeneracy
is preserved.

In Figs. 4(c) and 4(d) we show cuts through Figs. 4(a) and 4(b) in the
(U, Q̄i ) plane. It is clear in this “gure that the two potential energy curves
split apart along any “nite displacement lying strictly along the rectilinear
“rst-order intersection modes, Q̄i , that is in the plane containing energy
and the intersection coordinate.

Figure 4 shows that a curvilinear coordinatef i is a convenient way to
describe the behaviour of the extended seam. If we de“ne the curvilinear
coordinates asf i , the crossing seam energy can be written as a function of
these (mŠ 2) variablesU(f i ) rather than the ( mŠ 2) rectilinear coordinates.
It then becomes clear that the curvature of the seam energy becomes simply
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the second derivative of the seam energy with respect to such curvilinear
coordinates. We will refer to the matrix of second derivatives computed in
this way as the intersection space Hessian. The curvilinear coordinates just
discussed are the second-order generalization of the intersection-adapted
coordinates introduced by Atchity et al.9

We now proceed to a more mathematical discussion.15 We begin with a
“rst order description of a conical intersection. The “rst-order approxima-
tion describes the two intersecting potential energy surfaces in the vicinity
of a conical intersection point. In an appropriate region around the intersec-
tion point, the electronic two-state potential energy matrix describing the
two intersecting states Aand B can be approximated by a Taylor expansion
truncated at the second order21:

W = W (0) + W (1) +
1
2

�
W (2)

a + 2 W (2)
b + W (2)

c

�
. (1)

The reference point is assumed to be theconical intersection point. There-
fore, the zero-order termW (0) is a diagonal matrix whose entries are equal;
in the following this matrix is set to zero. When the expansion is performed
with respect to the m “rst-order intersection adapted coordinates Q̄i , the
potential matrices can be explicitly written as:

W (1) =
�

� 1

2
Q̄x 1 +

� 2

2
Q̄x 2

�
1 +

�

�
�

��
2

Q̄x 1 � AB Q̄x 2

� AB Q̄x 2 Š
��
2

Q̄x 1

�

	

 , (2a)

W (2)
a =

�

�
�

i,j � BS

BS � ij

2
Q̄i Q̄j

�


 1

+

�

�
�
�
�
�

�

i,j � BS

BS �� ij

2
Q̄i Q̄j

�

i,j � BS

BS � AB
ij Q̄i Q̄j

�

i,j � BS

BS � AB
ij Q̄i Q̄j Š

�

i,j � BS

BS �� ij

2
Q̄i Q̄j

�

	
	
	
	



, (2b)

W (2)
b =

�

�
�

i � BS,j � IS

BS/IS � ij

2
Q̄i Q̄j

�


 1
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+

�

�
�
�
�
�
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BS/IS �� ij

2
Q̄i Q̄j

�

i � BS,j � IS

BS/IS � AB
ij Q̄i Q̄j

�
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ij Q̄i Q̄j Š

�
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(2c)

W (2)
c =

�

�
�

i,j � IS

IS � ij

2
Q̄i Q̄j

�


 1

+

�

�
�
�
�
�

�

i,j � IS

IS �� ij

2
Q̄i Q̄j

�

i,j � IS

IS � AB
ij Q̄i Q̄j

�

i,j � IS

IS � AB
ij Q̄i Q̄j Š

�

i,j � IS

IS �� ij

2
Q̄i Q̄j

�

	
	
	
	



. (2d)

In the above equations, the potential constants are de“ned as:

� i � � Q̄ x i
(U0

AA + U0
BB ), (3a)

�� � � Q̄ x 1
(U0

BB Š U0
AA ), (3b)

� AB � � Q̄ x 2
H 0

AB , (3c)

� ij � � 2
Q i Q j

(U0
AA + U0

BB ), (3d)

�� ij � � 2
Q i Q j

(U0
BB Š U0

AA ), (3e)

� AB
ij � � 2

Q i Q j
H 0

AB . (3f)

In Eq. (3), we use the nabla,� , to indicate the vector di�erential operator
of “rst derivatives with respect to nucl ear displacements. Therefore, when
applied to a scalar, it will give rise to a vector. In the context discussed
here, it indicates exclusively the gradient vector. The subscript is intro-
duced to specify which component of the entire vector is considered. Thus,
for instance, the element of the gradient calculated with respect to thex̂ i

direction is indicated as � Qi . Note the equivalence� Qi � �/� Q̄i . Nabla
squared,� 2, is an extension of such notation and, therefore, its application
to a scalar gives rise to a square symmetrical matrix whose elements are
de“ned as � 2

Qi Q j
� � 2/ (� Q̄i � Q̄j ). The zero superscripts indicate that all

the terms are computed at the referencepoint (a critical point on the seam).
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We now introduce the parabolic approximation where the second-
order terms within the “rst-order branching space BS �� ij and BS � AB

ij ,
and the mixing terms between branching plane and “rst-order intersection
spaceBS/IS �� ij and BS/IS � AB

ij , are neglected (the parabolic approximation
derives from a three-dimensional case where the approximate intersection
coordinate moves along a parabola). In the parabolic approximation, we
are left with a simpli“ed electronic Hamiltonian that can be written as:

W =

�

� � 1

2
Q̄x 1 +

� 2

2
Q̄x 2 +

�

i,j � IS

IS � ij

4
Q̄i Q̄j

�


 1 +

�

�
�

��
2

Q̄x 1 � AB Q̄x 2

� AB Q̄x 2 Š
��
2

Q̄x 1

�

	



+
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�
�
�
�
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IS �� ij

4
Q̄i Q̄j

�

i,j � IS

IS � AB
ij

2
Q̄i Q̄j

�

i,j � IS

IS � AB
ij

2
Q̄i Q̄j Š

�

i,j � IS

IS �� ij

4
Q̄i Q̄j

�

	
	
	
	



. (4)

The description of two adiabatic potential energy surfaces around the
conical intersection point is obtained from the diagonalisation of the simpli-
“ed electronic Hamiltonian to give:

UA,B =
1
2

(

� x 1 Q̄x 1 + � x 2 Q̄x 2 +
X

i,j � IS

IS � ij

2
Q̄i Q̄j

)

±
1
2

vu
u
t

"

�� Q̄x 1 +
X

i,j � IS

IS �� ij

2
Q̄i Q̄j

#2

+ 4

"

� AB Q̄x 2 +
X

i,j � IS

IS � AB
ij

2
Q̄i Q̄j

#2

.

(5)

Thus the positive energy di�erence between the two states is:

� U � UB Š UA

=

vu
u
t

"

�� Q̄x 1 +
X

i,j � IS

IS �� ij

2
Q̄i Q̄j

#2

+ 4

"

� AB Q̄x 2 +
X

i,j � IS

IS � AB
ij

2
Q̄i Q̄j

#2

.

(6)

The two coordinates describing the branching space in the parabolic approx-
imation will be a combination of “rst-order intersection adapted coordinates
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such that the energy di�erence Eq. (6) does not vanish. The remaining
(m Š 2) parabolic intersection coordinates will be a set of coordinates
where the two intersecting states possess the same energy. This is possible
by identifying a set of parameters for which the energy di�erence Eq. (6)
is zero.

Thus the set of curvilinear coordinatesf is de“ned as:

f = ( f 1, f 2) � (f 3, f 4, . . . , f m Š 2). (7)

The “rst bracket includes the two coordinates spanning the parabolic
branching space and using the description of the energy di�erence; these
two coordinates may be explicitly de“ned as:

f 1 = �� Q̄x 1 +
�

i,j � IS

IS �� ij

2
Q̄i Q̄j , (8a)

f 2 = � AB Q̄x 2 +
�

i,j � IS

IS � AB
ij

2
Q̄i Q̄j . (8b)

The second subset of coordinates corresponds to the (m Š 2) parabolic
intersection coordinates, which are a combination of the original coordinates
where the following conditions are simultaneously ful“lled:

�
f 1 = 0

f 2 = 0 .
(9)

When moving along one of the “rst two coordinates (f 1, f 2), the degeneracy
is lifted whilst a displacement along the third f 3 guarantees the degeneracy
between the two states. The seam hessian can now be written15 in these
parabolic intersection space coordinates as

� 2USeam

�f 2





f =0

=

�

�
�
�
�
�
�

� 33 � 34 · · · � 3,3N Š 6

� 34 � 44 · · · � 4,3N Š 6

...
...

. . .
...

� 3,3N Š 6 � 4,3N Š 6 · · · � 3N Š 6,3N Š 6

�

�
�
�
�
�
�

, (10)

where an arbitrary entry � ij can be rewritten in terms of potential
constants as:

� ij =
1
2

�
IS � ij Š

� x 1

��
IS �� ij Š

� x 2

� AB
IS � AB

ij

�
. (11)
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The curvature of the seam along thei -th coordinate is the i -th eigen-
value of the matrix [Eq. (11)]. All the matrix entries and eigenvalues have
units of frequency squared; in atomic units this corresponds tosŠ 2. The
eigenvectors obtained by diagonalisation of Eq. (11) are a combination of
the (m Š 2) local axesf̂i , i = 3 , 4, . . . , m Š 2, tangent to the f i at a given
point.

We now discuss some benchmark applications of the theoretical ideas
just presented.

3. Extended Seam Benchmarks

3.1. Fulvene

Fulene seems to have become a benchmark molecule for the study of conical
intersections.16,22 In recent work,16 we have been able to optimise “ve
geometries on an extended conical intersection seam so this provides a
nice example to illustrate the theoretical ideas about the extended seam
discussed in the preceding subsection.

A schematic two-dimensional schematic potential energy surface is given
in Fig. 5. The branching space coordinates are given in the inset of Fig. 5
and correspond to the skeletal deformations of the “ve-membered ring.
So we choose one of these skeletal deformations asQ̄x 1 in Fig. 5, while
a suitable choice for a reaction coordinateQ̄x 3 is the torsional angle Q̄� .
In Fig. 5 we can see that the extended curve has both a local maxima
at a geometry we call CIperp and a minimum at a twisted geometry.
However, the situation is more complicated as one goes to higher dimen-
sions. In fact, CIperp is a second-order saddle point on the seam with
two imagining frequencies corresponding to torsion and pyramidalisation
(see the imaginary frequencies illustrated on the left-hand side of the
Fig. 5). However, even after a distortion along a pyramidalisation coor-
dinate, the structure CI pym retains the imaginary frequency corresponding
to torsion.

The full set of stationary points on the conical intersection seam,
excluding CIperp , is given in Fig. 6 together with the computed imagi-
nary frequencies in the intersection space. The structure CIplan is a second-
order saddle point (like CIperp ) and is unstable with respect to both torsion
and pyramidalisation. The pyramidalised structure CIpym is a saddle point
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Fig. 5. Potential energy pro“le for fulvene in the space spanned by QX 1 (branching
space) and Q� the X 3 coordinate (torsion). (Adapted from Paterson et al. 11 )

with respect to torsion that leads to the partly twisted structure CI min . In
contrast, if one follows the torsional coordinate from CIplan , one reaches a
structure that is twisted but not pyramidalised that is denoted as CI 63.

Of course such a study of the full seam is just an academic exercise.
A posteriori results seem obvious. Along the seam the energies of excited
and ground state are equal. Thus the electronic e�ects associated with the
	 system are in balance. This leads to the conclusion that the stability
with respect to torsion is a steric a�ect. Similarly, the stability with respect
to pyramidalisation is the simply expected stereochemistry of an isolated
methylene group.
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Fig. 6. Schematic representation of the conical intersection hyperline topology
(excluding CI Perp ) in the space of torsion and pyramidalisation. The seam normal modes
corresponding to the imaginary frequencies that connect the conical intersection geome-
tries optimised on the S 0/S 1 seam of fulvene are shown as vectors for hydrogen motions
only. (Adapted from Sicilia et al. 16 )

3.2. The 2A 1/1A 1 conical intersection seam in butadiene

This is another benchmark type problem. While initial photoexcitation
takes place at the optically bright B state, the photochemistry of cis-
butadiene (Fig. 7) occurs via a conical intersection between the 2A1 state
and the ground state. Photolysis yields many products, possibly from decay
at di�erent points on the seam; the results are summarised in Fig. 7.

Some seven critical points13,15 on the seam are illustrated in Fig. 8. In
our early work,23 we located CIcis, spCIcis/trans and CItrans . In Fig. 7, we see
that spCIcis/trans is con“rmed as a saddle point. In fact, it has been possible
to use reaction path procedure,13 constrained to the intersection space, to
connect all these structures.
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Fig. 7. Photoproduct distribution following irradiation of cis butadiene.

Fig. 8. Schematic representation of some minima and transition states on the extended
seam for the S1/S 0 intersection of butadiene.
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4. Applications of the Extended Seam of a Conical
Intersection to Photochemical Mechanisms

The extended seam concept is a mechanistic feature of many prob-
lems in photochemistry and photophysics, including photochromic systems
such as dihydroazulene,24 the ring opening of cyclohexadiene,25,26

diarylethylenes,27 protonated Schi� base rhodopsin models,28 T-(ICT)
compounds,29,30 cyanine dyes,31 biological chromophores such as PYP32

and GFP,33 excited state proton transfer,34 the photochemistry of
benzene,14 the DNA bases,35 and other organic transformations,36Š 38 as
well as classical problems in photophysics such as the photodissociation
of formaldehyde.39 In this section, we will choose a few examples (mainly
from our own work) that illustrate the utility of the extended seam as a
mechanistic feature in organic photochemistry.

4.1. The photoinduced isomerization of 1,3-cyclohexadiene
(CHD) to cZc-hexatriene (HT) 25,26

The ring opening of CHD is experimentally, as well as theoretically, a proto-
typical photochemical reaction involving an extended seam of conical inter-
sections. In recent work,40 we have been able to show (Fig. 9) that the seam
is approximately parallel to the reaction path.

We have started with the discussion of this problem because, like
fulvene, it is a •benchmarkŽ of organic photochemistry. Nonadiabatic decay
during a photochemical reaction was “rst clari“ed mechanistically by van
der Lugt and Oosterho�. 41 The central idea uses the concept of an avoided
crossing (which provides the photochemical funnel) arising from the ground
state and a doubly excited state along a common reaction coordinate (bond
breaking, x axis in Fig. 9). However, the reaction path does not inter-
sect with the conical intersection. Rather, as shown in Fig. 9, we have an
extended seam lying approximately parallel to the excited state. This seam
was computed via a seam MEP13 (S1-seam-MEP), which is similar to a
conventional MEP but constrained to the intersection space. This motion
orthogonal to the reaction path in the direction of the seam must control
the ultrafast decay to the ground state.

In Fig. 9, we show the complete minimum energy S0/S1-CoIn seam
(seam-MEP) for the conrotatory ring-opening reaction of CHD, covering
the region from the closed (CHD) to the open ring structure (HT). The
conrotatory S1 IRC-MEP is almost parallel but displaced along a skeletal
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Fig. 9. Schematic representation of the S 0 and S1 potential energy surfaces for the
ring-opening/ring-closure reaction in the CHD/cZc-HT system including the conical
intersection seam (seam-MEP). The reaction coordinate (RC) describes the conrota-
tory CHD-HT conversion along the minimum energy reaction path (IRC-MEP, dashed
lines). The orthogonal BS vector is de“ned at every point along the seam-MEP as a
linear combination of the branching space vectors critical points along the MEPs are
noted with imaginary frequencies. (Adapted from Nenov et al. 40 )

deformation coordinate. The avoided crossing feature (Min S1 /T S S0 ) on
the MEP is thus displaced from the lowest energy point of the conical
intersection seam CoInmin . Note that the seam-MEP has local transition
state features (such as CoInT S1 and CoInC2 ) and the corresponding imag-
inary frequencies are also given in Fig. 9. These frequencies were obtained
using the second-order representation of the seam and correspond to motion
along the intersection space (dominated by bond breaking). The seam
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MEP can be mapped out in the intersection space as well, as discussed
previously.13

In the Woodward…Ho�mann treatment of photochemistry as reformu-
lated by van der Lugt,41 the excited-state and ground-state reaction paths
were assumed to be similar, with the •photochemical funnelŽ occurring at
an avoided crossing. In this classic example, computations show that the
ground, state and excited, state reaction paths are indeed very similar.
However, CoIn seam is displaced from the excited-state/ground-state MEP
along skeletal deformations, i.e. the branching space of the CoIn is orthog-
onal to the MEP.

4.2. Diarylethylenes 27

These are remarkable photochromic systems where the chemical trans-
formation is single bond breaking (Fig. 10). Because the distribution of
	 -bonds is di�erent in both isomers, they have distinct absorption spectra.
The photophysics and the e�ciency of the system are completely controlled
by the relationship between the reaction path and the degeneracy-lifting
coordinates. From computations,27 the similarity to the CHD example just
discussed is remarkable.

Figure 11 shows the energy pro“le along a bond-breaking coordinate.
We use labels CHD (cyclohexadiene) and HT (hexatriene) to emphasise the
role of the central six carbon atoms and the relationship to the previous
example. The crosses indicate points optimised on the conical intersection
seam. Thus the •seamŽ does not appear to intersect with the reaction
path. In Fig. 12, we show a 3D cartoon of the potential surface. In this
“gure, we also give the coordinates that lift the degeneracy (X1 X2) and
the bond breaking reaction coordinate X3. Like CHD and other examples
we will discuss subsequently, the coordinates that lift the degeneracy are
just skeletal deformations.

X X X X

h�

h��CHF ��

Fig. 10. Diarylethylenes with heterocyclic aryl and bisthienylethylene-based compounds
(X = S) exhibit remarkable switching sensitivity (i.e. high quantum yield) and rapid
response.
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Fig. 11. Diarylethylenes: energy pro“le along the single bond breaking reaction path.

C8 C9

C3

Fig. 12. A cartoon of the diarylethylene potential surfaces that can be distilled from
the dynamics computations reported by Boggio…Pasqua et al. 27
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From Fig. 12 it is clear that there is a ground-state thermal reaction path
involving a transition state TS 0. In addition, there is an adiabatic reaction
path on the excited state involving a minimum, a transition state TS , and
another minimum. One can also “nd three critical points (local minima)
on the conical intersection line indicated by crosses in Fig. 11: one near the
products, one near the reactants, and also one near the transition state on
the adiabatic excited-state reaction path. Thus, apparently disconnected
conical intersections lie displaced along the intersection space coordinates
(one of which is the transition vector shown in Fig. 12).

The conical intersection seam in Fig. 12 is very similar to CHD in Fig. 9:
the reaction path is in the foreground (left to right), and the conical inter-
section line (CI ) lies in the background. Thus the reaction coordinate is
parallel to the seam and so decay to S0 is controlled by motion orthogonal
to the reaction path. The minimum energy point on the conical intersection
line (middle cross,CI 3 in Fig. 11) is the one that is located using gradient-
driven optimization. While it appears quite close to the transition state on
the excited state, it is actually on the HT side of the barrier.

In summary, we see that like CHD, knowledge of the excited-state reac-
tion path does not yield an understanding of the photochromism of this
system. Further, “nding the conical intersection points does not yield a
complete picture, because they do not lie on the reaction path. Indeed,
a large segment of the intersection seam in this region is energetically
accessible. However, to demonstrate and understand this, you need to run
dynamics calculations.

Experimentally, one observes a ”uorescence that is red-shifted,
con“rming that the position of the minimum is di�erent on the excited
state. The cyclization quantum yield (HT* to CHD) is high, which arises
from the fact that a trajectory from HT* can sample the whole intersection
seam, at right angles to the reaction path. On the other hand, for a trajec-
tory starting from CHD* , the probability of decay to S0 is low, because
the main locus of the conical intersection seam appears to be on the HT*
side of the transition state. Thus to reach HT from CHD*, you have to pass
through the transition state on the excited state reaction path. Thus there
is a competition between passing through the transition state to reach the
reactive conical intersection on the HT* side of the TS, and decay at a
nearby crossing on the CHD* side of the transition state, which does not
lead to any reaction. Thus the quantum yield is quite low in this direction.

There remains the question of whether one could design a pulsed laser
sequence to •controlŽ this reaction. For the HT isomer, one would want
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a wavepacket with excess momentum in the branching space direction so
that decay would take place quickly. In contrast, for the CHD isomer, one
would need a wavepacket with excess momentum in the direction of the
reaction coordinate, which would drive the reaction towards the transition
state on the excited state and avoid competition with any nearby conical
intersection points.

4.3. The keto-enol tautomerism of
o-hydroxyphenyl-(1,3,5)-triazine

This species provides an e�cient photostabilisation system.34 This is
an example where the extended conical intersection seam is one of the
contributing factors controlling the e�ciency in such species. The enol
form [Fig. 13(a)] absorbs light and decays to the keto form [Fig. 13(b)]
on the ground state. The ground-state keto form is metastable, and inter-
converts back to the enol form over a small barrier. Thus we have light
absorption followed by no net chemical change and a photostabilising cycle.
The low-lying excited states of such species are	 Š 	 � , yet the hydrogen
transfer involves the 
 electrons. Thus the reaction coordinate X3, since it
involves these
 electrons, must be completely independent from the elec-
tronic state changes; the latter clearly involve only the 	 electrons. This is
therefore an example where,a priori , the branching space coordinates must
be completely di�erent and independent from the reaction path, and one
knows from the outset that the surfaces must involve the extended seam
topology.

We begin with a VB analysis of ground and excited states at the enol
and keto geometries. It is possible to classify the ground state and the
two types of 	 Š 	 � excited-state according to the number of	 electrons

HO

N

N

N N

N

N

A B A B

OH

6� : 8� : 7 � : 7� :

(a) (b)

Fig. 13. Enol (a)…keto (b) tautomerism in o-hydroxyphenyl-(1,3,5)-triazine, indicating
the number of � electrons in the ground state for each ring A and B. (Adapted from
Paterson et al. 34 )
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Fig. 14. Correlation diagram for the lowest � � � � excited states along a proton transfer
coordinate. (Adapted from Paterson et al. 34 )

associated with the two rings A and B (as indicated in Fig. 13). In Fig. 14,
we show a valence bond correlation diagram for the lowest excited states
along a proton transfer coordinate. This correlation diagram was elucidated
by analysis of the excited states inrecent theoretical calculations.34 At a
given geometry (keto or enol), the locally excited states preserve the number
of 	 electrons in each ring, while the CT states change this population.
(Notice that LE and CT, as we use them in this context, are relative to the
ground state electronic con“guration at a given geometry.) Thus, the state
with the con“guration 6 	 Š 8	 is locally excited at the enol geometry but
formally CT at the keto geometry because of the migration of the proton.
To avoid ambiguity, we will be classifying the excited states according to the
number of 	 electrons in each ring. Only the ordering of the various states
has to be determined from theoretical computations. However, it will be
the vertical excitation to the CT state that will be observed experimentally,
because of the larger oscillator strength.

If we look at the correlation (Fig. 14) between the enol ground state
electronic con“guration and the keto ground state con“guration, we observe
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Fig. 15. A cartoon showing the lowest � � � � excited states along a proton transfer
coordinate and a skeletal deformation coordinate from the branching space. (Adapted
from Fig. 4 of Paterson et al. 34 )

a change in the number of ring A and B electrons. One might expect an
activation barrier due to the change in electronic con“guration. In fact,
computations34 suggest that the barrier to back formation of the enol form
from the keto form is small (4 kcal molŠ 1). Thus if the keto form is generated
photochemically, the enol form will be rapidly regenerated thermally over a
small barrier. It only remains to discuss the photochemical proton transfer
to generate a ground state keto form.

The excited state proton transfer can be understood using Fig. 15,
where we have labelled the various excited state potential energy surfaces
consistent with Fig. 14. In Fig. 15, we show potential energy surfaces in a
cartoon involving the proton transfer coordinate and one coordinate from
the branching space of the extended conical intersection seam. We have
optimized34 four isolated critical points on the extended seam; three S1/S0

conical intersection points in the enol region, in the keto region and the
transition state region as well as an S2/S1 conical intersection on the keto
side as indicated by the four points/stars in Fig. 15. In each case, the
branching space coordinates X1 X2 involve the skeletal deformations of the
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two rings and do not include a component along the proton transfer coor-
dinate. Thus in this case, the branching space is rigorously distinct from
the reaction coordinate corresponding to proton transfer. Of course, along
an adiabatic reaction path from the enol S1 6	 Š 8	 minimum to the keto
S1 7	 Š 7	 minimum, the real crossing will become avoided and generates
a transition state.

However, the initial excitation is to the enol S2 7	 Š 7	 state. It is clear
from Fig. 15 that there is an extended conical intersection seam between the
7	 Š 7	 state/6 	 Š 8	 excited states and the ground state. Thus the system
can decay e�ciently after photoexcitation at any point along the seam.
Since the ground state barrier between the keto and enol form is negligible,
the regeneration of the ground state enol form, following photoexcitation,
must be exceedingly e�cient. Thus the presence of a conical intersection
seam along the reaction path, where the branching space coordinates are
rigorously orthogonal to the reaction path, can be identi“ed as a desirable
design feature for e�cient photostabilisers.

In summary, the extended seam of conical intersection, which is parallel
to the reaction path, allows for radiationless decay at any point along the
proton transfer reaction path, even on the enol side. This topology explains
the experimental observation that the proton transfer is in competition
with a temperature-dependent deactivation process. For photostability, this
paradigm is ideal, since the seam has everywhere a sloped topology (gradi-
ents of ground and excited state are approximately parallel) and the ground
state enol form is regenerated on an ultrafast timescale. These mechanistic
features are independent of the ordering of the locally excited versus charge-
transfer con“gurations. The notion of a seam of intersection explains the
high photostability of the o-hydroxyphenyl-triazine class of photostabilisers
in particular, but more generally highlights an important photochemical
feature that should be considered when designing a photostabiliser.

In recent computations, we have been able to show that this same mech-
anism operates in other photostabilsers42 and in a Watson…Crick base pair
in DNA. 43 The reader is referred to Chap. 2 for further discussion.

5. Valence Bond Analysis of Conical Intersections

In this section, we would like to consider an example which illustrates
how one can understand the occurrence of conical intersections, as well
as the directions X1 X2 corresponding to the branching space, if one has an
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understanding of the electronic (VB) structure of the two states involved.
We address the following three questions:

(1) What is the connection between the molecular geometry and the elec-
tronic (VB) structure?

(2) Can the nature of the adiabatic and nonadiabatic pathways (and the
position of the conical intersection) be predicted from VB structures?

(3) What is the VB origin of phase change when one does a circuit of a
conical intersection?

5.1. Twisted intermolecular charge transfer (T-(ICT))
in aminobenzonitrile (ABN) compounds 29,30

We will illustrate the “rst two points above using a T-(ICT) (twisted inter-
molecular charge transfer) aminobenzonitrile (ABN) compound (Fig. 16)
as an example. We have recently completed theoretical work29 on this

Fig. 16. Schematic representation of the T-(ICT) process and the emission of LE and
ICT states.
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Fig. 17. VB states involved in the ICT LE surface in the T-(ICT) process. (Adapted
from Gomez et al. 29 )

class of compound and the reader is referred to that work for a complete
bibliography.

In ABNs there are two low-lying excited states: a locally excited (LE)
state where the excitation is localised on the phenyl ring (the ground state
is the sum of the Rumer states while the LE state is the antiaromatic
di�erence state), and the intramolecular charge transfer (ICT) state, where
there is a transfer of charge from the amino group to the benzene ring (see
Fig. 17). The ICT state is thus similar (electronically) to a benzene radical
anion. In spectroscopy, with suitable substitution R and in the appropriate
solvent, one can see emission from each state (LE or ICT diabatically, but
both on S1, see Fig. 16). The lowest energy equilibrium geometry of the
ICT state is usually assumed to be twisted; hence the acronym T-(ICT).
Since one observes dual ”uorescence, there must be two S1 minima, associ-
ated with the LE and ICT electronic structures (see Fig. 16). An adiabatic
reaction path must therefore connectthese two electronic structures on S1.
Thus there is an adiabatic reaction coordinate associated with the elec-
tron transfer process. However, the absorption from the ground state to
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the LE state in the Franck…Condon region will be forbidden. Rather the
absorption takes place to S2, which is the ICT state at the Franck…Condon
geometry. Thus there is also a nonadiabatic ICT process associated with
the radiationless decay from S2 (ICT) to S 1 (LE).

The ideas just discussed can be summarised in the potential energy
diagram shown in Fig. 16. From the “gure it is clear that the (adiabatic)
state label S1 and S2 and the (diabatic) VB structure label ICT or LE
are independent. The adiabatic reaction path involving a transition state
(i.e. avoided crossing) appears to be associated with the real crossing. The
T-(ICT) coordinate (amino group torsion) is assumed to be the reaction
path. The transition state on this reaction path is associated with a state
change from LE to ICT. This state change can also be associated with the
nonadiabatic process via the real crossing. However, the real crossing and
the nature of the branching space and its relationship to the adiabatic reac-
tion path can only be understood by moving to higher dimensions and by
consideration of the relationship between the branching space coordinates
and the twisting coordinate.

We now give some discussion of the VB states involved in Fig. 16. In the
ABN problem, there are four VB structures that are relevant and these are
shown in Fig. 17. There are two •dot-dotŽ (covalent) con“gurations I and
II and two zwitterionic con“gurations III and IV. Structures I and II are
just the Kekul é and anti-Kekulé structures of benzene. The LE structure
corresponds to the anti-Kekulé electronic structure, where excitation takes
place in the phenyl ring. The zwitterionic structures III and IV are the
ICT states. The ICT state has a positive charge on the amino group and
an extra electron on the phenyl group and we expect similarities to the
benzene radical anion. Thus there will be a quinoid (III) and an anti-quinoid
structure (IV). In a theoretical calcul ation on ABN species, an inspection of
the wavefunction will yield the informat ion about which resonance structure
dominates.

We are now in a position to discuss the reaction pro“le outlined in Fig. 16
in the full space of coordinates corresponding to the branching space X1 X2

of a conical intersection and the torsional coordinate X3. This discussion
will be focused on four related concepts:

(a) the S2 to S1 radiationless decay,
(b) the geometry and electronic structure of the two S1 minima,
(c) the geometry of the S1/S2 conical intersection together with the nature

of the X1 X2 branching space, and
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(d) the nature of reaction path X 3 connecting the LE and ICT regions of S1.
Our objective is to rationalise all the data using the four VB structures
in Fig. 17 and to illustrate the overall surface topology according to
the models or cartoons given in Figs. 1 and 3.

In Fig. 18(a), we show the geometry of the S2S1 ICT/LE crossing (minimum
energy crossing point), together with the directions X1and X2. The crossing
occurs between the LE and ICT (III quinoid in Fig. 17) VB structures. The
most important point about the geometry is that the amino group is not
twisted. The directions X1 and X2 are mainly the skeletal deformations of
the phenyl ring and do not involve torsion. This is completely consistent
with the fact that the LE and ICT VB structures di�er essentially only in
the phenyl ring. Thus we have established that the nonadiabatic decay does
not involve the amino group twist, since the directions X1 and X2 exclude
this coordinate. This in turn follows from the bonding pattern of the two
VB states.

Fig. 18. (a) Geometry of the S 2S1 ICT/LE crossing MECI, together with (b) the
directions X 1 and X 2 for ABN systems. (Adapted from Gomez et al. 29 )
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Fig. 19. The geometries of various minima on the ABN S 2 and S1 states. (Adapted
from Gomez et al. 29 )

Let us now consider the geometries of the various minima on the S2
and S1 states shown in Fig. 19. Notice that we are careful to include both
the adiabatic label S2 S1 and the diabatic VB state label LE or ICT. One
can see that the main di�erence in the •dot-dotŽ covalent VB structures
associated with S0-GS and S1-LE geometries occurs in the C-C bond lengths
of the phenyl ring, which are lengthened in S1-LE because of the anti-Kekulé
nature of the VB structure. If we examine the CT structures, we see that
we have a planar (P)-ICT structure on S2 and a twisted (T)-ICT structure
on S1. (There is also a high-energy (R)-ICT structure that has a bent
cyano group.) The reaction pathways that connect these structures must
include (i) an adiabatic reaction path that connects the S1-LE and (T)-
ICT structures on S1 along a torsional coordinate and (ii) a nonadiabatic
reaction path that connects the S2 planar (P)-ICT structure with the S 1-LE
structure and the S1 (T)-ICT structure via an extended conical intersection
seam, that lies along a torsional coordinate. We now discuss this.

The optimised geometries of the various minima on S2 and S1 (Fig. 19),
together with the nature of the branching space vectors X1 X2 [Fig. 18(b)],
suggests that the topology of the potential surface has the form shown in the
model surface in Fig. 3. Thus we have a conical intersection seam along X3 =
NR2 torsion with the branching space X1 X2 spanning the phenyl group
skeletal deformations shown in Fig. 18(b). We collect together all of the
information in Fig. 20, corresponding to the general model given in Fig. 3.
At the left-hand side, corresponding to untwisted geometries, one can see
the S1-LE minimum and the planar S2(P)-ICT state minima. Because the
branching space excludes X3 = NR 2 torsion, the conical intersection seam
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Fig. 20. The geometries from Fig. 19 located in the cone that changes shape along the
conical intersection hyperline. (Adapted from Gomez et al. 29 )

can persist as an extended seam along this coordinate. The double cone at
the twisted geometry is shown on the right-hand side of the “gure. Here
the double cone shape changes and the twisted S1(T)-ICT state minima
develops. Thus we have added the two branching space dimensions X1 X2

to Fig. 16 to yield Fig. 20. The origin of the nonadiabatic S2 to S1 process
is now clear. The initially created state at the Franck…Condon geometry
is near the S2(P)-ICT state minimum. This state can decay to either the
S1-LE minimum or the S1(T)-ICT minima along the extended seam. The
S1 adiabatic process can occur following S2(P)-ICT to S 1-LE decay via a
path on S1 involving the X 3 = NR 2 torsion.

5.2. What happens when one does a conical intersection
circuit in the branching plane? 44Š 47

The 1975 paper of Longuet…Higgins48 states the phase change theorem as:

•If the wavefunction of a given electronic state changes sign when trans-
ported round a loop in nuclear con“guration space, then the state must
become degenerate with another one at some point within the loop.Ž

This theorem has implications for dynamics49 and can even provide a
method for optimising a geometry.46 However, it is more interesting when
applied using the VB method to understand the chemical nature of the
conical intersection. Haas and his co-workers have developed this idea44

and Vanni et al.45 have attempted to make these ideas more rigorous. Many
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years ago, we attempted to rationalise the geometries of conical intersections
of hydrocarbons using VB theory.50,51 It turns out that the phase change
rule, when applied to three and four electrons, gives additional insights
into the chemical nature of conical intersections. We now give a discussion
adapted from the work of Vanni et al.45

It turns out that for the case of three orbitals and three electrons or
four orbitals and four electrons, where the orbitals are 1s orbitals, one has
some simple analytical results that enable one to understand the branching
space coordinates and the relationship to valence bond structures. Of course
the results are rigorous only in these cases, but they can be applied in a
qualitative way to other examples.

Valence bond theory uses a special combination of determinants called
Rumer functions. For three orbitals and three electrons, one has three
valence bond structures as shown in Fig. 21. The valence bond structures
such asA can be de“ned in terms of determinants as

A =
1

�
2

{| 1 2̄ 3| Š | 1̄ 2 3|} , (12)

where we use|| to denote the diagonal elements of the determinant.
However, it is simpler to formulate arguments directly in the Rumer basis.

In this three-electron example, if the ground state wavefunction isA,
then the corresponding excited state wavefunction would beB (since there
are only two linearly independent spin functions). There are two complica-
tions in practice. Firstly, A and B are not orthogonal if we use Rumer
VB functions. The overlap between the Rumer functions A and B is
�A|B � = Š 1

2 . Thus, if we take A to be a ground state wavefunction, the
corresponding orthogonal excited state wavefunctionB must be Schmidt
orthogonalised to give B �� = 2�

3

�
B + 1

2 A
�
. Secondly, the valence bond

structure C is not linearly independent of the other two structures. Thus
we haveC = A + B and C is linearly dependent onA and B . The excited
state partner functions constructed in this way, which correspond to the

21
1 2

3

1

3

2 2

3

1

3 3

A CB

Fig. 21. Rumer VB diagrams for a three orbital three electron system.
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VB functions A and B in Fig. 21, are shown in Eq. (13a) below:

A�� =
2

�
3

�
A +

1
2

B
�

,

(13a)

B �� =
2

�
3

�
B +

1
2

A
�

.

Similarly, the orthogonal partner function ( C�� ) of C can be taken as

C�� =
1

�
3

(A Š B ), (13b)

where the
�

3 in C�� comes from the normalisation requirement sinceA
and B are not orthogonal. (Observe the notation: C�� is the excited state
orthogonal state to C itself, while A�� is the orthogonal state ofA obtained
by Schmidt orthogonalising A to B , and B �� is the orthogonal state of B .)

Now let us de“ne the branching plane, X1 X2. We can make any choice
of orthogonal states as a starting point, but we shall choose the states
C = A + B and C�� = 1�

3
(A Š B ) to simplify the algebra.

However, “rst we must establish an approximate but essential rela-
tionship between nuclear con“gurations and VB structures. The matrix
elements between Rumer functions involve exchange integralsK ij (K ij =
[ij |ij ] + Sij hij in the case of 2 H atom 1s orbitals). The indicesij are
associated with orbitals on nuclear centresi and j . Thus in Fig. 21, the
indices 1, 2 and 3 relate to nuclear centres 1, 2 and 3. Thus our discussions
are rigorous only for 3 H atoms with a single 1s function on each centre.
However, the relationships would be expected to hold approximately for
any set of three nuclei with one •activeŽ VB orbital on each centre.

As stated above, for our computation of the branching space, we use the
ground C = A + B and excited C�� = 1�

3
(A Š B ) orthogonal states.

The branching space directions require the computation of the direction
of the derivatives of energy di�erence � H (HCC Š HC �� C �� ) and o�-diagonal
matrix element HCC �� . The AB , BC matrix elements of the Hamiltonian
are between the Rumer basis states.45 A, B and C are collected in Eq. (14).

HAA = K 12 Š
1
2

(K 13 + K 23),

HBB = K 13 Š
1
2

(K 12 + K 23),

HCC = K 23 Š
1
2

(K 12 + K 13),
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HAB =
1
2

(K 12 + K 13 Š 2K 23),

HAC = Š
1
2

(K 12 + K 23 Š 2K 13),

HBC =
1
2

(K 13 + K 23 Š 2K 12). (14)

All other matrix elements can be derived from these equations. The
energy di�erence is45:

(X 1) :

� H = HC,C Š HC �� C �� (15)

= Š
5
3

(K 12 + K 13 Š 2K 23),

and the interstate coupling is45

(X 2) :

HC,C �� (q) =
1

�
3

�A Š B |H |A + B � (16)

=

�
3

2
(K 13 Š K 12).

The derivatives can then be expressed qualitatively as follows. The indices
ij in the exchange integralsK ij relate to orbitals on centres i and j and
K ij � exp(ŠbRij ) where Rij is the distance between centresi and j . Thus
the magnitude of the gradient is dK ij /dR ij � exp(ŠbRij ) with direction
along a unit vector from centre i to centre j . For this reason we can use the
direction of � H and � (� H ) interchangeably and similarly for HAB .

We now illustrate this idea. For each exchange integralŠK ij , we draw
a vector on atom i heading towards atomj and a vector on atomj heading
towards atom i (for K ij two vectors are the opposite of the ones above).
We then compute a resultant vector for each atom of the system. The
•resultantŽ will qualitatively describe the gradient di�erence vectors. For
the three-orbital example, we have the result shown in Fig. 22.

For HCC �� (K 13 Š K 12) coordinate we have the following: on atom 1
the resultant vector is the sum between two vectors arising from two terms:
ŠK 12 and K 13, while on atom 2 the resultant vector arises only fromŠK 12,
and on atom 3 the resultant vector arises only fromK 13. For the HCC Š
HC �� C �� coordinate (K 12 + K 13 Š 2K 23) we have the following: on atom
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X1 HCC” X2 � H

1 2 1 2

3

3

(a) (b)

Fig. 22. Derivative coupling and gradient di�erence associated with � H and H CC ��

coordinates for three orbital three electron systems. Note that we use � H and its gradient
interchangeably because they are parallel as discussed in the text. (Adapted from Vanni
et al. 45 )

1 the resultant vector is the sum between two vectors arising from two
terms: ŠK 12 and ŠK 13; on atom 2 the resultant vector is the sum between
two vectors arising from two terms: ŠK 12 and 2K 23; and on atom 3 the
resultant vector is the sum between two vectors arising from two terms:
ŠK 13 and 2K 23. Thus the �� � � (E B Š E A )

� Q̄ x 1




0

and � AB � � � � A | �H |� B �
� Q̄ x 2




0

corresponding to the HCC Š HC �� C �� and HCC �� derivatives are shown as
the axes in Fig. 22. We can see that the conditionHCC Š HC �� C �� = 0 is
achieved whenK 12 + K 13 = 2 K 23. Along the ŠHCC �� coordinate at the
origin, K 13 = K 12. Thus at the apex of the cone, one has

K 12 = K 13 = K 23 (17)

corresponding to an equilateral triangle, a well-known result.50

Now we would like to explore the relationship between molecular struc-
ture and VB (i.e. electronic structure) illustrated in Fig. 23. Figure 23 shows
the branching space directions (see Fig. 22) as deformations of the three
atoms together with three molecular structures where the VB structure
(i.e. the electronic structure) is coincident with the nuclear geometry. Notice
that they are related by a rotation ( � ) in the plane of 120� in the space of
nuclear coordinates. It is easily demonstrated that the valence bond wave-
functions are obtained by rotation (� ) of ground and excited state of VB
structures by 60� . Thus there is a fundamental relationship between elec-
tronic structure and nuclear structure in the vicinity of a conical intersection
with a special case of three electrons in three hydrogen like 1s orbitals. (The
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Fig. 23. The � loop in nuclear con“guration space showing Valence Bond structures for
the three orbital three electron problem and the � H and H CC �� vectors which de“ne
the branching plane. (Adapted from Vanni et al. 45 )

same results can be obtained for four orbitals and four electrons.) There is
thus a relationship between the polar angle in a closed loop around the apex
of the cone (� ) (relating the molecular structures) and the mixing angle (� )

(relating the VB structures) of the ground and excited state
� � A

� B

�
wave-

functions under the transformation T.
We now expand on this observation. We de“ne a 2× 2 transformation

T as

T (q) =

�
cos� (q) Š sin� (q)

sin � (q) cos� (q)

�

. (18)

The angle � depends on the polar angle� only. It is therefore constant
along straight lines having their origin at the apex of the double cone.
Matrix rotations � by 60� and 120� [Eq. (19) below] corresponding to the
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geometry changes� of 120� and 240� involve application of the transforma-
tions in Eq. (19) to C and C��

�

�
�
�

1
2

Š

�
3

2�
3

2
1
2

�

�
�
� ,

�

�
�
�

Š
1
2

�
3

2

Š

�
3

2
Š

1
2

�

�
�
� , (19)

It is easily shown that for a 60� rotation we have

�

�
�

C = A + B

C�� =
1

�
3

(A Š B )

�

�
� =�

�

�
�

B

A�� =
2

�
3

�
A +

1
2

B
�

�

�
� . (20)

The whole loop in � is shown in Fig. 24 (without normalization factors).
Thus we have a correspondence between molecular structure and VB struc-
ture as we do a circuit around a conical intersection.

It is also instructive to examine a special case. Consider the loop of
radius  = a passing through (� = 0) ( ax 1 , 0); (� = 	 )(Š ax 1 , 0); (� = 2 	 )
(ax 1 , 0). The corresponding rotation matrices are

�
1 0
0 1

�
,

�
0 Š1
1 0

�
,

�
Š1 0

0 Š1

�
. (21)

A + B

A BA - B 

A  B

B+ 1/2AA +1/2 B

Fig. 24. Loop � in valence bond structure space for the three orbital three electron
problem. The outer loop corresponds to the ground state VB structures while the
inner loop corresponds to the excited state VB structures that have been Schmidt
orthogonalised but not normalised. (Adapted from Vanni et al. 45 )
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Thus looking at the “rst row, states X and Y transform according to
Eq. (22) to give

X 	
1

�
2

(X Š Y ) 	 Š Y 	 Š
1

�
2

(Y + X ) 	 Š X,

(22)

Y 	
1

�
2

(Y Š X ) 	 Š X 	 Š
1

�
2

(X + Y) 	 Š Y.

There are two important observations: (1) X and Y are interchanged on
rotation through 90 � and (2) we have a phase change as one rotates a full
circle.

Now let us look at an application. The theory we have just developed
holds rigorously only for three electrons in three 1s orbitals. However, the
principles based upon overlap remained approximately valid. This is illus-
trated in Fig. 25 where we show a circuit of the prefulvene-like conical
intersection in benzene.52 Our purpose here is to illustrate the circuit of
the conical intersection that we have described in the preceding discussion.
In Fig. 25 the three valence bond structures A, B and C that lie on the
circuit correspond to the couplings of the carbon atoms involved in the
•prowŽ of the prefulvene conical intersection. Notice that the 180� rotation
in the geometrical plane exchanges an excited state valence bond structure

Fig. 25. A circuit of the prefulvene-like conical intersection in benzene. 52 (Adapted
from Robb et al. 67 )
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so that we see the image of structure C on the ground state. Thus for the
benzene conical intersection, the circuit about the apex of the cone (Fig. 25)
traces out the valence bond structures corresponding to Figs. 21 and 23.

The same type of manipulations can be carried out for four orbitals and
four electrons in the same fashion.45 Unfortunately, for systems larger than
four orbitals one cannot do the manipulations analytically. Nevertheless, if
one can identify the valence bond structures for ground and excited state
at one point on the circuit, then one can still apply the transformation
of Eq. (8) to generate remaining valence bond structures that lie on the
circuit.

Haas and co-workers have looked at many examples.44,46,53 In applying
such methods qualitatively, one needs to be clear that (a) the circuit of the
conical intersection must be in the branching plane and (b) the phase change
involves a wavefunction where the VB components involve two linearly
independent VB functions corresponding to ground and excited state at
one reference point. In the case of sixorbitals and six electrons, there are
“ve independent singlet spin functions. In order to apply the phase change
method correctly, one needs to choose two linearly independent combina-
tions. As we have shown45 elsewhere, this is not trivial. Thus the method
is probably more useful for three and four electron systems where it can be
easily applied qualitatively.

6. Exploring the Conical Inter section Seam using Dynamics

Dynamics methods are becoming essential for the study of nonadiabatic
events.6,54 This subject will be treated by several contributors to this book,
so we will limit ourselves to some studies that show how dynamics can
sample the extended conical intersection seam and provide mechanistic
information that would not be available from reaction path studies.

6.1. A model cyanine system: The extended seam
for cis-trans double bond isomerization 31,55

We now turn to the cyanine dye 1,1�-diethyl-4,4�-cyanine (1144-C) shown in
Fig. 26(a). Experiments demonstrate56 that one may control the cis-trans
isomerisation by populating vibrational modes orthogonal to an extended
seam of intersection. We have31,55 mapped the potential surface for the
model shown in Fig. 26(b).
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Fig. 26. (a) Cyanine dye 1,1 � -diethyl-4,4 � -cyanine (1144-C). (b) Three-carbon model
of 1144-C.

The reaction coordinate X3 (Fig. 2) is cis-trans isomerisation. The
branching space is symmetric and anti-symmetric skeletal deformation
coupled with pyramidal NH 2 distortion. Thus the seam is accessible along
the skeletal deformation coordinate before cis-trans isomerisation can occur.
Our dynamics results31 (classical trajectories with a surface hop where
the gradient comes from CASSCF) are summarised in Fig. 27. Figure 27
shows the geometries where the system hops. The minimum on the seam
occurs at a dihedral angle of around 104� . However, most of the trajectories
hop before the molecule has completed the half-rotation. Thus dynamics
computations suggest that for the cyanine dye example, the sand ”owing
through the funnel (decay at the minimum of the conical intersection seam)
(Fig. 1) is not applicable and the system samples the seam at all torsion
angles (Fig. 2).a

aSince writing this review we have completed quantum dynamics computations [C.S.
Allan, B. Lasorne, G.A. Worth and M.A. Robb, A straightforward method of analysis
for direct quantum dynamics: application to the photochemistry of a model cyanine,
J. Phys. Chem. A, 114 (33), 8713…29 (2010)]. The results are qualitatively similar.
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Fig. 27. Surface hop angle along cis-trans isomerisation coordinate for three-carbon
model of 1144-C.31

6.2. Benzene

The photochemistry and photophysics of Benzene is another •bench-
markŽ problem in organic photochemistry.57,58 Recently,14,59 dynamics
computations have been carried out on this system using variational multi-
con“guration Gaussian wavepackets.60 The cartoon shown in Fig. 28 shows
the potential surface in the space of the prefulvene distortion that leads
to the conical intersection (one of the branching space coordinates) and
the ring-breathing mode (an intersection space coordinate). The extended
seam develops along this coordinate. Remarkably, the conical intersection
is peaked near the prefulvene-like minimum of the conical intersection but
sloped further along the seam. This suggests that whether the system decays
at the peaked geometry and producesa prefulvene-like product or decays at
the sloped part of the seam, regenerating the reactant, might be controlled
by the energy in the ring-breathing mode.
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Fig. 28. Controlling the S1 photochemistry of benzene: targeting the sloped part
of the conical intersection leads to regeneration of benzene (photophysics); targeting
the opposite end of the seam yields the benzvalene at a peaked conical intersection
(photochemistry). (Adapted from Lasorne et al. 59 )

Fig. 29. Four quantum trajectories di�ering by the value of the initial momentum k1

along coordinate Q1 (projection in the ( Q1, Q4)-subspace). Dashed line is the seam of
intersection between diabatic states (prefulvenoid structures of various sizes, as indicated
by molecular structures). (Adapted from Lasorne et al. 59 )

The results are summarised in Fig. 29.59 In this “gure we show the
propagation of the centre of the wavepacket for various initial conditions
(arrows) involving the prefunvene (Q4) and ring-expanding mode (Q1).
It is clear that the point of decay on the seam can indeed be controlled
theoretically. Momentum in ring expansion (negative Q1) leads to decay at
the sloped intersection. Alternatively, ring contraction (positive Q1) leads
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to decay at prefulvene. Thus, like the cyanine example discussed previ-
ously, quantum dynamics60 may suggest new experiments for controlling
photochemistry.

6.3. Biological chromophores: PYP 32,61

In biological chomophores, nature controls photochemistry via the structure
of the protein in which the chromophore is embedded,32,33,61Š 63 As the last
example, we brie”y discuss the cis-trans isomerisation of a double bond in
the covalently bound p-coumaric acid chromophore (Fig. 30) in Photoactive
Yellow Protein (PYP), an archetypal reversible protein photoreceptor.32,61

A combination of ab initio (CASSCF) dynamics with surface hopping
and classical molecular dynamics (MD) simulation techniques has been
used to directly simulate the process of photoisomerisation within the
protein.32,61 We have used CASSCF for the chromophore itself and

Fig. 30. The p-coumaric acid chromophore in PYP. The chromophore is covalently
linked to the side chain of Cys69 through a thioester bond. The p-hydroxyphenyl moiety
is deprotonated, but stabilised by hydrogen bonding interactions with the side chains of
Tyr42 and Glu46. (Adapted from Groenhof et al. 32 )



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch01

Conical Intersections in Organic Photochemistry 45

Fig. 31. Potential energy surfaces of the excited and ground states in the trans -to- cis
isomerisation coordinate (torsion b, Fig. 30) and a skeletal deformation of the bonds: in
vacuo (a) and in the protein (b). (Adapted from Groenhof et al. 32 )

molecular mechanics for the remainder of the system. A cartoon of the
potential energy surfaces in vacuo and in the protein is shown in Fig. 31.

The extended seam is present for both vacuo and protein along the
cis-trans isomerisation coordinate. Again, the coordinates that lift the
degeneracy are the skeletal deformations. In vacuo [Fig. 31(a)], there is
an excited-state transition state with barrier and minimum where the
chromophore is partly twisted, as well as a minimum with a half twist.
In the protein [Fig. 31(b)], the S1 surface is stabilised by the arg52 residue
and the conical intersection seam is displaced so that it intersects with the
reaction path. Thus the conical intersections in the protein and in the gas
phase are signi“cantly di�erent. In the gas phase, substantial additional
skeletal deformation motion to reach the seam would be required at the
half twist geometry.

In the gas phase dynamics, using the same initial conditions as in the
protein simulations, the system never makes it over the “rst partial twist
torsion barrier. In contrast, in the protein, the excited state is speci“cally
stabilised by the charge distribution of the protein (arg52). One observes a
decrease of the S1-S0 energy gap in the region of the twisted intermediate
(from 80 kJ molŠ 1 in vacuo to less than 1 kJ molŠ 1 in the protein), accompa-
nied by a displacement of the crossingseam closer to the global minimum.
One also sees a decrease of the energy barrier separating the early planar
S1 minimum and the twisted S1 minimum. In total, 14 dynamics simula-
tions are discussed in Ref. 32. In the protein, the lifetime of the excited
state ranged from 129 to 2293 fs. The ratio of the number of successful
isomerisations to the number of excited-state trajectories is
 0.3, close
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to the experimental quantum yield of 0.35. Statistically, the number of
trajectories is small, but it nevertheless yields a consistent mechanistic
picture.

PYP is probably the most dramatic example of a situation where
the reaction path is simple (just torsion), and orthogonal to the
degeneracy-lifting coordinates (mainly skeletal deformations). In this case,
the reactivity is changed when you add the electric “eld of the protein.
Nature has been very careful to position one charged residue in exactly the
right place.

7. Conclusions

With developments in theory and computation (see subsequent chapters in
this book), quantum dynamics computations6,14,64 are becoming possible
as a method to study nonradiative decay at conical intersections in organic
photochemistry. Here a more direct interaction with time-resolved laser
methods becomes possible, so that control of photochemistry becomes
possible.65 Recent results show that the extended seam is a common mech-
anistic feature and this may be useful for the control of photochemistry
either by lasers or by chemical substitution. The other major challenge is
applications to biological systems.62,66 Again the extended seam appears
to play a role. However, developments in theory are needed to allow for
quantum e�ects in nuclear motion in combination with force “eld methods
and to allow for multi-scale e�ects.
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by H. K öppel, D.R. Yarkony and H. Barentzen (Springer, 2009), pp. 169;
D. Yarkony, J. Chem. Phys. 123(13), 134106 (2005); D.R. Yarkony, J. Chem.
Phys. 123(20), 204101 (2005).

9. G. Atchity, S. Xantheas and K. Ruedenberg, J. Chem. Phys. 95(3), 1862
(1991).

10. M. Desouter-Lecomte, C. Galloy, J. Lorquet and M. Pires, J. Chem. Phys.
71(9), 3661 (1979); D.R. Yarkony, Rev. Mod. Phys. 68(4), 985 (1996).

11. M.J. Paterson, M.J. Bearpark, M.A. Robb and L. Blancafort, J. Chem. Phys.
121(23), 11562 (2004).

12. M. Paterson, M. Bearpark, M. Robb, L. Blancafort and G. Worth,
Phys. Chem. Chem. Phys. 7(10), 2100 (2005).

13. F. Sicilia, L. Blancafort, M.J. Bearpark and M.A. Robb, J. Chem. Theory
Comput. 4(2), 257 (2008).

14. B. Lasorne, F. Sicilia, M.J. Bearpark, M.A. Robb, G.A. Worth and L. Blan-
cafort, J. Chem. Phys. 128(12), 124307 (2008).

15. F. Sicilia, L. Blancafort, M.J. Bearpark and M.A. Robb, J. Phys. Chem.
A 111(11), 2182 (2007).

16. F. Sicilia, M.J. Bearpark, L. Blancafort and M.A. Robb, Theor. Chem. Acc.
118(1), 241 (2007).

17. B.H. Lengs“eld and D.R. Yarkony, Adv. Chem. Phys. 82, 1 (1992).
18. M. Bearpark, M. Robb and H. Schlegel, Chem. Phys. Lett. 223(3), 269

(1994).
19. B.G. Levine, J.D. Coe and T.J. Martinez, J. Phys. Chem. B 112(2), 405

(2008).
20. T.W. Keal, A. Koslowski and W. Thiel, Theor. Chem. Acc. 118(5…6), 837

(2007).



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch01

48 M. A. Robb

21. G. Worth and L. Cederbaum, Annu. Rev. Phys. Chem. 55, 127 (2004).
22. S. Belz, T. Grohmann and M. Leibscher, J. Chem. Phys. 131(3), 034305

(2009); T. Grohmann, O. Deeb and M. Leibscher, Chem. Phys. 338(2…3),
252 (2007); O. Deeb, S. Cogan and S. Zilberg,Chem. Phys. 325(2), 251
(2006); M. Bearpark, L. Blancafort and M. Paterson, Mol. Phys. 104(5…7),
1033 (2006).

23. M. Olivucci, I. Ragazos, F. Bernardi and M. Robb, J. Am. Chem. Soc.
115(9), 3710 (1993).

24. M. Boggio-Pasqua, M. Bearpark, P. Hunt and M. Robb, J. Am. Chem. Soc.
124(7), 1456 (2002).

25. P. Celani, S. Ottani, M. Olivucci, F. Bernardi and M.A. Robb, J. Am.
Chem. Soc. 116(22), 10141 (1994); W. Fuss, T. Schikarski, W.E. Schmid,
S. Trushin and K.L. Kompa, Chem. Phys. Lett. 262(6), 675 (1996); W. Fuss,
P. Hering, K.L. Kompa, S. Lochbrunner, T. Schikarski, W.E. Schmid and
S.A. Trushin, Ber. Bunsenges. Phys. Chem101(3), 500 (1997); M. Garavelli,
P. Celani, M. Fato, M.J. Bearpark, B.R. Smith, M. Olivucci and M.A. Robb,
J. Phys. Chem. A 101(11), 2023 (1997); S.A. Trushin, W. Fuss, T. Schikarski,
W.E. Schmid and K.L. Kompa, J. Chem. Phys. 106(22), 9386 (1997);
A. Hofmann and R. de Vivie-Riedle, J. Chem. Phys. 112(11), 5054 (2000);
A. Hofmann and R. de Vivie-Riedle, Chem. Phys. Lett. 346(3…4), 299 (2001);
L. Kurtz, A. Hofmann and R. de Vivie-Riedle, J. Chem. Phys. 114(14),
6151 (2001); S. Zilberg and Y. Haas, Phys. Chem. Chem. Phys. 4(1), 34
(2002); H. Tamura, S. Nanbu, H. Nakamura and T. Ishida, Chem. Phys.
Lett. 401(4…6), 487 (2005).

26. K. Kosma, S.A. Trushin, W. Fuss and W.E. Schmid, Phys. Chem.
Chem. Phys. 11(1), 172 (2009).

27. M. Boggio-Pasqua, M. Ravaglia, M. Bearpark, M. Garavelli and M. Robb,
J. Phys. Chem. A 107(50), 11139 (2003).

28. A. Migani, M. Robb and M. Olivucci, J. Am. Chem. Soc. 125(9), 2804
(2003); O. Weingart, A. Migani, M. Olivucci, M. Robb, V. Buss and P. Hunt,
J. Phys. Chem. A 108(21), 4685 (2004).

29. I. Gomez, M. Reguero, M. Boggio-Pasqua and M.A. Robb, J. Am.
Chem. Soc. 127(19), 7119 (2005).

30. K.A. Zachariasse, S.I. Druzhinin, V.A. Galievsky, S. Kovalenko, T.A.
Senyushkina, P. Mayer, M. Noltemeyer, M. Boggio-Pasqua and M.A. Robb,
J. Phys. Chem. A 113(12), 2693 (2009).

31. P. Hunt and M. Robb, J. Am. Chem. Soc. 127(15), 5720 (2005).
32. G. Groenhof, M. Bouxin-Cademartory, B. Hess, S. De Visser, H. Berendsen,

M. Olivucci, A. Mark and M. Robb, J. Am. Chem. Soc. 126(13), 4228 (2004).
33. L.V. Schaefer, G. Groenhof, A.R. Klingen, G.M. Ullmann, M. Boggio-Pasqua,

M.A. Robb and H. Grubmueller, Angew Chem. Int. Edit. 46(4), 530 (2007).
34. M. Paterson, M. Robb, L. Blancafort and A. DeBellis, J. Phys. Chem.

A 109(33), 7527 (2005).
35. D. Asturiol, B. Lasorne, M.A. Robb and L. Blancafort, J. Phys. Chem.

A 113(38), 10211 (2009).
36. M. Boggio-Pasqua, M.J. Bearpark, F. Ogliaro and M.A. Robb, J. Am.

Chem. Soc. 128(32), 10533 (2006).



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch01

Conical Intersections in Organic Photochemistry 49

37. I. Gomez, M. Reguero and M.A. Robb, J. Phys. Chem. A 110(11), 3986
(2006).

38. M. Boggio-Pasqua, M.J. Bearpark and M.A. Robb, J. Org. Chem. 72(12),
4497 (2007).

39. M. Araujo, B. Lasorne, M.J. Bearpark and M.A. Robb, J. Phys. Chem.
A 112(33), 7489 (2008).

40. A. Nenov, P. Kolle, M. Robb and R. de Vivie-Riedle, J. Org. Chem. 75, 123
(2010).

41. W.T.A.M. van der Lugt and L.J. Oosterho�, J. Am. Chem. Soc. 91, 6042
(1969); W.T.A.M. van der Lugt and L.J. Oosterho�, Chem. Commun. 1235…
1236 (1968).

42. M.J. Paterson, M.A. Robb, L. Blancafort and A.D. DeBellis, J. Am.
Chem. Soc. 126(9), 2912 (2004); A. Migani, L. Blancafort, M.A. Robb and
A. D. Debellis, J. Am. Chem. Soc. 130(22), 6932 (2008).

43. G. Groenhof, L.V. Schaefer, M. Boggio-Pasqua, M. Goette, H. Grubmueller
and M.A. Robb, J. Am. Chem. Soc. 129(21), 6812 (2007).

44. Y. Haas and S. Zilberg, Adv. Chem. Phys. 124, 433 (2002); Y. Haas, S. Cogan
and S. Zilberg, Int. J. Quantum Chem. 102(5), 961 (2005).

45. S. Vanni, M. Garavelli and M.A. Robb, Chem. Phys. 347(1…3), 46 (2008).
46. B. Dick, Y. Haas and S. Zilberg, Chem. Phys. 347(1…3), 65 (2008).
47. M. Abe, Y. Ohtsuki, Y. Fujimura, Z.G. Lan and W. Domcke, J. Chem. Phys.

124(22), 224316 (2006); S. Althorpe, J. Chem. Phys. 124(8), 084105 (2006).
48. H.C. Longuet…Higgins,Proc. Roy. Soc. London A 392, 147 (1975).
49. S.C. Althorpe, J. Chem. Phys. 124(8), 084105 (2006).
50. F. Bernardi, M. Olivucci, M. Robb and G. Tonachini, J. Am. Chem. Soc.

114(14), 5805 (1992).
51. D.S. Ruiz, A. Cembran, M. Garavelli, M. Olivucci and W. Fuss, Photochem

Photobiol 76(6), 622 (2002).
52. I. Palmer, I. Ragazos, F. Bernardi, M. Olivucci and M. Robb, J. Am.

Chem. Soc. 115(2), 673 (1993).
53. S. Zilberg and Y. Haas, Chem. Eur. J. 5(6), 1755 (1999).
54. G. Worth and M. Robb, Adv. Chem. Phys. 124, 355 (2002); M.D. Hack,

A.M. Wensmann, D.G. Truhlar, M. Ben-Nun and T.J. Martinez, J. Chem.
Phys. 115(3), 1172 (2001); J. Quenneville, M. Ben-Nun and T.J. Martinez,
J. Photoch. Photobio. A 144(2…3), 229 (2001); A. Jasper, S. Nangia, C. Zhu
and D. Truhlar, Accounts Chem. Res. 39(2), 101 (2006); M. Barbatti,
G. Granucci, M. Persico, M. Ruckenbauer, M. Vazdar, M. Eckert-Maksic
and H. Lischka, J. Photoch. Photobio. A 190(2…3), 228 (2007).

55. A. Sanchez-Galvez, P. Hunt, M. Robb, M. Olivucci, T. Vreven and
H. Schlegel, J. Am. Chem. Soc. 122(12), 2911 (2000).

56. B. Dietzek, B. Brueggemann, P. Persson and A. Yartsev, Chem. Phys. Lett.
455(1…3), 13 (2008).

57. I.J. Palmer, M. Olivucci, F. Bernardi and M.A. Robb, J. Org. Chem. 57(19),
5081 (1992); W. Domcke, A. Sobolewski and C. Woywod, Chem. Phys. Lett.
203(2…3), 220 (1993).

58. W. Domcke, A.L. Sobolewski and C. Woywod, Chem. Phys. Lett. 203(2…3),
220 (1993); H. Koppel, Chem. Phys. Lett. 205(4…5), 361 (1993); I.J. Palmer,



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch01

50 M. A. Robb

I.N. Ragazos, F. Bernardi, M. Olivucci and M.A. Robb, J. Am. Chem. Soc.
115(2), 673 (1993); A. Sobolewski, C. Woywod and W. Domcke, J. Chem.
Phys. 98(7), 5627 (1993); B.R. Smith, M.J. Bearpark, M.A. Robb,
F. Bernardi and M. Olivucci, Chem. Phys. Lett. 242(1…2), 27 (1995);
G.A. Worth, J. Photoch Photobio A 190(2…3), 190 (2007).

59. B. Lasorne, M.J. Bearpark, M.A. Robb and G.A. Worth, J. Phys. Chem.
A 112(50), 13017 (2008).

60. B. Lasorne, M.A. Robb and G.A. Worth, Phys. Chem. Chem. Phys. 9(25),
3210 (2007); B. Lasorne, M.J. Bearpark, M.A. Robb and G.A. Worth,
Chem. Phys. Lett. 432(4…6), 604 (2006).

61. G. Groenhof, L.V. Schaefer, M. Boggio-Pasqua, H. Grubmueller and
M.A. Robb, J. Am. Chem. Soc. 130(11), 3250 (2008).

62. A. Strambi, P.B. Coto, L.M. F rutos, N. Ferre and M. Olivucci, J. Am.
Chem. Soc. 130(11), 3382 (2008); P.B. Coto, A. Strambi and M. Olivucci,
Chem. Phys. 347(1…3), 483 (2008); F. Santoro, A. Lami and M. Olivucci,
Theor. Chem. Acc. 117(5…6), 1061 (2007); A.M. Virshup, C. Punwong, T.V.
Pogorelov, B.A. Lindquist, C. Ko and T.J. Martinez, J. Phys. Chem. B
113(11), 3280 (2009).

63. H.R. Hudock, H.G. Levine, A.L. Thompson and T.J. Martinez, presented
at the International Conference on Computational Methods in Science
and Engineering, Corfu, Greece, 2007 (unpublished); M. B oggio-Pasqua,
G. Groenhof, L.V. Schafer, H. Grubmuller and M.A. Robb, J. Am.
Chem. Soc. 129(36), 10996 (2007); G. Groenhof, L.V. Schafer, M. Boggio-
Pasqua, M. Goette, H. Grubmuller and M.A. Robb, J. Am. Chem. Soc.
129(21), 6812 (2007).

64. G. Villani, J. Chem. Phys. 128(11), 114306 (2008); T. Rozgonyi and
L. Gonzalez, J. Phys. Chem. A 112(25), 5573 (2008); M. Basler,
E. Gindensperger, H. D. Meyer and L.S. Cederbaum, Chem. Phys. 347(1…3),
78 (2008); B.G. Levine, J.D. Coe, A.M. Virshup and T.J. Martinez,
Chem. Phys. 347(1…3), 3 (2008).

65. D. Geppert, P. von den Ho� and R. de Vivie-Riedle, J. Phys. B-At Mol. Opt.
41(7), 074006 (2008); J. Hauer, T. Buckup and M. Motzkus, J. Phys. Chem.
A 111(42), 10517 (2007); P.S. Christopher, M. Shapiro and P. Brumer,
J. Chem. Phys. 123(6), 064313 (2005); M. Abe, Y. Ohtsuki, Y. Fujimura
and W. Domcke, J. Chem. Phys. 123(14), 144508 (2005); A. Muller and
K. Kompa, J. Mod. Optic. 49(3…4), 627 (2002).

66. L.M. Frutos, T. Andruniow, F. Santoro, N. Ferre and M. Olivucci, Proc. Natl.
Acad. Sci. U.S.A. 104(19), 7764 (2007); L.V. Schafer, G. Groenhof, M.
Boggio-Pasqua, M.A. Robb and H. Grubmuller, Plos. Comput. Biol. 4(3),
14 (2008); L.V. Schaefer, G. Groenhof, M. Boggio-Pasqua, M.A. Robb and
H. Grubmueller, Plos. Comput. Biol. 4(3), e1000034 (2008).

67. M.A. Robb, M. Garavelli, M. Olivucci and F. Bernardi, in Reviews in Compu-
tational Chemistry, 15, 87 (2000).



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch02

Chapter 2

E�cient Excited-State Deactivation
in Organic Chromophores
and Biologically Relevant

Molecules: Role of Electron
and Proton Transfer Processes

Andrzej L. Sobolewski� and Wolfgang Domcke•

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2. The �� � -driven Photochemistry of Acidic

Aromatic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3. Excited-State Electron/Proton Transfer in

Intra-Molecularly Hydrogen-Bonded Aromatic Systems . . . . . 58
4. Excited-State Electron/Proton Transfer in

Inter-Molecularly Hydrogen-Bonded Aromatic Systems . . . . . 64
5. Chromophores with Flexible Side-Chains:

Electron/Proton Transfer in Amino Acids and Peptides . . . . . 70
6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . 79
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

� Institute of Physics, Polish Academy of Sciences, PL-02668 Warsaw, Poland.
• Institute of Physical and Theoretical Chemistry, Technische Universit¨ at M ünchen,
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1. Introduction

Electron and proton transfer reactions are among the most fundamental
and most widespread photoinduced processes in physical and biophysical
chemistry. In this chapter, we shall mainly be concerned with electron and
proton transfer processes which are facilitated by intra-molecular or inter-
molecular hydrogen bonds.

Hydrogen bonds are ubiquitous in chemistry and biochemistry. Exam-
ples are the structure and dynamics of liquids and molecular crystals,
solvation in protic solvents, molecular recognition and supra-molecular
self-organization, as well as enzymatic catalysis. While the properties of
hydrogen bonds in the electronic ground state have been investigated for
decades with powerful experimental techniques, such as infrared and Raman
vibrational spectroscopy as well as neutron scattering, much less is known,
in general, about the structure and dynamics of hydrogen bonds in excited
electronic states and their role in photochemical processes. The questions
of the time scale of excited-state proton transfer and the presence or
absence of barriers have been disputed for a long time.1Š 4 A widely studied
phenomenon involving excited-state dynamics of hydrogen bonds is ”uores-
cence quenching in intra-molecularly or inter-molecularly hydrogen-bonded
complexes.5Š 9 Most importantly, photosynthesis is based on a sequence of
electron and proton transfer processes.10

One reason of our rather limited knowledge of excited-state hydrogen-
bond dynamics is the extremely short time scale of these processes,
which often may be beyond the limits of present-day time-resolved exper-
iments. Another reason is the di�culty of performing accurate ab initio
electronic-structure calculations for excited states of relatively large poly-
atomic molecules. Excited electronic states are open-shell, generally multi-
con“gurational, and often subject to intricate valence-Rydberg mixing
e�ects. Apart from the complexities of the electronic structure, chemically
interesting excited-state dynamics involves large-amplitude nuclear motion
such as fragmentation or isomerization. The identi“cation of the relevant
excited electronic states and the chemically relevant nuclear degrees of
freedom requires the systematic exploration of truly high-dimensional elec-
tronic potential-energy surfaces over extended regions of nuclear coordi-
nate space.

The intention of this chapter is to give an overview, at a qualitative
level, of generic electron/proton-transfer reaction mechanisms in which
conical intersections of the potential-energy surfaces play an essential
role. The description will be in terms of minimum-energy reaction paths,
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reaction-path energy pro“les, and a local characterization of the conical
intersections. A description of the detailed electronic/nuclear dynamics at
these conical intersections is beyond the scope of this chapter. While a
comprehensive theoretical analysis of the nonadiabatic electronic-nuclear
dynamics at conical intersections involved in electron/proton transfer
certainly is of great interest, such calculations are still at a rudimen-
tary stage or were not attempted at all for the polyatomic systems to be
discussed in this chapter.

The chemical literature is replete with (sometimes controversial) discus-
sions of processes like concerted or sequential electron and proton transfer,
proton-coupled electron transfer (PCET), electron-coupled proton transfer
(ECPT), hydrogen-atom transfer (HAT), etc. 11Š 18 These concepts are
ambiguous for (at least) two reasons. First, with the exception of hydrogen-
atom detachment from isolated molecules, never exactly one unit of elec-
tronic charge is transferred with a proton. Electron transfer and proton
transfer are thus limiting cases, with hydrogen-atom transfer in the middle.
Second, the actual time scales of electron transfer and proton transfer
cannot be experimentally resolved so far. A precise de“nition of PCET,
ECPT, HAT, concerted or sequential electron-proton transfer, etc., would
require the preparation of temporarily and spatially localized electronic and
protonic wave packets, as well as a prescription for the detection of these
wave packets as a function of time. Lacking these precise de“nitions, much
of the extensive literature on ECPT, PCET, HAT, etc., does not have a
“rm conceptual basis. Only very recently, the “rst steps toward an electron
wave-packet description of coupled electron and proton dynamics have been
undertaken.19,20

To avoid such ambiguities, we shall speak of •electron/pr oton transferŽ
in a general sense, rather than discriminate between di�erent types of elec-
tron and proton transfer processes. Electron/proton transfer is de“ned to
include both complete as well as partial transfer of an electron with a
proton, independent of the relative time scale of the electron and proton
motions. If the meaning is clear from the context, the expressions •proton
transferŽ and •hydrogen transferŽ will be used synonymously.

2. The �� � -driven Photochemistry of Acidic
Aromatic Systems

A decade ago,ab initio electronic-structure calculations for indole, pyrrole
and phenol revealed the existence of optically dark and photochemically
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highly reactive singlet excited states, the so-called�� � states of azoles and
aromatic enoles.21Š 23 The 1�� � state in these systems had previously been
classi“ed as a 3s Rydberg state.24Š 26 The calculations of scans of the elec-
tronic potential-energy (PE) surfaces along the NH or OH stretching coor-
dinates revealed, however, the generically dissociative character of the1�� �

states, which originates from three properties of the� � orbital: (i) it is local-
ized on NH or OH groups, (ii) it is antibonding with respect to the NH or
OH bonds, and (iii) upon stretching of the NH/OH bond, the 3 s-type � �

orbital shrinks to the 1s orbital of the hydrogen atom, which results in a
large energy gain.27

PE pro“les of the electronic ground state (S0) and the lowest 1�� � and
1�� � excited states of phenol, indole and pyrrole are shown in Fig. 1. These
curves have been calculated as •relaxed scansŽ, that is, for a given “xed
value of the NH/OH bond length, the energy (of the excited state) was
minimized with respect to all other internal nuclear coordinates.27 Rigid
detachment of the hydrogen atom (that is, changing only the NH/OH bond
length, while keeping all other internal coordinates “xed at the ground-state
equilibrium geometry) yields qualitatively similar results. 28 Over the years,
a variety of electronic-structure methods, such as CASSCF/CASPT2,27
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Fig. 1. PE pro�les (relaxed scans) of the lowest 1 �� � states (squares), the lowest 1�� �

state (triangles) and the electronic ground state (circles) as a function of the OH (phenol)
or NH (indole, pyrrole) reaction coordinate. The energy of the ground state is calculated
at the optimized geometries of the 1�� � state. The symbols represent computed data.
The curves are interpolations. The � � orbital obtained by a CASSCF calculation for the
1 �� � state of a given system in shown as an insertion.
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CASSCF/MRCI, 29Š 31 CC2,28 MRCI/DFT, 32 TDDFT 33 and ROKS33 have
been employed for the calculation of1�� � PE functions of various molecules,
yielding qualitatively similar results. The generically repulsive character of
the 1�� � PE surface thus is a robust result. It is essential, however, that
a basis set with su�ciently di�use functions at least on the NH/OH group
under consideration is employed, in order to account for the di�use Rydberg
character of the � � orbital near the ground-state equilibrium geometry.

A graphical representation of the � � orbital at the ground-state equilib-
rium geometry of phenol, indole and pyrrole is shown in Fig. 1. The large
spatial extension and the antibonding character (node across the NH/OH
bond) can be seen, as well as the fact that the� � electronic charge is local-
ized largely outside the aromatic ring. This is re”ected in an unusually
large dipole moment of the 1�� � state, typically 10 Debye at the ground-
state equilibrium geometry.27 Due to the di�useness of the electronic wave
function and the large dipole moment, the energy of the1�� � state is partic-
ularly sensitive to perturbations, such as substitutions at the aromatic ring
or interactions with a solvent. While the Rydberg character causes a blue-
shift of the 1�� � energy in condensed phases, the large dipole moment
favors a red-shift in a polar environment. Due to the subtle counterbalance
of these e�ects, it is di�cult to predict the response of the 1�� � energy to
intra-molecular or external perturbations.

The crossings of the energy pro“les in Fig. 1 are allowed crossings in the
planar molecules, since the S0 state and the 1�� � states are of A� symmetry,
while the 1�� � state is of A�� symmetry. Upon out-of-plane deformation,
the A� and A�� states are allowed to interact, resulting in a repulsion of the
adiabatic PE surfaces. The curve crossings in Fig. 1 are thus converted into
conical intersections.22 In pyrrole, 22 as well as in imidazole,34 the 1�� � state
is located below the lowest1�� � state in the Franck…Condon region. Its PE
surface is, apart from a shallow well in the Franck…Condon region, repulsive
with respect to NH stretching, resulting in a conical intersection with the
attractive S0 surface. A survey of all symmetry-allowed A�…A�� coupling
modes in pyrrole showed that the NH out-of-plane bending mode is by
far the strongest coupling mode at the1�� � …S0 conical intersection.35 The
adiabatic S0 and S1 PE surfaces in the two-dimensional subspace spanned
by the NH bond length rNH and the NH out-of-plane bending angle� are
shown in Fig. 2 (obtained by a state-averaged CASSCF calculation with a
6�/ 7� active space and the aug-cc-pVDZ basis set29). The shallow well of
the 1�� � PE surface in the Franck…Condon region and the steep cone at
the intersection with the S0 surface are clearly visible.
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Fig. 2. Adiabatic PEs of the S 0 state and the 1 �� � state of pyrrole as a function of the
NH stretching coordinate RNH and the H-atom out-of-plane angle � .

The quantum wave-packet dynamics on the nonadiabatically coupled S1
and S0 PE surfaces of pyrrole, assuming instantaneous vertical electronic
excitation from the S0 state, has been investigated for the two-dimensional
model of Fig. 2 as well as for three-dimensional models including a second
coupling mode.35 If the 1�� � state is prepared in its (0,0) vibrational level,
the time evolution of the nuclear wave packet is determined by barrier
tunneling on a picosecond time scale.29,33 If the initially prepared state
contains one quantum of the NH stretching mode, on the other hand, the
energy of a signi“cant fraction of the wave packet is above the barrier and
the system dissociates on a time scale of about 20 fs.29 As expected, most of
the wave packet passes diabatically through the S1…S0 conical intersection,
dissociating to the 2� ground state of the pyrrolyl radical.29

The photoinduced detachment of fast hydrogen atoms from pyrrole
was “rst observed by Y.T. Lee and collaborators, using photofrag-
ment translational spectroscopy at 248 nm and 193 nm excitation.36

Temps and collaborators used ion imaging spectroscopy at 243 nm and
con“rmed the bimodal kinetic-energy distribution, corresponding to direct
dissociation in the 1�� � state and statistical unimolecular decay after
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internal conversion, respectively.37 Ashfold and collaborators applied high-
resolution photofragment translational spectroscopy (Rydberg tagging) to
pyrrole and obtained high-resolution kinetic-energy spectra for a multi-
tude of excitation wavelengths.38 These measurements revealed that the
pyrrolyl fragment (as well as phenoxyl, imidazolyl and indolyl fragments)
are formed in very limited subsets of their available vibrational states,
con“rming the ultrafast and highly nonstatistical nature of the photodis-
sociation process.31,34,38 The “rst time-resolved detection of the nascent
H-atoms was reported by Radlo�, Hertel and collaborators for pyrrole.39

The observed fast time scale of about 100 fs and a slower time scale of about
1 ps were interpreted as direct and indirect (temporarily captured at the
“rst transition through the S 1…S0 conical intersection) photodissociation,
respectively. Very recently, Stavros andcollaborators applied time-resolved
velocity map ion imaging to clock the H-atom elimination in phenol and
indole,40,41 revealing that both fast and slow H-atoms appear on an ultra-
fast time scale (< 200 fs). A detailed discussion of these experimental results
for azoles, phenols and related systems can be found in the chapter by
Ashfold and co-workers (Chap. 15).

Additional insight can be gained by the preparation of the chromophore
in speci“c vibrational levels prior to UV excitation. Computational studies
for pyrrole and phenol indicate that pre-excitation in excited levels of the
coupling mode(s) has a signi“cant impact on the branching ratio of the2�
and 2� product states by enhancing the adiabatic versus the diabatic reac-
tion channel.29,42 Experimental studies by Crim and collaborators revealed
a signi“cant increase of the fraction of slow H-atoms upon pre-excitation
of the OH stretching mode of phenol,43 resulting from the preferred forma-
tion of excited-state phenoxyl fragments. Both observations can be ratio-
nalized in terms of the nonadiabatic dynamics at the 1�� � …S0 conical
intersection.29,42,43

These extensive experimental investigations have established the role of
photodissociated H-atoms as a novel messenger particle providing informa-
tion on the complex photochemistry of isolated polyatomic molecules, in
addition to photons (time- and/or ener gy-resolved ”uorescence) and elec-
trons (time- and/or energy-resolved photoelectron spectroscopy).

The availability of these powerful experimental tools heralds a new
level of understanding of organic photochemistry and photobiology. The
detection of fast H-atoms is an unequivocal spectroscopic signature of the
involvement of dark 1�� � states in the photochemical dynamics. Beyond
this, the high resolution kinetic-energy distribution of the H atoms carries
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information on competing processes, such as out-of-plane deformation or
opening of aromatic rings in 1�� states, or e�cient intramolecular vibra-
tional relaxation (IVR), for example. As emphasized in several theoretical
and experimental studies,31,34,42 the comparison of H-detachment spectra
in pyrrole or imidazole, in which the 1�� � state is populated directly (via
intensity borrowing from higher allowed 1�� � states) with H-detachment
spectra in indole or phenol, in which the 1�� � state is populated by a
1�� � …1�� � conical intersection,provides deep insight into the nature of the
photochemical processes, see also Chap. 15.

Being generic for OH, NH and NH2 groups, photochemically reactive
1�� � states also must exist in some of the most important building blocks
of life, the DNA bases and the aromatic amino acids. PE pro“les for
hydrogen detachment via1�� � states have been calculated for adenine,44Š 48

guanine,49Š 51 xanthine52 and uracil,53 as well as for the protonated amino
acids tyrosine (Tyr) and tryptophan (Trp). 54 Fast H-atoms arising from the
1�� � state in adenine have been detected by Nixet al. with high kinetic-
energy resolution for excitation wavelengths < 233 nm.55 Wells et al. could
demonstrate, for the “rst time, the participation of the amino group in the
generation of fast H-atoms from adenine.56

Another interesting aspect of the 1�� � photochemistry is the yield
of H-atoms as a function of molecular size. Linet al. investigated the
photodissociation of a series of substituted indoles, including tryptamine
and tryptophan. 57 It was observed that H-atom detachment is quenched
with increasing molecular size, internal conversion becoming the major
nonradiative process. A similar observation has been made by Poterya
et al. for size-selected pyrrole clusters: the fraction of slow H-atoms gains
in intensity with respect to the fast fraction with increasing cluster size.58

These “ndings address the role of the�� � photochemistry for the photo-
stability of biological matter 59: while fragmentation (H-atom loss) prevails
in small and isolated chromophores,e�cient internal conversion seems
to be the dominant process in large molecules and in the condensed
phase.57,58

3. Excited-State Electron/Proton Transfer in
Intra-Molecularly Hydroge n-Bonded Aromatic Systems

The investigation of the photochemistry of (hetero)aromatic systems with
one (or more) intra-molecular hydrogen bond has a long history in



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch02

E�cient Excited-State Deactivation in Organic Chromophores 59

molecular spectroscopy.1Š 4 The photoinduced excited-state intra-molecular
proton-transfer (ESIPT) process in bifunctional molecules is of particular
interest, since it is assumed to play an essential role for the function-
ality of so-called photostabilizers.60,61 Photostabilizers are in wide tech-
nical use for the protection of organic polymers against degradation by the
UV components of sunlight. The generally accepted mechanistic model for
the function of organic photostabilizers assumes a barrierless (or nearly
barrierless) proton transfer from an acidic (e.g. enol) to a basic (e.g. keto)
group in the S1(�� � ) state, followed by an ultrafast (< 100 fs) radiationless
decay from S1 to S0. The reaction cycle is closed by a barrierless proton
back-transfer in the electronic ground state.1Š 4,60,61 Salicylic acid (SA),
methyl salicylate (MS) and o-hydroxybenzaldehyde (OHBA) are among
the systems for which the detailed reaction mechanisms have been explored
with spectroscopic62Š 65 and computational66Š 69 methods.

Another paradigmatic model system for the investigation of the ESIPT
process is 2-(2�-hydroxyphenyl)benzotriazole (known as Tinuvin or TIN-H)
and its 5� -methylated derivative (TIN-P). These compounds are particularly
e�cient UV photostabilizers. 70 According to Ref. 2, more than 99.9% of the
light energy absorbed by the S1 � S0 transition of TIN-P is dissipated as
heat into the condensed-phase environment. One of the remarkable features
of TIN-P is the extremely rapid depopulation of the proton-transferred
excited state (S�

1). It is orders of magnitude faster than the excited-state
decay of related intra-molecularly H-bonded heterocyles, such as 2-(2�-
hydroxyphenyl)benzoxazole (HBO) or 2-(2�-hydroxyphenyl)benzothiazole
(HBT). 2,4

In recent work, we have used the MP2 and CC2ab initio methods for a
systematic exploration of the ground-state and excited-state PE surfaces of
TIN-H. 71 Two excited-state reaction paths have been studied: the transfer
of the mobile H-atom along the intra-molecular hydrogen bond, and the
torsion of the phenolic H-donor moiety against the triazole H-acceptor
moiety. Two local energy minima of TIN-H have been found on the ground-
state PE surface. The corresponding molecular structures are shown in
Figs. 3(a) and 3(b), with indication of the most relevant bond lengths. The
global minimum [Fig. 3(a)] represents the enol tautomer of TIN-H, which
exhibits a strong intra-molecular hydrogen bond between the phenolic
hydrogen atom and the nearest nitrogen atom of the triazole ring. The
two rings are coplanar at the global energy minimum (Cs symmetry). The
second local minimum on the S0 energy surface is the open form of the keto
tautomer, with a twist angle of the rings of about 150� [Fig. 3(b)]. The two
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(a) (b)

(d)(c)
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Fig. 3. Equilibrium geometries of stable structures of TIN-H in the electronic ground
state (a, b) and distinguished structures of the lowest excited singlet state: the metastable
hydrogen-transferred (keto) con�guration (c) and the S 1–S0 conical intersection (d). The
numbers give selected bond lengths (in �A) and bond angles (in degrees). In (a), oxygen
atoms (dark gray) are identi�ed by “O”, nitrogen atoms by “N”; the remaining atoms
are carbon (gray) and hydrogen (light gray).

minima are separated by a barrier which is 0.24 eV (5.5 kcal/mol) higher
than the local minimum.

PE pro“les of the minimum-energy paths (more precisely, relaxed scans)
have been calculated for hydrogen transfer, de“ning the OH bond length as
the driving coordinate, as well as for inter-ring twisting, de“ning the central
C-C-N-N dihedral angle as the driving coordinate. We refer to Ref. 71 for
the details of the calculations. The resulting PE pro“les are displayed in
Fig. 4. The S0 PE pro“le in Fig. 4(a) con“rms that the ground-state equi-
librium geometry is planar. The PE pro“les for hydrogen transfer, shown
in Fig. 4(b), reveal that the enol � keto H-transfer is endothermic on
the S0 surface, but exothermic on the S1 surface, as expected for an ESIPT
system.1Š 4 In both cases, the PE function is barrierless. The planar proton-
transferred S1 structure [S1

� , see structure shown inFig. 3(c)] is predicted
to lie 3.2 eV above the global minimum of the S0 surface. The ”uorescence
is strongly allowed (f = 0 .32) and would have a center wavelength of about
600 nm (2.0 eV) if it could be observed in the gas phase. As Fig. 4(c) shows,
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Fig. 4. PE pro�les (relaxed scans) of the S 0 state (circles) and the S 1 state (squares)
as a function of the torsional reaction coordinate (a, c) and the hydrogen-transfer reac-
tion coordinate (b). Full lines: energy pro�les of reaction paths determined in the same
electronic state (S 0, S1). Dashed lines: energy pro�les of reaction paths determined in

complementary electronic states (S (S 1 )
0 , S(S 1

� )
0 ). The symbols (circles for S 0, squares for

S1) are computed data; full, dashed, and dotted lines are interpolations. In (c), open
symbols correspond to twisting without pyramidization, �lled symbols correspond to the
reaction path with inclusion of pyramidization at the central N-atom.

the S1
� state is unstable with respect to the torsional coordinate [open

squares in Fig. 5(c)]. The S1� energy is additionally stabilized when pyra-
midization at the central N-atom is allowed (“lled squares). The “lled circles
represent the S0 energy at these geometries. It is seen that a S1…S0 degen-
eracy is reached by about 60� torsion and by moderate pyramidization. The
molecular structure of this conical intersection is shown in Fig. 3(d). As
illustrated by Figs. 4(b) and 4(c), this conical intersection can be accessed
from the Franck…Condon region of the S1(�� � ) state in a barrierless manner
by H-transfer, followed by torsion and pyramidization. From the conical
intersection, a barrierless reaction path on the S0 surface steers the system
back to the planar geometry. Finally, H-atom back-transfer on the S0 surface
restores the molecule in the original ground-state conformation.

Further insight into the electronic aspects of the photophysics of TIN-H
can be obtained by the inspection of thehighest occupied molecular orbital
(HOMO) and the lowest unoccupied molecular orbital (LUMO) which are
displayed in Fig. 5 for several relevant geometries. All frontier orbitals are
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HOMO LUMO
(a) S0(enol)-Cs

(b) S1’(keto)-Cs

(c) S1’(keto)-�=30°

(d) S1’(keto)-�=60°

(e) S1’(keto)-�=90°

(f) S1’-S0 CI

Fig. 5. Highest occupied (HOMO) and lowest unoccupied (LUMO) Hartree–Fock
orbitals of TIN-H at selected geometries: ground-state equilibrium geometry (a) S 1

�

(keto) saddle point (b), torsional angles of 30 � (c), 60� (d), 90 � (e), and S1–S0 conical
intersection (f).

of � , � � type. It can be seen that S1 � S0 excitation at the S0 equilib-
rium geometry is accompanied by a moderate shift of electron density from
the phenyl ring to the benzotriazole moiety [Fig. 5(a)]. At the planar keto
conformation, the ground state is highly polar (µ = 4 .64 Debye) due to the
preferential location of the HOMO on the phenyl ring, while the proton
is attached to the triazole ring [Fig. 5(b)]. In the S1

� excited state, this
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polarity is reduced due to the delocalized character of the LUMO [Fig. 5(b)].
In Figs. 5(c)…(e), the HOMO and LUMO are shown as a function of the
torsional angle. It is seen that the HOMO and LUMO become increas-
ingly localized on the phenol and benzotriazole moieties, respectively, with
increasing torsional angle� . At � = 90� [Fig. 5(e)], the half-“lled orbitals
are nearly completely localized on either the phenoxy and the benzotria-
zole part of TIN-H. At the S 1…S0 conical intersection [Fig. 5(f)], which is
reached by moderate pyramidization at the central N-atom, the electronic
structure of the S1 state represents a nearly perfect biradical. This birad-
ical character is typical for degeneracies of the open-shell S1 state with the
closed shell S0 state in organic systems.72

It should be noted that the overall stabilization of the S1(�� � ) energy
by hydrogen transfer and torsion/pyramidization contributes less to the
shrinking of the S1…S0 energy gap than the destabilization of the S0 state,
see Fig. 4. The strong preference of the S0 state for the planar conjugated
structure and the OH. . . N hydrogen bond are the reasons for the substantial
rise in the ground-state energy, which leads to the crossing of the S0 surface
with the S1 surface.

A generic scheme of the mechanistic function of an organic photo-
stabilizer is shown in Fig. 6. The generic system is a covalently bonded
pair of a proton donor (with het eroatom X) and a proton acceptor
(with heteroatom Y). The initial excit ed-state process is electron/proton
transfer. This reaction is barrierless and thus extremely fast, corresponding
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Fig. 6. PE scheme of the photophysics of a photostabilizer. PD: proton donor,
PA: proton acceptor, X: proton-donating heteroatom, Y: proton-accepting heteroatom.
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to •ballisticŽ wave-packet motion.65,73,74 The resulting planar proton-
transferred conformation (S1

� ) is unstable with respect to torsion (and
possibly pyramidization). The torsion breaks the weak hydrogen bond of S1�

and provides a barrierless reaction path toward the S1…S0 conical intersec-
tion, see Fig. 6. At the S1…S0 conical intersection, an ultrafast nonadiabatic
transition from the S1 surface to the S0 surface takes place. In the S0 state,
the steep torsional potential and the re-formation of the original hydrogen
bond steer the system back to the original planar S0 conformation.

While several computational studies, e.g. for SA,66 MS,75 OHBA, 76

and a benzotriazole model system,77 have con“rmed the qualitative reac-
tion mechanism of Fig. 6, only indirect experimental evidence exists so
far for this mechanism. The ultrafast ballistic character of the excited-
state hydrogen transfer has been con“rmed by femtosecond pump-probe
spectroscopy with femtosecond time resolution.65,73,74 For HBO and HBT,
which exhibit comparatively long S1

� lifetimes, the •ringingŽ of the quasi-
rigid H-donor and acceptor groups after the proton transfer has been
observed.73,74 A characteristic feature of SA, MS, OHBA, hydroxy”avones
and related systems is the existence of a distinct energy threshold in the
S1 state, beyond which the ”uorescence is completely quenched.1Š 4,62Š 65

The highly e�cient (sub-ps) internal conversion process for excess energies
above this threshold is indicative of the directly accessible conical inter-
section. The suppression of the ”uorescence quenching in viscous media
provides indirect evidence that torsional motion or another large-amplitude
motion of the donor and acceptor groupsare involved in the excited-state
deactivation process, supporting the qualitative scheme of Fig. 6.

4. Excited-State Electron/Proton Transfer in
Inter-Molecularly Hydrogen-Bonded Aromatic Systems

The phenomenon of ”uorescence quenching through inter-molecular
hydrogen bonding between aromatic chromophores is a well-known
phenomenon. The photophysics of aromatic hydrogen-bonded donor…
acceptor pairs in various solvents has been extensively investigated by
Förster, Weller, Mataga, Waluk and their co-workers.5Š 9 Mataga has advo-
cated a generic model of ”uorescencequenching which emphasizes the role
of charge-transfer (CT) states as promoters of proton transfer from the
hydrogen donor to the hydrogen acceptor. Curve crossings of the CT state
with the spectroscopic locally excited (LE) states were considered to facil-
itate rapid internal conversion, thus quenching the ”uorescence.8,9
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The most interesting example of hydrogen bonding between heteroaro-
matic chromophores is the Watson…Crick (WC) base pairing in DNA. Only
two base pairs, guanine…cytosine (GC) and adenine…thymine (AT) encode
the genetic information of all living (and extinct) species. While the GC
and AT base pairs can exist in numerous H-bonded conformations in the
gas phase, only a single conformer of GC and AT, the WC structure, occurs
in DNA.

In DNA or RNA oligomers, the individual nucleic acid bases interact
with each other via hydrogen bonding (base-pairing), noncovalent� …�
interactions (stacking) as well as via covalent bonding to the sugar-
phosphate backbone. The complex interplay of these interactions, as well
as solvation, determine the photophysics of DNA. The internal interactions
in DNA and external perturbations may a�ect the energetic ordering of the
excited electronic states of the DNA bases and may also provide additional
decay channels. It is therefore of scienti“c interest to investigate the GC
and AT base pairs in isolation. This has become possible since de Vries,
Kleinermanns and co-workers demonstrated that intact nucleic acid base
pairs can be brought into supersonic jets by laser evaporation.78

The experimental investigation of the photophysical dynamics of
isolated WC base pairs is complicated, however, by several factors. Most
importantly, the excited-state lifetimes of the monomers are already very
short.79 Moreover, several of the many possible conformers of the base pairs
are expected to be present in the jet. The investigation of the photophysics
of simpli“ed mimetic models of the WC base pairs, which are free of the
complications of the actual WC base pairs, has the potential to provide
useful insights. A well-known model is the 7-azaindole dimer, for which
the competition of concerted double proton transfer vs. step-wise single
proton transfer has been extensively investigated.80 The 2-aminopyridine-
2-pyridone H-bonded pair is another well-studied model.81

A particularly simple model system is the 2-aminopyridine (2AP) dimer,
see Fig. 7(a). It possesses the relevant hydrogen bonds, but lacks most of
the complexities of the purine and pyrimidine bases. Femtosecond time-
resolved mass spectroscopy of 2AP clusters revealed an excited-state life-
time of 65 ps for the H-bonded dimer,82 which is signi“cantly shorter than
the lifetime of the monomer (1.5 ns). Earlier ab initio calculations at the
CASSCF/CASPT2 level had predicted a simple and generic mechanism for
the e�cient excited-state quenching in the 2AP dimer 83: in addition to the
intra-monomer 1�� � excited state, a state corresponding to inter-monomer
� � � � excitation exists. While this CT state is rather high in energy
in the Franck…Condon region, it is strongly stabilized by the transfer of a
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(a) (b)

N

N
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N

Fig. 7. (a) Ground-state equilibrium geometry of the 2-aminopyridine dimer. (b) Equi-
librium geometry of the biradical after the transfer of a hydrogen atom. In (a), nitrogen
atoms are identi�ed by “N”; the remaining atoms are carbon (gray) and hydrogen
(light gray).

proton across one of the NH. . . N hydrogen bonds (•the proton follows the
electronŽ), see Fig. 7(b). The PE surface of the1CT state intersects the
PE surfaces of both the locally-excited (1LE) state as well as the ground
state. This sequence of conical intersections provides the mechanism for the
e�cient quenching of the ”uorescence of the 1LE state.83

In 2005, de Vries and collaborators discovered an astonishing conforma-
tional sensitivity of the photophysics of GC base-pair structures in a super-
sonic jet.84 The UV excitation spectra of three conformers of GC could be
identi“ed by UV-UV and UV-IR hole-burning spectroscopy and could be
assigned by comparison with DFT calculations of ground-state vibrational
frequencies. While the two biologically irrelevant conformers (dubbed B,
C) were found to exhibit intense and sharp resonant multi-photon ioniza-
tion (REMPI) spectra, the WC conformer was found to give rise to a very
weak and extremely broad REMPI signal, indicating an anomalously short
excited-state lifetime.84 It has been concluded that a particularly e�cient
excited-state deactivation process must exist in the WC conformer of GC.
It has been speculated that the rapid excited-state quenching may be essen-
tial for the prevention of destructive photochemical reactions, endowing this
particular molecular structure with a unique degree of photostability.84

These “ndings of molecular-beam spectroscopy were con“rmed by an
alternative experiment of Schwalb and Temps, who measured time-resolved
pump-probe spectra of the WC conformer of GC in a nonpolar and
nonprotic solvent.85 These measurements provided additional evidence for
a pronounced shortening of the excited-state lifetime of the WC base pair
in comparison with the already very short lifetime of guanine.85



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch02

E�cient Excited-State Deactivation in Organic Chromophores 67

(a) (b)

N

N

N

O

ON

N

N

NN

Fig. 8. (a) Ground-state equilibrium geometry of the GC Watson–Crick base pair.
(b) Minimum-energy geometry of the 1�� � charge-transfer state after the transfer of the
proton. The numbers denote hydrogen-bond lengths in �A. In (a), oxygen atoms (dark
gray) are identi�ed by “O”, nitrogen atoms by “N”; the remaining atoms are carbon
(gray) and hydrogen (light gray).

For brevity, we discuss here the photophysics of just the biologically rele-
vant WC conformer of GC, referring to Refs. 84 and 86 for the structures,
REMPI spectra and PE functions of the nonbiological conformers B and C.
The ground-state equilibrium geometry of the WC form of the GC base pair
is displayed in Fig. 8(a) (optimized with the CC2 method). The lengths of
the three hydrogen bonds are indicated; they are a measure of the relative
strengths of the hydrogen bonds. The lowest CT state in GC corresponds
to the excitation of an electron from the HOMO of guanine to the LUMO
of cytosine. These orbitals are shown in Figs. 9(a) and 9(b) (� orbitals) and
9(c) and 9(d) (� � orbitals). The charge separation of the G� C charge-
transfer excited state can be compensated by the transfer of one of the
protons of the NH groups of guanine to cytosine (the calculation shows that
the proton of the middle hydrogen bond is preferred86). The neutralization
of the electronic charge separation results in a pronounced stabilization
of the CT state. The CC2-optimized structure of the proton-transferred
system, which is a biradical, is shown in Fig. 8(b). The singly occupied
orbitals of the biradical are displayed in Figs. 9(e) and 9(f). It is seen
that the molecular orbitals (MOs) do not change signi“cantly upon proton
transfer. They are non-overlapping already at the ground-state equilibrium
geometry. In this case, the CT state is a biradical in the planar con“gura-
tion, in contrast to the intra-molecularly H-bonded systems of Sec. 3, where
an additional torsion is necessary to generate a biradicalic system.

The reaction path for proton transfer in the GC base pair was
constructed as a linearly interpolated transit path (LITP) in internal coor-
dinates between the ground-state equilibrium geometry [Fig. 8(a)] and the
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Ground-state geometry

(a) � (G) (b) � (C)

(c) � *(G) (d) � *(C)

Biradical geometry 

(e) � (G) (f) � *(C)

Fig. 9. Highest occupied (� ) and lowest unoccupied ( � � ) orbitals located on guanine
(G) and cytosine (C). (a)–(d): ground-stat e equilibrium geometry. (e),(f): equilibrium
geometry of the biradical.

equilibrium geometry of the biradical [Fig. 8(b)]. The energies of the ground
state and several excited states were calculated along this path (see Ref. 86
for details). The resulting PE pro“les are shown in Fig. 10. Since the ener-
gies of all states are calculated at the same geometries (i.e. the LITP geome-
tries), the crossings in Fig. 10 are truecrossings (conical intersections).

The enormous stabilization of the CT state by the transfer of the proton
from G to C is eye-catching. An equally strong destabilization of the S0 state
leads to a CT…S0 conical intersection, see Fig. 10. Since the energy surface
of the 1CT state crosses also the energysurfaces of the spectroscopic1LE
states, it provides the mechanism for a highly e�cient deactivation of the
UV absorbing states. In the non-WC conformers B and C, the photoreactive
CT state is higher in energy,86 allowing the existence of long-lived vibronic
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Fig. 10. PE pro�les of the electronic ground state (circles), the lowest locally-excited
states of guanine (squares) and cytosine (diamonds), and the guanine-to-cytosine charge-
transfer state (triangles) as a function of the linearly-interpolated transit path for
hydrogen transfer. The symbols are computed data; the curves are interpolations.

states, as observed experimentally.84 Qualitatively similar computational
results have been obtained for the AT base pair, predicting an extremely
short lifetime of the WC conformer of AT. 87 Experimentally, the REMPI
signal of the WC conformer of AT could not be detected so far.

A generic scheme of the reaction mechanism in inter-molecularly
hydrogen-bonded aromatic systems is shown in Fig. 11. It consists of the
PE pro“les of the electronic ground state, the lowest LE singlet state and
the lowest singlet state of CT character, plotted as a function of the proton-
transfer coordinate. The LE…CT and CT…S0 curve crossings become inter-
sections when the appropriate coupling modes are included. Absorption of a
UV photon leads to the (X-H. . . Y) � system in the1LE state. If the available
vibrational excess energy in the1LE state comes close to the1LE…1CT inter-
section, the1CT state is populated, resulting in a temporal formation of the
X-H+ . . . YŠ ion pair. Rapid motion of the proton on the steep PE surface of
the 1CT state results in the neutralization of the ion pair and the formation
of the X€. . . H-Y€ biradical. At the 1CT…S0 conical intersection, an electron
can jump from Y to X, resulting in the X Š . . . H-Y+ ion pair in its elec-
tronic ground state. The back-transfer of the proton and the re-formation
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Fig. 11. Schematic view of the electron-driven proton-transfer process in inter-
molecularly hydrogen-bonded aromatic systems. Abbreviations: LE: locally-excited state;
CT: charge-transfer state; X(Y): hydrogen-donating (hydrogen-accepting) aromatic
system. The circles schematically indicate the conical intersections.

of the X-H. . . Y hydrogen bond close the reaction circle. Assuming that the
dynamics of the much lighter electron precedes the dynamics of the proton,
the reaction mechanism illustrated in Fig. 11 has been termed the •electron-
driven proton transferŽ (EDPT) mechanism.59 The crucial parameter in the
EDPT reaction is the height of the 1LE…1CT curve crossing relative to the
minimum of the 1LE surface. If this crossing is su�ciently low, the EDPT
mechanism leads to very e�cient internal conversion from the 1LE to the S0

state. It is plausible that the particularly rapid excited-state deactivation
via the EDPT mechanism plays an essential role for the photostability of
biopolymers such as DNA and proteins.59

5. Chromophores with Flexible Side-Chains:
Electron/Proton Transfer i n Amino Acids and Peptides

Amino acids and peptides are highly ”exible molecules which exhibit a
multitude of low-energy conformers. Recent spectroscopicinvestigations of
aromatic amino acids and small peptides containing an aromatic chro-
mophore in supersonic jets provided a wealth of information on the
conformer-speci“c photophysics of these elementary building blocks of
proteins. By the combination of laser-based UV-UV and UV-IR double
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resonance spectroscopy with “rst-principles calculations of vibrational
spectra, the measured laser-induced”uorescence (LIF) or REMPI spectra
of amino acids or peptides could be assigned to speci“c conformers.88Š 92 It
was found that the UV excitation spectra of the aromatic amino acids tryp-
tophan (Trp), tyrosine (Tyr) and phenylalanine (Phe), as well as the spectra
of small peptides containing aromatic chromophores, exhibit a pronounced
dependence on the ground-state conformation, see, e.g. Refs. 93…96. More-
over, evidence is accumulating that many of the expected low-energy
conformers of aromatic amino acids and peptides cannot be detected at
all by LIF and REMPI spectroscopy, presumably due to extremely short
excited-state lifetimes.96Š 99 There is thus convincing experimental evidence
for a decisive control of the photophysics of aromatic amino acids and
peptides by the conformation of ”exible side-groups.

In two recent communications, we havereported preliminary results of
ab initio electronic-structure calculations for a dipeptide (Trp-Gly) and
a tripeptide (Gly-Phe-Ala), where Gly stands for glycine and Ala for
alanine.100,101 We give here a brief account of the results for the tripep-
tide, emphasizing the reaction mechanisms which most likely are generic
for peptides and proteins.

Gly-Phe-Ala has a multitude of possible conformations. An extensive
and thorough exploration of the conformational space of Gly-Phe-Ala has
been performed by Valdeset al., resulting in the reliable identi“cation of
the lowest-energy conformers.99 We consider here the conformer of lowest
free energy in the family of structures which exhibit a so-called� -turn of
the peptide backbone. The ground-state equilibrium geometry (optimized
at the MP2 level) of this conformer is shown in Fig. 12(a), with the two

(a) (b)
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N
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O

O

O

Fig. 12. (a) Ground-state equilibrium geometry of the Gly-Phe-Ala tripeptide.
(b) Minimum-energy geometry of the CT state after the transfer of the proton. The
dotted lines indicate hydrogen bonds. In (a), oxygen atoms (dark gray) are identi�ed
by “O”, nitrogen atoms by “N”; the remaining atoms are carbon (gray) and hydrogen
(light gray).
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Fig. 13. (a) PE pro�les of minimum-energy paths (relaxed scans) of the 1 �� � state
(squares), the locally-excited state (diamonds), the charge-transfer state (triangles), and
the electronic ground state (circles). The 1�� � , 1LE and 1CT energies have been deter-
mined at the respective optimized geometries. The ground-state energies designated as

S( �� � )
0 and S(CT)

0 have been determined at the optimized geometries of the 1�� � state
and the 1CT state, respectively. Symbols denote computed data; the full and dotted
curves are interpolations. (b) PE pro�les of the 1 �� � , 1LE and S 0 states along the
linearly-interpolated transit path between the S 0 equilibrium geometry and the 1LE
minimum-energy geometry an RNH = 1 �A.

hydrogen bonds indicated. The O-H. . . O=C hydrogen bond involving the
terminal carboxyl group is characteristic for small (uncapped) peptides. The
N-H. . . O=C hydrogen bond, on the other hand, is a characteristic hydrogen
bond in proteins, representing a so-called� -turn (or C7 structure) of the
backbone.

PE pro“les (relaxed scans, calculated with the CC2 method) for elec-
tron/proton transfer along the N-H. . . O=C hydrogen bond are displayed
in Fig. 13(a). The UV absorbing state is the 1�� � state of the phenyl ring
[squares in Fig. 13(a)]. The corresponding HOMO and LUMO are shown
in Fig. 14(a). It is seen that the 1�� � excitation is completely localized on
the aromatic ring. The 1�� � energy minimum is, however, not the lowest
minimum of the S1 surface of the system. The lowest minimum corresponds
to the excitation from the nonbonding orbital of the carbonyl group to an
unoccupied orbital which is localized on the same branch of the peptide
backbone [diamonds in Fig. 13(a)]. The orbitals involved in this excitation
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(a) 1��*

(b) 1LE

(c) 1CT

Fig. 14. Frontier Hartree–Fock molecular orbitals of Gly-Phe-Ala at the ground-state
equilibrium geometry. (a) The � (left) and � � (right) MO s of the phenyl chromophore.
(b) The half-�lled orbitals of the 1LE state. (c) The half-�lled orbitals of the 1CT state.

(at the S0 equilibrium geometry) are displayed in Fig. 14(b). This state,
which we designate as locally-excited (1LE) state, cannot be excited directly
by light absorption due to very unfavorable Franck…Condon factors. It can
be populated, however, by excitation-energy transfer from the1�� � state of
the phenyl chromophore. In addition, there exists a low-lying singlet state
which involves excitation from an occupied orbital localized on the N-H
hydrogen-donor group [Fig. 14(b), left] to an unoccupied orbital localized
on the O=C hydrogen-acceptor group [Fig. 14(c), right]. This state can be
classi“ed as a charge-transfer state (1CT) with respect to the N-H. . . O=C
hydrogen bond. The triangles in Fig. 13(a) represent the energy pro“le of
this state along its minimum-energy path. The PE function denoted as
S(CT)

0 in Fig. 13(a) represents the energy of the S0 state calculated at the
geometries of the minimum-energy path of the1CT state. The crossing of
the 1CT and the S(CT)

0 curves is thus a true crossing (conical intersection),
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while the crossings of the1�� � , 1LE and 1CT curves in Fig. 13(a) are
apparent crossings (since the corresponding reaction paths have individu-
ally been optimized).

To explore the possibility of an e�cient nonadiabatic transition from
the optically bright 1��* state to the dark 1LE state, the 1��* and 1LE
energies have been calculated along the linearly interpolated transit path
(LITP) connecting the S0 minimum with the 1LE minimum. These PE
pro“les are shown in Fig. 13(b). It is seen that there exists a crossing (conical
intersection) only slightly above the minimum of the 1��* PE surface.

The overall mechanistic picture suggested by theseab initio electronic-
structure data is as follows. Absorption of a UV photon populates the1�� �

state. The 1�� � energy can be transferred to the1LE state via a low-lying
conical intersection [see Fig. 13(b)]. The1LE surface is, in turn, intersected
by the 1CT surface [see Fig. 13(a)]. Population of the1CT state corresponds
to the transfer of an electron from the N-H group to the C=O group along
the intra-molecular hydrogen bond [see Fig. 14(c)]. The proton then follows
the electron, which leads to a pronounced stabilization of the CT state
and thus to a conical intersection with the S0 state [see Fig. 13(a)]. In
this way, the electronic excitation energy is converted, via three conical
intersections, into comparatively harmless vibrational energy in the closed-
shell ground state.

The experimental signature of the rather complex photophysics of this
conformer of Gly-Phe-Ala is the absence of a REMPI signal,99 which may be
felt as somewhat disappointing by spectroscopists. We brie”y discuss, there-
fore, a second example, the capped dipeptide N-acetyl tryptophan methyl
amide (NATMA), for which particularly dramatic e�ects of the confor-
mational ”exibility of the peptide chain on the UV spectroscopy of the
chromophore have been reported by Zwier and collaborators.102,103

The conformers of NATMA can be classi“ed by the hydrogen-bonding
motifs: C5 structures, where the H-bond closes a “ve-membered ring, and
C7 structures, where the H-bond closes a seven-membered ring. The former
structures correspond to an extended,� -sheet-type backbone, the latter
correspond to� -turns of the protein structure. Two C5 structures (NATMA
A, B) and one C7 structure (NATMA C) have been identi“ed by Dian
et al.102,103 The C5 and C7 structures exhibit startlingly di�erent UV exci-
tation spectra: while the C5 conformers possess sharp vibronically resolved
UV spectra, the C7 conformer exhibits extremely broad and nearly struc-
tureless UV absorptions. In addition to the unusual UV excitation spectra
of NATMA C, Dian et al. observed the complete absence of all CH and NH
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Fig. 15. Ground-state equilib rium geometry of NATMA C. The dotted line indicates the
hydrogen bond of the � -turn. Oxygen atoms (dark gray) are identi�ed by “O”, nitrogen
atoms by “N”; the remaining atoms are carbon (gray) and hydrogen (light gray).

infrared fundamentals in the excited-state (S1) infrared spectrum of the
C7 conformer, while these fundamentals (with the exception of the funda-
mental of the indole NH group) were sharp and easily observed in the C5
conformers.102,103

For brevity, we restrict the discussion to the photophysics of the C7
conformer of NATMA and refer to Ref. 104 for a comparative discussion
of the C5 and C7 conformers. The ground-state equilibrium structure of
NATMA C (optimized with the MP2 method) is shown in Fig. 15. The
� -turn and the associated hydrogen bond are clearly visible.

The PE pro“les for the minimum-energy electron/proton -transfer reac-
tion paths (relaxed scans, calculated with the ADC(2) method105) along
the hydrogen bond of the� -turn are shown in Fig. 16. The electronic states
involved are analogous to those discussed for Gly-Phe-Ala above. The1�� �

state (squares) is the lowest excited state of the indole chromophore (at
its equilibrium geometry). The 1LE (diamonds) and 1CT (triangles) states
are the locally-excited and charge-transfer excited states of the peptide
backbone, analogous to Gly-Phe-Ala. As in the latter, a rather low barrier
exists on the reaction path from the 1�� � state to the 1LE state (data not
shown). The curves with circles represent cuts of the multi-dimensional S0

PE surface along the S0 minimum-energy path and the various excited-state
minimum-energy paths. It is seen that the proton transfer in the 1CT state
strongly stabilizes this state, while the S0 energy rises by more than 4.0 eV.
The result is a 1CT…S0 conical intersection at an NH bond length of 1.3�A
(see Fig. 16).
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Fig. 16. PE pro�les (relaxed scans) of minimum-energy paths for proton transfer in
the 1La(�� � ) state (squares), the 1LE state (diamonds) and the 1CT state (triangles)
in NATMA C. The energy pro�les of the electronic ground state (circles) designated

as S(S 0 )
0 , S( �� � )

0 , S(LE)
0 and S(CT)

0 have been computed for minimum-energy paths of
the respective electronic states. The symbols represent computed data; the curves are
interpolations.

The di�erences in the spectroscopic properties of the C5 and C7
conformers of NATMA arise from the relative location of the 1LE state. In
NATMA C, both the 1�� � state as well as the1LE state are lower in energy
than in NATMA A, B. 104 As a result, the barrier for energy transfer from
the 1�� � state to the 1LE state and the 1CT state is lower in NATMA C.
It seems that excitation transfer to the 1LE state of the peptide backbone
is just possible in NATMA C, while exci tation transfer cannot take place
in NATMA A, B. NATMA C may be special in so far as it exhibits the
spectroscopic signatures of radiationless excited-state quenching, while the
chromophore excitation lifetime is still su�ciently long to allow the detec-
tion of the LIF signal.

A mechanistic scheme of the excited-state deactivation in aromatic
amino acids and peptides is shown in Fig. 17. The UV absorbing state is
the 1�� � state of the chromophore. The excitation energy transfer from the
chromophore to an intermediate locally-excited singlet state of the peptide
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Fig. 17. Schematic view of the PE surfaces involved in the excited-state deactivation of
aromatic amino acids and peptides. 1 �� � is the excited-state of the chromophore; 1LE
and 1CT are the locally-excited state and the charge-transfer excited state of the peptide
backbone. The circles schematically indicate the conical intersections.

backbone (1LE) is the new aspect of the radiationless decay path of peptides
compared to the radiationless decay of the hydrogen-bonded DNA base
pairs (Fig. 11). In both cases, an EDPT process strongly stabilizes a1CT
state, leading to a biradical and a conical intersection of the biradicalic PE
surface with the S0 PE surface.

6. Conclusions

We have surveyed in this chapter generic mechanisms of excited-state deac-
tivation via coupled electron-proton-transfer dynamics in isolated aromatic
chromophores, in hydrogen-bonded pairs of chromophores, as well as in
chromophores with ”exible side-chains. It has been shown that excited-state
reactions involving the detachment or the transfer of a hydrogen atom play
a decisive role for the photophysics of these systems.

The photoinduced hydrogen-atom detachment from acidic groups of
chromophores is driven by1�� � states with Rydberg character. The high-
resolution spectroscopy (either in the energy or in the time domain) of the
detached hydrogen atoms has led to a new paradigm of nonstatistical photo-
chemistry in polyatomic molecules. The photodetached hydrogen atom has
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emerged as a new spectroscopic messenger particle which carries uniquely
detailed information on the dynamics of conical intersections in the excited-
state manifold of aromatic chromophores.34

In intra-molecularly hydrogen-bonded bifunctional aromatic systems,
in particular in so-called photostabilizers, the ultrafast electron/proton
transfer in the lowest 1�� � excited state leads to an intermediate structure
which is unstable with respect to torsion about a covalent bond. The torsion,
possibly accompanied by pyramidization, leads in a barrierless manner to
a S1…S0 conical intersection and thus ultrafast internal conversion.

In inter-molecularly hydrogen-bonded aromatic pairs, in particular in
the DNA base pairs, it is a highly polar CT state of 1�� � valence character
which provides the driving force for the coupled electron/proton transfer:
driven by the large dipole moment of the CT state, the proton follows
the electron across a hydrogen bond, resulting in a pronounced energetic
stabilization of a biradical and an S1…S0 conical intersection. After the
back-transfer of the electron at the S1…S0 conical intersection, the proton
is driven back to its original location on the S0 PE surface, thereby closing
the photophysical cycle.

In aromatic chromophores with ”exible side-chains, in particular in
aromatic amino acids and peptides, the hydrogen bonds of the ”exible chain
play an essential role for the e�cient radiationless deactivation of the chro-
mophore. After excitation transfer from the chromophore to the peptidic
chain, a CT state can be populated which drives a proton across a hydrogen
bond, resulting in a biradical structure and an S1…S0 conical intersection.

As is well known, hydrogen bonds are ubiquitous in biological matter.
Their universal role in structure formation (proteins), molecular recognition
(DNA) and catalysis (enzymes) is well established. Here, we have addressed
the much less explored “eld of excited-state dynamics of hydrogen bonds.
The latter provides a highly e�cient mechanism for the deactivation of the
potentially reactive excited states, which may be of unrivalled e�ciency.
The excited-state chemistry of hydrogen bonds may therefore be as essential
for the existence of life as the ground-state chemistry.

Another interesting aspect of the phenomena discussed above is their
potential application in molecular devices. For example, the ESIPT process
along intra-molecular hydrogen bonds may be utilized for the construc-
tion of optically driven photostable molecular switches,106 while the EDPT
reaction along inter-molecular hydrogen bonds may provide a template
for the design of molecular systems which can split water using solar
radiation.107
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1. Introduction

The study of molecular systems using quantum mechanics is primarily
based on the Born…Oppenheimer (BO) approximation.1 Since the elec-
trons have a smaller mass than the nuclei, they move much faster and
follow the motion of the nuclei adiabatically, while the latter move on the
average potential of the former. This approximation is essential to our
understanding of molecular structure and dynamics. There are, however,
essential processes in nature where this approximation breaks down, causing
nonadiabatic phenomena. Even in this case, most often we are able to use
the Born…Oppenheimer framework as the basis to develop the theory of
nonadiabatic processes. Nonadiabatic processes occur when two or more
potential energy surfaces (PESs) of a molecular system approach each other,
making the coupling of electronic states possible through nuclear motion.
In the extreme case, the PESs become degenerate and, if the degeneracy
can be lifted linearly in two or more directions, conical intersections (CIs)
are formed.2, 3

Conical intersections can exist between two or more electronic states,
and they can be categorized based on the number of electronic states
involved in the degeneracy. In the most common case, when we use the
term •conical intersectionsŽ, we refer to two-state degeneracies. Conical
intersections between two electronic states have been studied extensively
and this book, along with its “rst volume, 4 is a testament to this. Theo-
retical developments have enabled the location of conical intersections in
polyatomic molecules, showing that they are present in many cases and they
can facilitate photoinitiated processes.4…11 Experimentally, there has also
been progress in detecting ultrafast processes, which often occur through
CIs, providing further evidence for their importance.

Degeneracy between three electronic states has received less atten-
tion. Three-state degeneracies imposed by symmetry have been studied
in the context of the Jahn…Teller problem for many decades,12…14 but
accidental three-state degeneracies in molecules without symmetry are a
more recent discovery.15, 16 Since most molecular systems in nature have
low or no symmetry, these accidental intersections have the potential for
a greater impact on the photophysics and photochemistry of molecules,
although there has not been enough work to verify or disprove this. E�-
cient algorithms have facilitated the location of three-state conical inter-
sections in recent years,16, 17 and have identi“ed the existence of such
intersections in many systems, as will be discussed in later sections.



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch03

Three-State Conical Intersections 85

Three-state degeneracies may provide a more e�cient relaxation pathway
when more than one interstate transition is needed. Moreover, there are
indirect e�ects that appear because of the three-state CIs, such as geometric
phase e�ects and double-valued derivative couplings,18…21 and they can
a�ect the system•s dynamics and pathways available for radiationless
transitions.22

In this chapter, we will discuss the basic theoretical description of three-
state CIs, and their e�ects and consequences. Examples of several systems
where they have been found and analyzed will also be presented.

2. Noncrossing Rule

The “rst important questions to ask wh en discussing three-state CIs are in
which cases they occur and how common they are expected to be. These
questions can be addressed by invoking the noncrossing rule. Von Neumann
and Wigner showed, in their seminal work in 1929,2 that for a molecular
system with N int internal nuclear coordinates (N int = 3 N Š 6 for nonlinear
molecules orN int = 3 N Š 5 for linear molecules), two electronic surfaces
become degenerate in a subspace of dimensionN int Š 2. This can be illus-
trated considering a 2× 2 matrix representing the electronic Hamiltonian of
a system with two electronic states. Weconsider two intersecting adiabatic
electronic states,� 1 and � 2, which are expanded in terms of two diabatic
states � 1 and � 2,23

� 1 = c11� 1 + c21� 2, (1)

� 2 = c12� 1 + c22� 2. (2)

� 1 and � 2 are orthogonal to all the remaining electronic states and to
each other. The adiabatic electronic energies are the eigenvalues of the
Hamiltonian matrix:

H =

�
H11 H12

H21 H22

�

, (3)

where Hij = � � i |H |� j � . The eigenvalues ofH are given by

E1,2 = H̄12 ±
�

� H 2
12/ 4 + H 2

12, (4)
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where H̄ ij = 1
2 (H ii + Hjj ), and �H ij = H ii Š Hjj . The eigenfunctions are

� 1 = cos (�/ 2)� 1 + sin ( �/ 2)� 2, (5)

� 2 = Š sin (�/ 2)� 1 + cos (�/ 2)� 2, (6)

where � satis“es

sin � =
H12�

� H 2
12/ 4 + H 2

12

, (7)

cos� =
� H12

2
�

� H 2
12/ 4 + H 2

12

. (8)

For the eigenvalues of this matrix to be degenerate, two conditions must
be satis“ed,

H11 Š H22 = 0 , (9)

H12 = 0 . (10)

In an N int -dimensional space, the twoconditions are satis“ed in anN int Š 2
subspace. This subspace, where the states are degenerate, is called the seam
space. The two-dimensional space orthogonal to it, where the degeneracy
is lifted, is called the branching or g Š h space.8, 23

Extending the noncrossing rule to three states being degenerate can
best be understood by considering a 3× 3 electronic Hamiltonian matrix
instead of the 2× 2 matrix. To illustrate this dimensionality rule, consider
three intersecting adiabatic electronic states, � 1, � 2, � 3. These states are
expanded in terms of three diabatic states� 1, � 2 and � 3, which are ortho-
gonal to all the remaining electronic states and to each other similarly to
the two-state case, and the Hamiltonian matrix is

H =

�

�
�

H11 H12 H13

H12 H22 H23

H13 H23 H33

�

	

 , (11)

where the matrix elements Hij are de“ned as above. To obtain degen-
eracy between all three states, the following “ve requirements must
be satis“ed: (1) all o�-diagonal matrix elements have to be zero, i.e.
H12 = H13 = H23 = 0, leading to three requirements; (2) the diagonal
matrix elements have to be equal, i.e.H11 = H22 = H33, leading to two
more requirements.
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In general, for an n × n matrix, n-fold degeneracy is obtained when
all diagonal elements are equal and all o�-diagonal elements are zero. This
can be seen by consideringH as an n × n symmetric matrix that has n
degenerate eigenvalues and� the diagonal matrix of eigenvalues� i . Then
U Š 1HU = � or H = U�U Š 1, where U is a unitary matrix. If H has n
degenerate eigenvalues, then� = � I , whereI is the unit matrix. Therefore,
H = � UU Š 1 = � I . The conditions for degeneracy then are a combina-
tion of n Š 1 diagonal conditions andn(n Š 1)/ 2 o�-diagonal conditions.
The total number of conditions to be satis“ed is (n Š 1) + n(n Š 1)/ 2 =
(n Š 1)(n + 2) / 2.

For molecules lacking any spatial symmetry and containing four or more
atoms, conical intersections ofthree states are possible in anN int Š 5 dimen-
sional space. One can see that the dimensionality where a three-state CI
can be found is greatly reduced compared to the dimensionality of the two-
state CI (N int Š 2), and this leads to the belief that three-state CIs will
be extremely rare. For example, if atwo-state seam is a 3D surface, the
three-state CI will be just a point. Contrary to this belief, however, recent
work has shown that they are much more common than believed, as will
be discussed later in this chapter.

It should be noted that the dimensionalities derived above are for a
nonrelativistic Hamiltonian ignoring the spin-orbit coupling. If the spin-
orbit coupling is included, the dimensionality will change for a system with
an odd-number of electrons.24, 25 This is because of Kramers• degeneracy in
these systems and because the spin-orbit operator leads to complex matrix
elements.

3. Branching and Seam Spaces

The branching space23 is de“ned as the space in which the degeneracy is
lifted linearly, and for the three-state conical intersections, this space is
“ve-dimensional. In order to understand the behavior of the energy in the
branching and seam spaces, it is useful to expand the energy in a Taylor
series in the neighborhood of the crossing. By subtractingH22 from the
diagonal elements in Eq. (11), we obtain

H = H22I +

�

�
�

H11 Š H22 H12 H13

H12 0 H23

H13 H23 H33 Š H22

�

	

 . (12)
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We assume a degeneracy atR 0. At a nearby point R = R 0+ � R , the matrix
elements of the Hamiltonian, when expanded in a Taylor expansion to “rst
order around the point of conical intersection R 0, can be written as23, 26

� H ij (R ) = Hii (R ) Š Hjj (R ) = 0 + � (� H ij )(R 0) · � R (13)

Hij (R ) = 0 + � H ij (R 0) · � R . (14)

The requirements for a three-state conical intersection atR then become

� (� H ij ) · � R = 0 (15)

� H ij · � R = 0 , (16)

so that � R must be orthogonal to the subspace spanned by the vectors
� (� H12), � (� H32), and � H ij , where ij = 12, 23,13, for the degeneracy
to remain. The degeneracy is lifted linearly, as seen in Eqs. (13) and (14),
in the 5-dimensional branching space de“ned by these “ve vectors. The
subspace which is orthogonal to the 5-dimensional branching space is the
seam space. The “ve branching vectors represent nuclear motion similar to
the normal modes of molecules, although they are not normal modes but
in general some combination of them. Examples of the “ve vectors for an
accidental three-state CI in a molecule are shown in Fig. 1.

4. Symmetry and Three-State Conical Intersections:
The Jahn…Teller E�ect

Although accidental three-state CIs are relatively new features, three-
fold degeneracy due to symmetry has been known and studied for
many years.27, 28 It is instructive to see how these symmetry-required
CIs behave before moving to the more complicated accidental ones.
Systems with tetrahedral, octahedral or icosahedral symmetry point groups
(T, Td, Th , O, Oh , I, I h ) can have three-fold degenerate states,T1 or T2.
Vibronic e�ects for T1 or T2 are similar and the results obtained for one
case can be transfered to the other. In this case all the conditions for
degeneracy are satis“ed by symmetry, and the dimensionality of the seam
space is equal to the number of degrees of freedom that retain the high
symmetry. The Jahn…Teller (JT) theorem states that these molecules will
distort from the symmetrical con“guration to low-symmetry con“gurations.
In Td and Oh point groups, there are “ve active JT coordinates which have
e or t2 symmetry, and the Jahn…Teller problem is de“ned asT � (e + t2).
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Fig. 1. Five vectors de“ning the branching space for an S 1/S 2/S 3 conical intersec-
tion in adenine. The three top vectors correspond to the coupling vectors and the two
bottom ones to the energy di�erence gradient vectors. (Reproduced from Ref. 54 with
permission.)

In the I h point group, the Jahn…Teller active modes are combined in a
“ve-dimensional h vibration. The “rst step in analyzing a JT system is
concentrating on the static problem and the electronic Hamiltonian in
order to “nd the new minima caused by the distortion. This is a compli-
cated problem when three electronic states and “ve modes are involved.
Usually the problem is studied “rst by including only the linear terms in the
Hamiltonian.

Öpic and Pryce considered theT � (e+ t2) JT problem in an octahedral
system.27 In general, in the formulation of the JT problem, the diabatic
electronic states are employed, where the nuclear kinetic energy is diagonal
while the o�-diagonal coupling terms are in the potential energy operator.
The diabatic states are the degenerate electronic states at high symmetry.
In the case of theT � (e+ t2) JT problem, the coupling matrix is given by 28

W =

�

�
�
�

FE ( 1
2 Q� Š

�
3

2 Q� ) ŠFT Q� ŠFT Q�

ŠFT Q� FE ( 1
2 Q� +

�
3

2 Q� ) ŠFT Q�

ŠFT Q� ŠFT Q� ŠFE Q�

�

	
	

 . (17)
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Qi are normal modes, whereQ� and Q� have e symmetry and Q� , Q� , Q�

have t2 symmetry. Fi are the linear vibronic constants obtained by di�er-
entiating the diagonal and o�-diagonal matrix elements of the potential
operator.

Further simpli“cation is achieved if the problem is divided into two
cases, which are studied separately “rst and then combined, as̈Opic and
Pryce showed.27 The e modes are considered “rst in aT � e problem and
the t2 modes are considered separately in aT � t2 problem. Solving these
two cases separately, one “nds three minima for theT � e system displaced
along Q� and Q� , and four minima for the T � t2 case displaced along
Q� , Q� , Q� . When one solves the combinedT � (e + t2) system, in addi-
tion to the 3 + 4 = 7 stationary points, there are six more orthorhombic
saddle points. The seven initial stationary points can be minima depending
on the values of the various parameters in the Hamiltonian, but the six
intermediate points can never be minima; they are higher-order saddle
points. Quadratic terms have also been considered for this problem as
well as the e�ect of the spin-orbit coupling, adding complexity to the
solutions.27…32

In icosahedral systems, one “nds JT problems with three, four or “ve-
fold degeneracy. In the threefold degeneracy, a “vefold degenerate mode
h interacts with the triply degenerate T state, giving rise to the T � h
JT problem.33…36 The T � h problem is similar to the T � (e + t) when
the vibronic couplings to the e and t vibrations and their frequencies are
the same. It can be shown that in the linear approximation, the lowest
branch of the PES has a two-dimensional trough of minima points in the
“ve-dimensional space, similar to the E � e •mexican hatŽ case, where a
one-dimensional trough exists.28

5. First Accidental Three-State Conical Intersection: CH +
4

Although the JT e�ect on T states was analyzed early on, decades passed
before there was any indication of three-state degeneracy not imposed by
symmetry. The “rst study on accidental three-state conical intersections
was done for the CH+

4 cation by Katriel and Davidson using Frost func-
tions.15 In a tetrahedral geometry, the ground state of CH+

4 is a T2 state.
Therefore symmetry predicts that the ground state will be triply degen-
erate. Because of the Jahn…Teller e�ect, there is distortion that lowers the
symmetry and produces six equivalent minima. The rovibronic structure of
methane cation in these six minima has been studied experimentally and
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Table 1. Number of coordinates for various conditions in CH +
4 ,

when the system is in Td , C3v , Cs and C1 symmetry.

Td C3v Cs C1

No. of coord. speci“ed by symmetry 8 6 3 0
No. of degrees of freedom 1 3 6 9
No. of conditions satis“ed by symmetry 5 4 2 0
No. of conditions to satisfy for degeneracy 0 1 3 5
Dimensionality of seam 1 2 3 4

Taken from Ref. 15.

theoretically, con“rming the C2v geometry of CH+
4 and the presence of six

minima connected by tunneling motion.37…41

The tetrahedral symmetry is preserved along only one degree of freedom,
the totally symmetric vibration, and the dimensionality of the seam is
one, since all the requirements for degeneracy are satis“ed by symmetry.
Katriel and Davidson, however, found additional threefold degeneracies in
this system even when the tetrahedral symmetry is broken. More specif-
ically, points of threefold degeneracy were found for CH+4 in Td, C3v , Cs

symmetry and when no symmetry was present. Table 1, taken from the
original reference, shows the dimensionality of the seam space, where degen-
eracy is expected to remain, in each case. As the symmetry is lowered, the
number of coordinates speci“ed by symmetry is reduced and the number
of degrees of freedom which can be varied without changing the symmetry
increases. For example, inTd symmetry, there is only one coordinate that
can be varied while the symmetry is retained, the CH symmetric stretch,
thus the number of degrees of freedom has been reduced from nine to one.
The number of degrees of freedomin intermediate symmetries, C3v and
Cs, is three and six, respectively. In Td symmetry, the dimensionality of
the seam space is also one, since any change that retains theTd symmetry
will retain the degeneracy. In the other extreme, if no symmetry is present,
the cation has nine degrees of freedom and the dimensionality of the seam
becomes 9Š 5 = 4, since “ve constraints need tobe satis“ed. In intermediate
symmetries, some of the constraints are satis“ed by symmetry, and thus the
seam dimensionality is equal to the number of degrees of freedom minus the
number of constraints. For example, in C3v symmetry, the T state trans-
forms asA1 + E, so there is still a twofold degeneracy imposed by symmetry
in the E state. There is only one conditionrequired to achieve a threefold
degeneracy again, namely that the energy of stateA1 is equal to the energy
of state E . The o�-diagonal coupling matrix element between A1 and E
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states is zero because of their di�erentsymmetry. So the dimensionality of
the three-state seam within C3v symmetry is 3 Š 1 = 2. In Cs symmetry,
the T state splits into 2A� + A�� and there are three conditions to be satis-
“ed to obtain threefold degeneracy: all diagonal matrix elements have to
be equal, and the coupling between the twoA� states has to vanish. So the
dimensionality of the three-state seam within Cs symmetry is 6 Š 3 = 3.
Katriel and Davidson were able to obtain threefold degeneracies in each of
these cases, showing that this is possible even when the symmetry does not
impose it.

6. Locating Accidental Three- State Conical Intersections

Besides the study of the methane cation described above,15 until 2002 there
had been no other study or evidence of accidental three-state degeneracy
without the presence of a Jahn…Teller e�ect. Such degeneracies were consid-
ered highly unlikely to occur, and basedon the dimensionality, it would be
very di�cult, if not impossible, to locate them without any algorithms
designed to do so. Degeneracy of threestates can be located using similar
ideas and algorithms as have been used for two-state degeneracies, which
have been found to be successful over the years.

The “rst to be developed, and most frequently used, algorithm for
locating three-state CIs16 uses the lagrange multiplier method developed
initially for two states. 42 The basics of this algorithm are discussed below.
The electronic wavefunctions are expressed as a linear combination of
Con“guration State Functions (CSFs), � m ,

� I (r ; R ) =
N CSF
�

m =1

cI
m (R )� m (r ; R ), (18)

where N CSF is the number of CSFs used in the expansion,cI
m (R ) are the

expansion coe�cients for state I , r are electronic coordinates andR are
nuclear coordinates. The adiabatic electronic energies and wavefunctions
are obtained by solving the eigenvalue equation

[H (R ) Š EI (R )I ]cI (R ) = 0, (19)

where the Hamiltonian H is built in the CSF basis.
Using quasidegenerate perturbation theory43, 44 in the vicinity of a

conical intersection for three states I, J, K, the electronic Hamiltonian can
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be written to “rst order in displacements � R from the point of degeneracy
R x as

H (1) (R ) = [ EJ (R x ) + gJ · � R ]I

+

�

�
�

gIJ · � R h IJ · � R h IK · � R

hIJ · � R 0 hJK · � R

hIK · � R h JK · � R g KJ · � R

�

	

 , (20)

where the vectorsgI , gIJ and hIJ are the gradient of state I , the energy
di�erence gradient between statesI, J and the coupling, respectively. They
are de“ned as

gI = �� � I | �H |� I � , (21)

gIJ = � (EI Š EJ ) = � (� � I | �H |� I � Š � � J | �H |� J � ), (22)

hIJ = � � I |� �H |� J � , (23)

or in matrix notation in terms of the CSF coe�cients the vectors:

gI = cI, • (R x )� H (R )cI (R x ), (24)

gIJ = gI Š gJ , (25)

hIJ = cI, • (R x )� H (R )cJ (R x ), (26)

where � denotes the gradient with respect to nuclear coordinates only. At
R = R x + � R , the Hamiltonian in the adiabatic representation becomes

H (1) (R ) = ( EJ (R ))I +

�

�
�

� EIJ (R ) 0 0

0 0 0

0 0 � EKJ (R )

�

	

 . (27)

In order to achieve degeneracy, a displacement� R should be taken such
that

� EIJ + gIJ · � R = � EJK + gJK · � R = 0 (28)

and

hIJ · � R = hJK · � R = hIK · � R = 0 (29)

for I, J, K . These are the “ve conditions that need to be satis“ed. The
problem becomes a constrained minimization which can be solved using
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the Lagrange-constrained minimization method. Since there is an in“nite
number of degenerate points, one usually seeks the minimum energy point
on the seam. The algorithms seek to minimize the energy based on two,
“ve or more constraints. Alternatively, instead of minimizing the energy of
one state, the average of the states involved can be minimized.45, 46 The
algorithms developed for the two-state case42 can be extended to include
“ve constraints. A Lagrangian is built

L (R , � , � , � ) = EJ + � 1� EIJ + � 2� EKJ + � 1HIJ

+ � 2HJK + � 3HIK +
�

i

� i K i , (30)

where K i are additional geometrical constraints that can be added to the
problem. These constraints are used when we not only are interested in the
minimum energy point on the seam but also need to map out some portion
of the seam.

An extremum is sought for the Lagrangian by requiring its gradient with
respect to R , � , � , � to vanish. By searching for extrema of the Lagrangian,
a Newton…Raphson equation can be set up,

�







�

L RR gIJ, • gKJ, • h• k •

gIJ 0 0 0 0

gKJ 0 0 0 0

h 0 0 0 0

k 0 0 0 0

�

�
�
�
�
�
�
�

�







�

� R

�� 1

�� 2

� �

� �

�

�
�
�
�
�
�
�

= Š

�







�

� L

� EIJ

� EKJ

0

K

�

�
�
�
�
�
�
�

, (31)

which, when solved, provides the solution� R . The following relations have
been used:

L RR = � (� L ),
� 2L

�R i �� 1
= ( gIJ )i ,

� 2L
�R i �� 2

= ( gKJ )i ,
� 2L

�R i �� 1
= ( hIJ )i ,

� 2L
�R i �� 2

= ( hJK )i ,
� 2L

�R i �� 3
= ( hIK )i , � K = k, h = ( hIJ , hJK , hIK )

and

� L = � EJ + � 1gIJ + � 2gKJ + � 1hIJ + � 2hJK + � 3hIK +
�

i

� i k i . (32)

This method has been implemented using analytic gradients from multiref-
erence con“guration interaction (MRCI) wavefunctions 47…50 and has been
added to the COLUMBUS suite of programs.51 It has proven to be a very
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e�cient algorithm capable of locating t hree-state degeneracies in a few iter-
ations. This algorithm has been used in most of the three-state accidental
conical intersections reported to-date.

It is often desirable to have algorithms for locating conical intersections
without the need of a derivative coupling vector, since these are di�cult
to compute in many cases. There has been work in this direction, particu-
larly for locating the common two-state CIs. Martinez and co-workers have
developed such a method and extended it to the optimization of three-state
CIs.52 The algorithm for obtaining a two-state CI minimizes an objective
function

FIJ (R ; 	, � ) = ĒIJ (R ) + 	G IJ (� EIJ (R ); � ), (33)

whereĒIJ is the average energy of the two statesI, J , � EIJ is their energy
di�erence, 	 is a sequentially updated parameter driving the optimization
towards the seam space minimum, andGIJ is a penalty function used to
smooth discontinuities in the gradient of the potential surface. GIJ is a
monotonically increasing function of the energy gap, and it has the form

GIJ (� EIJ ; � ) =
� E 2

IJ

� EIJ + �
. (34)

� is a user-de“ned smoothing parameter. Minimization of Eq. (33) corre-
sponds to minimizing the average energy of statesI and J , subject to
the constraint that the gap between the states vanishes. Extending this to
locating a three-state CI is achieved by minimizing the objective function

FIJK (R ; 	, � ) = FIJ (R ; 	, � ) + FIK (R ; 	, � ) + FJK (R ; 	, � ). (35)

This algorithm has been used to locate three-state CIs in malonaldehyde
as discussed later in this chapter.

7. Consequences of Three-State Conical Intersections

7.1. Connectivity

Displacements along the “ve-dimensional branching space of a three-state
CI lift the degeneracy. It is possible, however, to keep two of the three
states degenerate and lift the degeneracy only of the third state. This
can occur in three-dimensional subspaces of the “ve-dimensional branching
space.17, 18, 20 Within the branching space, there exist two such three-
dimensional degeneracy subspaces in which the degeneracy between two
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states remains. For example, in an S0/S1/S2 CI, one can keep the degen-
eracy between the lower pair of states S0/S1 or between the upper pair of
states S1/S2. These two-state CI seams can be referred to as linked seams
since they have a common state betweenthem. Alternatively, one can view
this as the two linked seams intersecting to form the three-state CI.

The degeneracy spaces originating from three-state CIs were originally
studied by Keating and Mead,18 where they focused on theX 4 system.
Symmetry in this system can guide the analysis. InTd symmetry, there
exists a threefold degeneracy which will lead to twofold degeneracy when
the symmetry is lowered to C3v or D2d. Thus displacements from the
Td symmetry will cause lifting of the t hreefold degeneracy but this can
be done in a way that the two states remain degenerate. Yarkony and
co-workers20, 53 have also examined these linked seams analytically using
perturbation theory.

These two-state CI seams originating from the three-state CI have
been con“rmed in several systems usingab initio energies and wavefunc-
tions. They were initially shown using ab initio MRCI energies in the allyl
radical.17, 20 In this radical, a three-state CI between states 42A, 52A, 62A
was found. Pathways from a point on the three-state CI seam along the
4,52A seam and 5,62A seam were calculated. These seams, along with similar
ones in pyrazolyl radical, were used to numerically test the above-mentioned
perturbation theory, 20, 53 thus providing a connection between analytical
results and ab initio calculations.

In larger polyatomic molecules, the situation starts getting more compli-
cated since there are more than one three-state CI seams, as will be discussed
in Sec. 9.2. Then di�erent seams of two-state conical intersections origi-
nate from each of the three-state conical intersections, leading to a great
number of two-state conical intersections at energies lower than the three-
state seams.54, 55 The connectivity of di�erent t wo-state seams through three-
state CIs has been seen in adenine and cytosine,54, 55 and has been explored in
more detail in cytosine. Cytosine has multiple seams of two-state and three-
state CIs. Two three-state CIs have been found to involve the ground state
(S0/S1/S2) and one to involve S1/S2/S3. The S0/S1/S2 seams are discussed
here as di�erent seams because they involve di�erent diabatic states and the
molecule has a very di�erent structure, but we cannot exclude the possibility
that they are actually connected in one seam and what we have found are just
di�erent stationary points on one seam. Figures 2 and 3 show various path-
ways connecting seams for cytosine. Figure 2 shows an S0/S1 seam starting
from an S0/S1/S2 CI point ( ci012). The two coordinates used in the plot are
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Fig. 2. S0-S1 seam path from cytosine•s three-state CI ci012 to a two-state CI minimum
Rx (ci01)twist and gradient pathway from R x (ci01)twist to S0 minimum. The “rst three
singlet energies are plotted with respect to the dihedral angle C 4C5C6N1 and the angle
N1C2N3. The Franck…Condon (FC) region is shown with a vertical arrow. The gray
points on the graph ”oor are the projection of data onto the E = � 0.5 eV plane. (Repro-
duced from Ref. 55 with permission.)

both branching coordinates for the three-state CI, but one is a seam coordi-
nate for S0/S1 (N1-C2-N3) and the other is a branching coordinate for S0/S1

(C4-C5-C6-N1). Figure 3 shows two di�erent paths. First starting from ci012
the S1/S2 seam is followed while S0 is not degenerate anymore. In the same
“gure, there is also a path starting from a di�erent three-state CI, an S1/S2/S3

CI ( ci123), and following the S1/S2 seam. Interestingly, both paths end up at
the same point which is the minimum on the S1/S2 seam [Rx (ci12)� ]. A third
path has also been drawn on the same “gure which connects the minimum
energy point on the S1/S2 seam to the vertical excitation. This shows clearly
how all these seams are connected to each other and ultimately to the Franck…
Condon region, suggesting their relevance to the photophysical behavior of
cytosine.56

Martinez and co-workers support the conjecture that thr ee-state inter-
sections play a key role in extending the connectivity of intersection spaces
of pairs of states, e.g. the S1/S0 and S2/S1 intersection spaces.57 They have
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Fig. 3. S1-S2 seam paths from cytosine•s three-state CIs ci012 and ci123, and from
vertical excitation. The “rst three to four singlet energies are plotted with respect to
the R(C 5C6) in �A and the angle N 1C2N3 in degrees. The Franck…Condon (FC) region
is shown with a vertical arrow. The gray points on the graph ”oor are the projection of
data onto the E = � 0.5 eV plane. (Reproduced from Ref. 55 with permission.)

used malonaldehyde to show connectivity of very di�erent two-state seams
that support this conjecture. Figure 4 shows a two-state seam S1/S0 that
starts close to the Franck…Condon region, passes through a three-state CI
and continues to reach a completely di�erent region where the S1/S0 states
are still degenerate. The torsional angle changes along the seam from 0� to
180� . A search for stationary points between S1/S0 in this case will locate
two points, the HTI at torsional angle 0 � and the ME-3SI at angle torsional
90� , as seen in Fig. 4, and it is not obvious that these two points are, or
should be, connected. Furthermore, they seem to lead to di�erent distor-
tions and dynamics. Interestingly, even though the two extreme points HTI
and ME-3SI have been located at 0� and 90� , dynamical studies reveal that
population transfer does not occur at these points but mainly at angles in
between. This points to the fact that we should always be careful when we
assign too much signi“cance to minimum energy points on a seam. Mapping
seams may be a lot more informative, and three-state CIs are very helpful
in connecting the di�erent regions of conformational space.
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Fig. 4. Connectivity of the hydrogen transfer intersection (HTI) and minimal energy
three-state intersection (ME-3SI) points. Constrained relaxation in 5 � intervals from
the planar to 90 � twisted geometries maintains the degeneracy of S 2 with S 1 at all
points along the connecting pathway. The Franck…Condon (FC) point is located at 0 �

torsion, slightly higher in energy than the HTI. The inset shows an approximate view
of the surface topography in the vicinity of the ME-3SI. (Reproduced from Ref. 57 with
permission.)

7.2. Geometric phase

It was “rst pointed out by Longuet…Higgins and Herzberg58, 59 that a real
electronic wavefunction changes sign when traversing around a conical inter-
section. Mead and Truhlar60 incorporated this geometric phase e�ect into
the single electronic state problem and Berry generalized the theory.61

Because of his work, this e�ect is often called the Berry phase e�ect.61…63

Calculations in Na3 trimer, which use the single-surface adiabatic approach,
reproduce the experimental data only if, as required by theory, a geometric
phase of 
 under pseudorotation around the equilateral con“guration is
imposed.62 The geometric phase e�ect has in general important conse-
quences in the vibronic levels in a JT system.28 E�ects of the geometric
phase have been observed theoretically not only for bound states but also
for scattering wavefunctions. For the X 3 system, it has been shown that
inclusion of this e�ect leads to scattering changes in the sign of reactive
scattering, which can alter the conclusions regarding the interference
between reactive and nonreactive scattering.64 The geometric phase e�ect
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can be cancelled when product distributions are integrated over all scat-
tering angles.65…67 For a more comprehensive discussion see Chapter 5 in
this book.

Although the geometric phase e�ect in a twofold degeneracy is the most
commonly studied, there has been work generalizing to three orn-fold
degeneracy.19, 68 It was shown that for a threefold degeneracy of a real 3× 3
Hamiltonian, the geometric phase factors	 i = ei� i of the eigenfunctions
i = 1 , 2, 3 after traversing a circle around the degeneracy will be	 2 = 1
and 	 1 = 	 3 = ± 1. These geometric phases are related to the number of
conical intersectionscontained in the paths.20, 21 A wavefunction i changes
sign when traversing a path if the path encloses one CI (or an odd number
of CIs) between statei and another state. The wavefunction will not change
sign if the path encloses two or an even number of CIs involving statei .
Thus, if the path encloses the two linked seams 1, 2 and 2, 3, wavefunctions
1 and 3 are involved in one CI each and will change sign but wavefunction
2 is involved in two CIs and will preserve its sign.

In a three-state CI beyond the geometric phase e�ect on the wavefunc-
tion, there is additional geometric phase e�ect on the derivative coupling,
which becomes also double valued and changes sign when a conical inter-
section is encircled. This is a consequence of the wavefunction phases and
will be discussed further in the next section.

7.3. Nonadiabatic couplings

The e�ciency of a radiationless transition between two states depends not
only on the energy di�erence between those states, but also on the derivative
coupling fIJ of the states. The nonadiabatic or derivative coupling between
electronic statesI, J is de“ned as

fIJ = � � I |� � J � . (36)

In the adiabatic representation, the derivative coupling is responsible for
nonadiabatic transitions between di�erent states. The diabatic representa-
tion is formally de“ned by setting the derivative coupling equal to zero. In
reality, the equation fIJ = 0 has no solution since there is a nonremovable
part. At conical intersections, the singular part is removable, and e�cient
ways to transform between the diabatic and adiabatic representations can
use this property.69…71

In a regular CI, the wavefunctions change sign if they traverse in a
loop around the point of CI, but the derivative coupling does not change
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Table 2. Sign of the derivative couplings when one
or more CIs are enclosed within a loop.

Seams contained within loop f 10 f20 f21

S0-S1 seam only + � �
S0-S1 seam plus one S1-S2 seam � + �
S0-S1 seam plus two S1-S2 seams + � �

•+Ž indicates overall phase retention along the loop,
and •� Ž overall phase inversion along the loop.

sign. This is because the derivative coupling includes a product of both
functions, and, since both of them change sign, this will cancel the signs
in the product. The situation is more complicated when the loop encloses
more than one seam, as is the case in the close vicinity of a three-state
CI. If the loop contains two CIs, where both include the same state, for
example S0/S1 and S1/S2, then the wavefunction describing S1 will change
sign twice, once because of S0/S1 and once because of S1/S2. The product
involved in the derivative coupling then will also change sign. In fact around
the three-state CI, there are three di�erent derivative couplings, f 10, f20 and
f12. Table 2 shows di�erent cases where one or more CIs are enclosed in the
loop and how this a�ects the sign of the derivative couplings.20, 55, 72

These sign changes were “rst analyzed byab initio wavefunctions and
derivative couplings for the pyrazolyl radical,72 although they had been
seen earlier too.73 Figure 5 shows one component of the three derivative
coupling vectors around a loop that encloses two conical intersections, one
between states 1,2 and one between states 2,3. The derivative couplings f12

and f23 are double-valued (change sign around the loop) while f13 is not.
The sign changes in derivative couplings have also been tested in cyto-

sine usingab initio MRCI wavefunctions.55 Figure 6 shows the vicinity of a
three-state conical intersection where one can see one S0/S1 point of degen-
eracy and two disconnected points of S1/S2 degeneracy. By making loops
of di�erent radius around the S0/S1 point, we can tune whether additional
conical intersection points are enclosed in the loop. If the radius is very
small, only the S0/S1 point is encircled. If the radius increases, we can
encircle only one of the S1/S2 points or both of them. Figure 7 shows the
major component f�IJ of the ab initio derivative couplings for di�erent loops
around S0/S1 in cytosine. In Fig. 7(a), the radius is only 0.01 bohr and only
the S0/S1 CI is enclosed. In this case the derivative coupling f�10 does not
change sign. In Fig. 7(b) the radius increases to 0.03 bohr but still there is
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Fig. 5. � component of the derivative coupling, f IJ
� , at points on a loop encircling

conical intersections between states 1,2 and 2,3 on the pyrazolyl radical. Open markers
represent perturbation theory results, [PT], closed markers indicate ab initio data, [AB].
(Reproduced from Ref. 72 with permission.) Notice that notation in the “gure is switched
from the text here (f �

IJ vs. fIJ� ).

only one CI enclosed. More interesting is Fig. 7(c) where the radius is 0.05
bohr. Now in addition to the S0/S1 CI, one of the S1/S2 CIs is enclosed.
According to Table 2, f �

10 will change sign and this is seen in the plot. In
Fig. 7(d), the radius increases even more and both S1/S2 CIs are enclosed
in the loop. In this case, f�10 changes sign twice so it is again single-valued
in the end.

The double-valued derivative coupling is a very interesting consequence
of the three-state CIs and it can be con“rmed with the ab initio data as
seen here. How this characteristic will a�ect the dynamical behavior around
the three-state CIs is still unknown. What is already obvious is that this
induced geometric e�ect can be used to locate conical intersections.
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Fig. 6. S0, S1, and S2 PESs in the branching space of a two-state CI for cytosine,
generated from the energies calculated on loops with radii � = 0 .01, 0.03, 0.05, and 0.07
bohr, shown on the ”oor of the plot. The dominant diabatic characters of the surfaces
are shown in various regions. (Reproduced from Ref. 55 with permission.)

A further consequence of the double-valued derivative coupling is that
it alters the line integral of fIJ along a path � 21, 74

A =
�

�
fIJ · dR . (37)

The line integral of fIJ along a path can be used to detect or verify the
presence of a two-state CI between statesI, J . In this case it has a value
of ± 
 independent of the path. If there is no CI, the line integral is 0.
However, in the presence of three-state CIs and double-valuedf, this is not
true anymore. It can be shown that the line integral is not a unique function
of the path.21

8. Characterizing Three-State Conical Intersections

Two-state conical intersections have been successfully analyzed and char-
acterized using degenerate perturbation theory.8, 43, 44 Analytic expressions
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have been developed, which give both a computational advantage and peda-
gogical insight. For example, if only “rst-order terms are included in the
two-state CI, one obtains the familiar form of the Hamiltonian

H = ( sx x + sy y)I +

�
gx hy

hy Šgx

�

, (38)

where x, y are the intersection adapted coordinates de“ning the branching
plane.8, 23 The parameterssx , sy , g, h can be obtained from the gradients in
Eqs. (21)…(23), and they de“ne the topography of the conical intersection.
An important advantage of using intersection-adapted coordinates is that
instead of usingN int coordinates, only two are needed to describe the CI,
or “ve to describe a three-state CI.

This analysis is not as easy for three-state intersections. Yarkony and
co-workers applied degenerate perturbation theory through second order
to characterize the vicinity of a three-state conical intersection.20, 53, 72, 75

They used a group homomorphism approach to make progress in this
problem. Their approach produces an approximately diabatic Hamiltonian
whose eigenenergies and eigenstates can accuratelydescribe the three adia-
batic potential energy surfaces, the interstate derivative couplings, and the
branching and seam spaces in their full dimensionality.72 Deriving diabatic
Hamiltonians is very important for being able to do dynamics around
conical intersections, since dynamics studies in the diabatic representation
are easier and they do not deal with the singular derivative coupling vector.
Ten parameters are needed to describe the linear terms (analogous to the
four sx , sy , g, h parameters in the two-state CI) and over 300 parameters
for the second-order terms. The accuracy of the perturbation theory can be
seen in Fig. 5 where a component of the derivative coupling derived from
perturbation theory is compared to ab initio values.

9. Three-State Conical Intersections in Chemical Systems

9.1. Three-state conical intersections in radicals

Since the development of the algorithms for locating accidental three-state
CIs, these features have been found in many systems. The “rst systems
where accidental three-state conical intersections were located using the
search algorithms were radicals. Speci“cally, three-state CIs were “rst
located between Rydberg states in the ethyl and allyl radicals.16, 17 Rydberg
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states are close energetically even at vertical excitations, so small distor-
tions can lead to degeneracy. In the ethyl radical, the third, fourth and “fth
excited states correspond to the 3p Rydberg states at vertical excitation and
form a three-state CI seam with a minimum energy about 5500 cmŠ 1 above
vertical excitation to 5 2A.16 One can think of the 3p states as perturbed
3p atomic-like states where the perturbation of the molecule breaks the
original degeneracy. Small molecular displacements can “nd a point where
the states will become degenerate again. In the allyl radical, a seam of
three-state CIs between the �B (2A1), �C(2B1), and �D(2B2) states (in C2v

symmetry) (4,5,6 2A states without symmetry) was located and a seam
between the 3,4,52A states at higher energy. The minimum energy point
on the 4,5,62A seam is similar to the equilibrium structure of the ground
�X (2A2) state and only 1.1 eV above the �D state at its equilibrium geometry.

This seam joins two two-state seamsof conical intersection, the 4,52A and
5,6 2A conical intersection seams. The energy of the minimum energy point
on the 4,5 2A two-state seam is only 0.15 eV above that of the�D state at
its equilibrium structure.

Three-state conical intersections can a�ect excited state dynamics, but
also ground state vibrational spectra if the ground state is involved. The
latter case is particularly useful since experimental spectra may contain
the signature of the three-state CIs. This is the case in “ve-membered
ring heterocyclic radicals, such as pyrazolyl, where the ground state and
two excited states cross at an energy onlyca. 0.42 eV above the ground
state minimum.76 Interest in this radical is due, in part, to the general
interest in polynitrogen compounds as potential high-performance rocket
fuels. The ground state is involved in the degeneracy, causing the three-state
CI to be a�ecting the spectroscopy. As was discussed earlier, if the conical
intersection involves three states, the number of extrema and internal
coupling modes increases. For example, the three-state, “ve vibrational
mode, T � (e+ t2) Jahn…Teller problem can have 13 local extrema coupled
by motion along “ve vibrational coordinates. Because of this, complicated
vibronic spectra were expected, and observed experimentally.77 The photo-
electron spectrum of the pyrazolide anion (showing the vibronic structure
of pyrazolyl radical) and its deuterium-substituted isotope have been calcu-
lated by Stanton and co-workers.78 The spectrum was modeled using one,
two or three states, and it was clear that three states are needed to repro-
duce the experimental peaks accurately. The vertical energies of2A2 and
2B1 at the geometry of the anion are 0.327 and 0.354 eV respectively, so in
these experiments, the three-state CI may not be accessed directly. Direct
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Fig. 8. Correlation between orbitals in the cyclopentadienyl and pyrazolyl radicals.
(a) Orbitals in cyclopentadienyl radical in D 5h symmetry. (b) Introduction of two N
atoms in the ring reduces the symmetry to C2v and breaks the degeneracy of orbitals e1

and e2. (c) The two N atoms also introduce two lone pairs with symmetries a1 and b2.
This leads to the orbitals in pyrazolyl.

access may complicate the spectra even more. The three-state CIs in pyra-
zolyl have also been used by Schuurman and Yarkony to develop methods
to describe the vicinity of the CI. 53, 72, 75

In order to understand better the origin of degenerate states in the pyra-
zolyl radical, we can initially consider the isoelectronic cyclopentadienyl
radical. The “ve 
 orbitals in this system are shown in Fig. 8. The system
has D5h symmetry and the 
 orbitals have a, e1, e2 symmetries, thus the
unpaired electron occupies a doubly degenerate orbital, resulting in a degen-
erate ground stateE1. If two nitrogen atoms substitute the CH groups, as is
the case in pyrazolyl, the symmetry is reduced toC2v , and the degeneracy
is lifted, giving rise to two states A2 and B1, which will still remain very
close energetically. The introduction of nitrogen atoms, besides reducing the
symmetry, has the additional e�ect of introducing lone pair orbitals. Two
orbitals with symmetry a1 and b2 result from the lone pair on nitrogen, with
the b2 having energy similar to the a2 and b1. A third state B2 is then also
energetically close to theA2 and B1 states. Ab initio calculations con“rm
the proximity of the three states. CCSD(T) adiabatic excitation energies
including zero point energy corrections are 0.046 eV and 0.261 eV for2B1

and 2B2, respectively.78 Two-state CIs between all three pairs of states
have been located using CCSD with energies 0.335 eV (2A2/ 2B1), 0.436 eV
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Fig. 9. Energies (in eV) and geometries (in �A) of the important points (S 0-minimum,
D0-minimum, D 0/D 1 CI, D 0/D 1/D 2 CI) in the uracil cation. (modi“ed from Ref. 79)

(2B2/ 2B1) and 0.292 eV (2B2/ 2A2).78 The three-state CI was found using
MRCI methods only 0.425 eV above the minimum, slightly higher than the
adiabatic excitation energies.76

Two- and three-state CIs can be found in radical cations produced by
ionizing a neutral molecule. CIs in radical cations may have an e�ect on
time-resolved photoelectron spectraof the neutral systems, making inter-
pretation of the signals more complicated. These spectra are often used
to examine the dynamics and nonadiabatic e�ects in excited states of a
neutral molecule, but nonadiabatic e�ects of the cationic molecule may
also be important. Three-state CIs have been found in the uracil radical
cation connecting the “rst three states.79 The minimum energy point on
the seam is 0.9 eV above the ground state minimum for this cation, as seen
in Fig. 9. It is also connected to a two-state CI which is 0.45 eV above
the ground state minimum. The geometry remains planar in all of these
structures, and the deformations involve bond length changes.

9.2. Three-state conical intersections in closed-shell
organic systems

Conical intersections in radicals should be anticipated since the electronic
states are often not too far separated even at equilibrium geometries. In
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neutral closed shell molecules, however, the ground state is usually several
eV below any excited states and it is more di�cult for degeneracy to occur
between the ground state and excited states. Such degeneracies do occur,
usually requiring considerable distortion of the molecule. Two-state CIs
between the ground state and an excited state are very important for
relaxation of excited states and they have become a common mechanism
in describing photophysical and photochemical processes. Three-state CIs
have also been located recently and wepresent a brief summary indicating
their frequency and signi“cance.

In recent years, there have been many theoretical studies investigating
the role of two-state CIs in the radiationless decay of nucleobases. Many
seams of two-state CIs have been found in all the natural nucleobases,
which are believed to facilitate the short excited state lifetimes and ultra-
fast radiationless decay. The involvement of three-state conical intersec-
tions in the photophysics and radiationless decay processes of nucleobases
has also been investigated.54, 55, 80 Three-state conical intersections have
been located for the pyrimidine bases, uracil and cytosine, and for the
purine base, adenine. Figure 10 shows the energies of the three-state conical

Fig. 10. Diagram of the energy levels at the conical intersections in uracil and adenine.
(a) The S 0, S1, S2 states of uracil at equilibrium geometry Re(S0 ) and at conical inter-
sections ci12, ci01, and ci012. (b) S0, S1, S2, S3, S4 states of adenine at equilibrium
geometry Re(S0 ) and at conical intersections ci123� , ci01 and ci123. (Reproduced from
Ref. 54 with permission.)
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intersections compared with the vertical excitations in uracil and adenine.
In uracil, a three-state degeneracy between the S0, S1, and S2 states has
been located 6.2 eV above the ground state minimum energy.54 This energy
is 0.4 eV higher than the vertical excitation to S2 and at least 1.3 eV higher
than the two-state conical intersections found previously. In adenine, two
di�erent three-state degeneracies between the S1, S2, and S3 states have
been located at energies close to the vertical excitation energies.54 The
distortions are also not signi“cant, with adenine retaining its planar struc-
ture. The energetics and distortions of these three-state conical intersec-
tions suggest that they can play a role in the radiationless decay pathways
in adenine.

Blancafort and Robb80 have reported a three-state CI in cytosine
between the “rst three singlet states, optimized at the CASSCF level.
A more detailed study of three-state CIs in cytosine and its analog
5-methyl-2-pyrimidinone was done using MRCI methods.55 The potential
energy surfaces for each of these molecules contain three di�erent three-
state seams: two di�erent seams involving the ground state and S1 and
S2, and a seam involving S1, S2, S3 states. The “rst S0/S1/S2 seam in
cytosine involves the closed shell ground state plus

 � and nN 
 � states,
and the second seam involves the closed shell ground state plus

 � and
nO 
 � states. We describe them as di�erent seams because of the di�erent
character of states involved. There has not been an attempt to connect them
directly. The S1/S2/S3 seam (labeledci123) involves

 � , nO 
 � and nN 
 �

states. The minimum energy of the “rst S0/S1/S2 seam (labeledci012) is
5.3 eV while the minimum energy of the second is much higher, 6.6 eV,
using the higher-level MRCI treatment in that study. The minimum energy
point of the S1/S2/S3 seam was calculated to be at 4.35 eV. Since vertical
excitations in cytosine are 4.37 eV, 4.42 eV and 5.07 eV at the same level
of theory, the S1/S2/S3 seam may be relevant and important in its photo-
physical behavior. Even the S0/S1/S2 seam with a minimum at 5.3 eV may
be relevant. This point can be further examined by studying the branching
of these three-state seams to two-state seams. Two-state seam paths from
these intersections were calculated and they were shown to be connected
to energetically low two-state CIs that participate in ra diationless decay.
Figures 2 and 3 show some of these pathways which were also discussed in
Sec. 7.1. Figure 2 showsci012 being connected to a two-state S0/S1 seam
that facilitates radiationless transition to the ground state. Figure 3 shows
that ci012 andci123 are actually connected through a two-state seam S1/S2,
(ci12�). This two-state seam is further connected to the Franck…Condon
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region, indirectly showing how the three-state seams are also connected to
the FC region.

Malonaldehyde is another system where a three-state CI has been
implicated in its intra-molecular proton transfer. 22, 81 This is the simplest
system where excited-state intra-molecular proton transfer is observed.
Femtosecond experiments on relatedmolecules have found that proton
transfer occurs in less than 100 fs after excitation to the bright

 � state.
The bright state in malonaldehyde is the S2 state. Studies involving conical
intersection searches and molecular dynamics reveal that there are two
conical intersections in malonaldehyde that enable this process. There is
an S2/S1 conical intersection energetically close to the S2 vertical excita-
tion, which involves H migration from one oxygen to the other. There is also
a three-state CI between S2/S1/S0 which is lower in energy and involves
torsion around the C=C bond (Figs. 4 and 11). Consequently, there are
two primary decay channels after photoexcitation to the bright S2 state:
(1) in-plane evolution, leading to reversible hydrogen exchange accompa-
nied by quenching to the S1 state through the S2/S1 conical intersection,
and (2) torsion about the C=C bond, leading to opening of the chelate ring,
which shuts o� hydrogen atom transfer and leads to e�cient quenching to
both S1 and S0 through the three-state S2/S1/S0 conical intersection.

The possibility of the three-state CI in malonaldehyde can be antici-
pated if one considers the behavior of the di�erent states as the C=C bond
twists. This causes a destabilization of the ground state and a strong stabi-
lization of the 

 � S2 state, while the n
 � S1 state is not a�ected much.
Thus there may be a point where all these three states can meet. Of course
this is not a guarantee that a true three-state CI exists but a plausible
explanation for its existence.

In summary, these results show that three-state conical intersections
are quite common, and they can complicate the potential energy surfaces
of molecules. The most relevant question then becomes whether they are
accessible during a photoinitiated event and how the nuclear motion is
a�ected by them.

10. Dynamics

The only study so far where nuclear dynamics has been studied around
accidental three-state CIs is a study that applied the ab initio multiple
spawning (AIMS) method for the study on malonaldehyde.22, 57, 81 For a
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Fig. 11. Energy di�erences (in eV) between important geometries of malonaldehyde,
obtained using SA-3-CAS(4/4), SA-3-CAS(4/4)*SDCI (italics), and SA-3-CAS(10/8)*-
SDCI (bold). Geometries are determined by optimization with SA-3-CAS(4/4). S 2 exci-
tation leads to an energetically favorable route to rotamerization that may or may not be
accompanied by hydrogen transfer. The S 1-transfer barrier is quite large, and approach
to the 3SI from the minimum on this state is unfavorable. Energy orderings are not
signi“cantly a�ected by the addition of dynamic correlation. Intersections are shown
with thin lines and degenerate states slightly displaced for visual clarity. (Reproduced
from Ref. 81 with permission.)

more comprehensive discussion on AIMS see Chapter 9 in this book. The
electronic structure of this molecule was described in the previous section.
The three-state CI region was entered about 150 fs after initial excitation.
The most obvious question is whether direct quenching from S2 to S0 is
observed, facilitated by the three-state CI. However, this is not seen in this
study. This suggests that population decays sequentially from S2 to S1 and
then from S1 to S0 despite the proximity to the three-state CI. Once the
three-state CI region is entered, the average S2/S0 energy gap remains near
1 eV for the remainder of the simulation. This indicates that S2 trajecto-
ries entering the region never fully exit, because population can be trapped
on S1, as seen in Fig. 4. In summary, the dynamics showed preference for
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a sequential population decay through the two two-state conical intersec-
tions rather than a one-step decay directly from the three-state conical
intersection.22 Further studies showed that the minimum energy point of
the three-state CI is not the whole story, and radiationless decay occurs
stepwise (S2-S1-S0) in the vicinity of the three-state seam.57 The fact that
a minimum energy point on a seam is not the only important point and may
be insu�cient to discuss nonadiabatic events has been seen and discussed
previously in two-state seams.82…84Although the direct e�ects of the three-
state CI on the dynamics of malonaldehyde are small, indirectly the three-
state CI brings together both the S2/S1 and the S1/S0 seams in a larger
region, enabling e�ciency of the stepwise deactivation. This is expected
to be general around three-state CIs. The details of the dynamics around
three-state CIs in general will depend on the topography of the PESs in each
case and much more work is needed before we can draw general conclusions.

11. Concluding Remarks

The studies of conical intersections have been extended in recent years
beyond the common case of two intersecting states to include three inter-
secting states. Although three-state conical intersections had been known
and studied in detail in the symmetry-required Jahn…Teller problem,
the recent work makes considerableprogress in the more general case
where there is no symmetry present to simplify the situation. Algorithms
have been developed to locate accidental three-state CIs and they have
enabled the location of these CIs in a large number of polyatomic systems,
either radicals or neutral systems. The frequency with which three-state
CIs appear suggests that they may play an important role in nonadi-
abatic dynamics, but more work is needed to con“rm this suggestion.
Substantial work in the characterization of three-state CIs and nuclear
dynamics involving them should be expected in the coming years in
order to reach the same level of understanding we currently have for the
two-state CIs.
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1. Introduction

The photochemistry of chromophores containing heavy elements is a theo-
retically and computationally little explored “eld. Experimentally, the
photoinduced decomposition of transition-metal carbonyls, for example,
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has been of considerable interest in femtochemistry since many years.1–4

Transition-metal photochemistry has also served as a testbed for the
demonstration of laser control of chemical reactions.5, 6 Complexes of ruthe-
nium, iridium or other transition metals with aromatic molecules are
important chromophores for the photosensitation of photovoltaic cells.7, 8

The photophysics of many of these complexes has been investigated
with femtosecond spectroscopy.9–13 Most of these metal-organic complexes
exhibit high symmetry (e.g. tetrahedral or octahedral symmetry) and are
therefore prone to Jahn…Teller distortions in open-shell electronic states.
The high density of excited electronic states in the visible or UV region
of the spectrum and the multiple crossings and nonadiabatic couplings of
potential-energy (PE) surfaces of the same or di�erent spin-multiplicities
render the photochemistry of transition-metal complexes considerably
more challenging for theory and computation than the photochemistry of
molecules built from “rst-row atoms.

The relevance of spin-orbit (SO) coupling for the dimensionality and
topology of seams of intersections of PE surfaces of polyatomic molecules
has been discussed by Mead.14, 15 Matsika and Yarkony comprehensively
analyzed the role of SO coupling at conical intersections of nonrelativistic
PE surfaces in a general context.16–20

The concepts developed by the pioneers of vibronic-coupling theory for
the description of the Jahn…Teller (JT) e�ect in molecules and crystals
have played a paradigmatic role for the understanding of general conical
intersections in the nonrelativistic limit. The concepts of a diabatic elec-
tronic basis, singular nonadiabatic coupling elements and the geometric
phase carried by the adiabatic electronic wave functions, for example,
have “rst been elaborated for the simplest JT systems.21–23 In an anal-
ogous manner, the investigation of the interplay of JT coupling and
SO coupling in highly symmetric complexes containing heavy elements
may provide the frame for the theoretical description and computa-
tional treatment of general conical intersections in the presence of strong
SO coupling.

The basic concepts of vibronic coupling in molecules, clusters and crys-
tals in the nonrelativistic limit, including the Renner 24–26 and JT27–31

e�ects as special cases, can be summarized as follows:

(a) Representation of the (nonrelativistic) electronic Hamiltonian in a basis
of diabatic electronic states.

(b) Expansion of the electronic Hamiltonian in powers of normal-mode
displacements at the reference geometry.
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(c) Use of symmetry selection rules for the determination of the nonvan-
ishing matrix elements.

Diabatic electronic states (an example of which are the •crude adia-
batic statesŽ of Longuet…Higgins23) are de“ned as slowly varying func-
tions of the nuclear geometry in the vicinity of the reference geometry.32–34

The “nal vibronic-coupling Hamiltonian is obtained by adding the nuclear
kinetic-energy operator which is assumed to be diagonal in the diabatic
representation.

SO coupling is the most obvious relativistic e�ect in molecular elec-
tronic structure. SO coupling lifts, in g eneral, orbital and spin degeneracies
of electronic states in open-shell systems. Since SO coupling scales approxi-
mately with the fourth power of the nuclear chargeZ , it is essential to take
SO coupling e�ects into account in systems containing heavy elements. In a
nonempirical treatment, SO coupling is described by the Breit…Pauli (BP)
operator, which results from the reduction of the four-component Dirac
equation to two-component form in the so-called Pauli approximation.35 In
this approximation, the electronic Hamiltonian can be written as the sum
of the electrostatic Hamiltonian Hes and the SO operatorHSO

H = Hes + HSO . (1)

Hes may be chosen, for example, as the restricted open-shell Hartree…Fock
Hamiltonian of the many-electron system.

While the BP operator was known since the late 1920s, the description
of SO coupling in the vast literature on the spectroscopy of impurity centers
in crystals has been based on empirical atom-like SO operators of the type

HSO = � L · S, (2)

where L and S are total orbital and spin angular momenta and � is a
phenomenological SO coupling constant. The approximation (2) eliminates
any dependence of the SO operator on the nuclear coordinates. While the
empirical ansatz (2) may be appropriate for a partially occupied inner shell
of an impurity atom in a rigid crystal environment, a more accurate descrip-
tion of SO coupling is necessary for molecules, atomic clusters and multi-
center transition-metal complexes.

In a systematic vibronic-coupling theory including SO coupling e�ects,
the SO operator should be treated in exactly the same manner as the elec-
trostatic Hamiltonian, that is,

(a) Representation of the Breit…Pauli operator in a basis of (nonrelativistic)
diabatic electronic states.
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(b) Expansion of the Breit…Pauli operator in powers of normal-mode
displacements at the reference geometry.

(c) Use of symmetry selection rules to determine the nonvanishing matrix
elements.

The use of nonrelativistic basis functions in (a) requires that the SO
interaction can be considered as a relatively weak perturbation of the
nonrelativistic Hamiltonian, which typically is the case for second- and
third-row atoms and transition metals. For systems with heavier atoms,
two-component relativistic electronic basis functions should be employed.

In Sec. 3 of this chapter, we outline the systematic treatment of SO
coupling for the simplest and most common JT system, theE × E JT
e�ect in spin- 1

2 states of trigonal systems. This example serves to explain the
application of the group-theoretical tools. It is demonstrated how the well-
known 2E × E Hamiltonian with SO coupling is obtained by a systematic
derivation from “rst principles.

In Sec. 4, the interplay of electrostatic and relativistic JT coupling is
discussed for orbitally degenerate spin-12 states in tetrahedral systems. In
Sec. 5, the e�ects arisingin states of high spin multiplicity are discussed
for the example of M -fold spin-degenerateE states in trigonal systems.
In Sec. 6, we discuss evidence for the relevance of SO splittings and
relativistic JT forces on the basis of ab initio calculations for speci“c
systems.

2. Spin-Free and Relativistically Generalized
Jahn–Teller Selection Rules

The symmetry group of the Hamiltonian including electron spin and
SO coupling is the so-called spin double group of the respective point
group.36, 37 The elements of the spin double group can be constructed by
determining the complete set of generalized symmetry operators of spin-1

2
systems,

Zn = Cn U•
n , (3)

where theCn are the symmetry operators of the point group and theUn are
SU2 matrices acting on the spin functions� and � . Requiring the invariance
of the BP operator,

Zn HSO Z Š 1
n = HSO (4)
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for a givenCn of the point group G, the solution of Eq. (4) de“nes the corre-
sponding SU2 matrix Un and thus the symmetry operator Zn of the spin
double group G� .38, 39 Given the set of symmetry operators{ Zn } and the
group multiplication table, the classes and the irreducible representations
can be constructedin the usual manner.37

Let us consider C3v as one of the simplest non-Abelian point groups.
The spin-free JT selection rule in theC3v point group is27

[E 2] = A + E, (5)

where [� 2] denotes the symmetrized squareof the irreducible representation
�. 37 In electronic states ofE symmetry, vibrational modes of E symmetry
are JT active in “rst-order according to Eq. (5).

The relativistically generalized selection rules in the spin double group
C�

3v are (for a single unpaired electron)40

2E = E × E1/2 = E1/2 + E3/2 , (6a)

E1/2 × E3/2 = 2 E. (6b)

The spin function of a single electron transforms asE1/2 in C�
3v . According

to Eq. (6a), the four-fold degenerate2E state splits into two-fold degenerate
E1/2 and E3/2 states by SO coupling. According to Eq. (6b), vibrational
modes ofE symmetry can couple theE1/2 and E3/2 SO-split states. Since
the E modes already are JT active in the electrostatic Hamiltonian, no
new JT couplings arise from the SO operator. InC3v (and D3h ) systems,
the SO operator thus lifts the degeneracy of the nonrelativistic2E state
in zeroth order (in normal-mode displacements), while the JT forces are of
electrostatic origin.

Interestingly, a di�erent situation is encountered in tetragonal groups
(D2d, C4v , D4h ). In D2d, the spin-free JT selection rule is27

[E 2] = A1 + B1 + B2. (7)

It is well known that B1 and B2 modes are JT active (in “rst order) in
tetragonal symmetry.28–31 The relativistically generalized selection rules in
D �

2d are (for a single unpaired electron)

2E = E × E1/2 = E1/2 + E3/2 , (8a)

E1/2 × E3/2 = B1 + B2 + E. (8b)
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According to Eq. (8a), the SO interaction lifts the four-fold degeneracy of
the 2E state. According to Eq. (8b), the SO-split componentsE1/2 , E3/2

are coupled byB1, B2 and E modes in “rst order. The JT activity of the
E modes must arise from the SO operator, since theE modes are not JT
active in the electrostatic Hamiltonian, see Eq. (7). The same selection rules
apply in C4v and D4h . The relativistic JT forces are thus complementary
to the electrostatic JT forces in tetragonal symmetry.

Let us “nally consider tetrahedral systems as examples of highly
symmetric systems. The spin-free JT selection rules in the groupTd

are27

[E 2] = A + E, (9a)

[T 2
1,2] = A + E + T2. (9b)

Vibrational modes transform as A, E or T2 in Td. In electronic states of
E symmetry, only E modes are JT active [Eq. (9a)]. In electronic states
of T1 or T2 symmetry, the T2 modes as well as theE modes are JT active
[Eq. (9b)].

2T1, 2T2 and 2E states transform as follows inT �
d:

2T1 = T1 × E1/2 = G3/2 + E1/2 , (10a)

2T2 = T2 × E1/2 = G3/2 + E5/2 , (10b)

2E = E × E1/2 = G3/2 , (10c)

whereE1/2 , E5/2 , G3/2 are the three double-valued representations ofT �
d.41

E1/2 and E5/2 are two-dimensional irreducible representations, whileG3/2 is
a four-dimensional irreducible representation. According to Eqs. (10a) and
(10b), a 2T2 (2T1) nonrelativistic electronic manifold splits into G3/2 and
E5/2 (G3/2 and E1/2 ) irreducible representations. The six-fold degeneracy
of a 2T2 (2T1) state is thus partially lifted by the SO coupling, resulting in a
four-fold degenerateG3/2 (G3/2 ) level and a two-fold degenerateE5/2 (E1/2 )
level. The four-fold degeneracy of a nonrelativistic2E state, on the other
hand, is not lifted by the SO coupling at the tetrahedral reference geometry.
As a consequence of time-reversal symmetry, the two-fold degeneracy of the
E1/2 and E5/2 levels cannot be lifted by any intra-molecular interaction,42

while the energy levels of theG3/2 manifold can split into two two-fold
degenerate levels.
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The JT selection rules in the T �
d spin double group are43

E1/2 × G3/2 = E + T1 + T2, (11a)

E5/2 × G3/2 = E + T1 + T2, (11b)

{ G2
3/2 } = A1 + E + T2. (11c)

Here { � 2} denotes the antisymmetrized square of �.37

Equation (11c) reveals that the four-fold degeneracy of theG3/2 mani-
fold can be lifted in “rst order by vibrational modes of E or T2 symmetry.
For a 2E state, which transforms asG3/2 in the T �

d double group, the T2

mode is not JT active in the nonrelativistic limit, see Eq. (9a). It follows
that the JT activity of the T2 mode according to Eq. (11c) must arise from
the SO operator.

The JT selection rules in cubic symmetry (Oh , O�
h ) are the same as

Eqs. (9)…(11) apart from the additional inversion symmetry.
The treatment of electronic states of higher spin multiplicity in odd-

electron systems is a straightforward extension of the above analysis, since
the representations of quartet, sextet, etc., spin states can be decomposed
into the irreducible representations with the character table of the spin
double group.

3. JT and SO Coupling in Trigonal Systems

In this section, we outline the systematic derivation of the relativistically
generalized JT Hamiltonian for the simplest example of the JT e�ect, that
is, a single unpaired electron in the “eld of three identical nuclei which form
an equilateral triangle (D3h symmetry).

For the purpose of symmetry analysis, the electrostatic Hamiltonian can
be written as (in atomic units)

Hes = Š
1
2

� 2 Š q�( r ), (12)

where

�( r ) =
3�

k=1

1
rk

(13)

and

rk = |r Š R k |. (14)
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Here r is the radius vector of the single unpaired electron,R k , k = 1 , 2, 3,
denote the positions of the nuclei, andq is the e�ective charge of the three
identical nuclei.

The Breit…Pauli Hamiltonian of this system is44

HSO = Šige � 2
e qS ·

3�

k=1

1
r 3

k
(r k × � ), (15)

where

S =
1
2

(i � x + j � y + k� z ), (16)

� x , � y , � z are the Pauli spin matrices,

� e =
e�

2mec
(17)

is the Bohr magneton,ge = 2 .0023 is theg-factor of the electron, and i , j , k
are the Cartesian unit vectors.

It is seen that the Breit…Pauli operator has the structure of Eq. (2)
for each atomic center, but depends explicitly on the distancesrk of the
unpaired electron from the atomic centers, de“ned in Eq. (14). While
the magnetic interaction energy is � r Š 2

k and thus of shorter range than
the electrostatic interaction, it can nevertheless result in a nonnegligible
dependence of the SO operator on the nuclear coordinates. This e�ect is
neglected when the empirical SO operator [Eq. (2)] is employed.

It is useful for the symmetry analysis to write the Breit…Pauli operator
[Eq. (15)] in determinantal form

HSO =
1
2

ige � 2
e q

�
�
�
�
�
�
�
�
�

� x � y � z

� x � y � z

�
�x

�
�y

�
�z

�
�
�
�
�
�
�
�
�

, (18)

where � is given by Eq. (13) and

� x =
� �
�x

, etc. (19)

From Eq. (18) it is obvious that the BP operator is completely determined
by the e�ective electrostatic potential �( r ) for the unpaired electron. Since
� depends on the nuclear coordinates, so doesHSO .
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HSO is time-reversal invariant. The time-reversal operator for a single
electron is the antiunitary operator (up to an arbitrary phase factor) 42

� = Ši� y �cc =
�

0 Š1
1 0

�
�cc, (20)

where �cc denotes the operation of complex conjugation. The full symmetry
group �G of HSO of Eq. (15) is thus

�G = D �
3h � (1, � ), (21)

of order 48. The operations ofD �
3h commute with � .

A pair of electronic basis functions transforming asx and y in D3h is

� x = 6 Š 1/2 [2�( r 1) Š �( r 2) Š �( r 3)], (22a)

� y = 2 Š 1/2 [�( r 2) Š �( r 3)], (22b)

where the �( r k ) are atom-centered basis functions. Introducing the spin of
the electron, we have four nonrelativistic spin-orbital basis functions

� +
x = � x �,

� +
y = � y �,

� Š
x = � x �,

� Š
y = � y �,

(23)

where � (� ) represent the spin projection 1
2 (Š 1

2 ) of the electron. The time-
reversal operator� acts on these spin orbitals as follows:

� � +
x = � Š

x �cc, � � Š
x = Š� +

x �cc,

� � +
y = � Š

y �cc, � � Š
y = Š� +

y �cc.
(24)

Note that � � +
x , etc., is still an operator, acting on the nuclear part of the

wave function.
The representation of the operator� is thus the 4× 4 matrix

� =

�

�
�
�

0 0 1 0
0 0 0 1

Š1 0 0 0
0 Š1 0 0

	





� �cc. (25)

Note that � 2 = Š14, as is required for an odd-electron system.42
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The vibrational displacements are described in terms of dimension-
less normal coordinatesQx , Qy of the degenerate vibrational mode of
E symmetry. The electrostatic Hamiltonian is expanded at the reference
geometry in powers ofQx , Qy up to second order

Hes = H0 + Hx Qx + Hy Qy +
1
2

Hxx Q2
x +

1
2

Hyy Q2
y + Hxy Qx Qy , (26)

where

H0 = Hes(0),

Hx =
�

�H es

�Q x

�

0
,

Hxy =
�

� 2Hes

�Q x �Q y

�

0

, etc.

(27)

H0 transforms totally symmetric, Hx (Hy ) transforms asQx (Qy ), Hxy trans-
forms asQx Qy , etc.

The electrostatic vibronic matrix is obtained by taking matrix elements
of the Hamiltonian [Eq. (26)] with the electronic wave functions � x , � y .
The well-known result is28–31

Hes =
1
2

	 (Q2
x + Q2

y )12

+

�

�
�


Q x +
1
2

g(Q2
x Š Q2

y ) 
Q y Š gQx Qy


Q y Š gQx Qy Š
Q x Š
1
2

g(Q2
x Š Q2

y )

	



� , (28)

where 12 denotes the 2× 2 unit matrix, 	 is the vibrational frequency of
the E mode and
 (g) denotes the linear (quadratic) JT coupling constant.

To obtain the SO vibronic matrix, HSO is expanded in analogy to
Eq. (26)

HSO = h0 + hx Qx + hy Qy + · · · (29)

Assuming that the SO coupling is weak compared to the electrostatic inter-
actions, we terminate the expansion after the “rst order. The individual SO
operators in Eq. (29) can be written as

h0 = hx � x + hy � y + hz � z ,

hx = hx
x � x + hy

x � y + hz
x � z ,

hy = hx
y � x + hy

y � y + hz
y � z ,

(30)
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with

hx = ige � 2
eq

�
� �
�y

�
�z

Š
� �
�z

�
�y

�
,

hy = ige � 2
eq

�
� �
�z

�
�x

Š
� �
�x

�
�z

�
,

hz = ige � 2
eq

�
� �
�x

�
�y

Š
� �
�y

�
�x

�
,

(31)

and

hx
x =

�
�h x

�Q x

�

0
,

hx
y =

�
�h x

�Q y

�

0

, etc.

(32)

It is straightforward to calculate the matrix elements of HSO with the
basis functions Eq. (23). The result is

HSO = i

�

�
�
�

0 � z 0 � x Š i � y

Š � z 0 Š� x + i � y 0
0 � x + i � y 0 Š� z

Š � x Š i � y 0 � z 0

	





� , (33)

where � x , � y , � z are real constants. It can easily be veri“ed that HSO of
Eq. (33) commutes with the time-reversal operator of Eq. (25).

When transformed to complex-valued spatial electronic basis functions

� ± =
1

�
2

(� x ± i� y ) (34)

and expressed in terms of complex-valued normal-mode displacements

Q± = � e± i� = Qx ± iQ y , (35)

Hes takes the more familiar form28–31

Hes =
1
2

	� 212 +
�

0 X
X � 0

�
(36)

with

X = 
� ei� +
1
2

g� 2eŠ 2i� . (37)
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HSO of Eq. (33) becomes

HSO =

�

�
�
�

� z 0 � x Š i � y 0
0 Š� z 0 Š� x + i � y

� x + i � y 0 Š� z 0
0 Š� x Š i � y 0 � z

	





� . (38)

The SO vibronic matrix [Eq. (38)], which does not depend on the nuclear
geometry (within “rst order in � ), can be transformed to diagonal form by
a unitary 4 × 4 matrix S, yielding45

S• HSO S =

�

�
�
�

� 0 0 0
0 Š� 0 0
0 0 Š� 0
0 0 0 �

	





� (39)

with

� =
�

� 2
x + � 2

y + � 2
z . (40)

The electrostatic vibronic matrix is invariant with respect to S. The
“nal form of the 2E × E JT Hamiltonian is thus

H =
�

TN +
1
2

	� 2
�

14 +

�

�
�
�

� X 0 0
X � Š� 0 0
0 0 Š� X
0 0 X � �

	





� , (41)

where 14 is the 4 × 4 unit matrix, TN is the nuclear kinetic-energy oper-
ator and 	 is the vibrational frequency of a nondegenerate reference state.
Equation (41) agrees with previous results, which have been derived in a
more heuristic manner.46–48 The derivation of the SO matrix [Eq. (39)]
from the microscopic BP operator has also been discussed by Marenich
and Boggs49 and Yarkony and collaborators.50 The adiabatic electronic
potential-energy surfaces, that is, the eigenvalues of (H Š TN 14), are doubly
degenerate (Kramers degeneracy). The adiabatic electronic wave functions
carry nontrivial geometric phases which depend on the radius of the loop
of integration.46–48

It should be noted that the SO operator is nondiagonal in the diabatic
spin-orbital electronic basis which usually is employed to set up theE × E
JT Hamiltonian, see Eq. (33). The (usually ad hoc assumed) diagonal
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form of HSO is obtained by the unitary transformation S which mixes
spatial orbitals and spin functions of the electron. In this transformed
basis, the electronic spin projection is thus no longer a good quantum
number.

4. Relativistic Jahn–Teller Coupling in Tetrahedral Systems

The spin-free Hamiltonian for linear and quadratic T2 × T2 JT coupling
in tetrahedral systems is well established and can be found in many reviews
and monographs.28–31

Symmetry-adapted atomic displacements transforming asx, y and z in
the Td point group are

sx =
1

�
2

(R12 Š R34), (42a)

sy =
1

�
2

(R14 Š R23), (42b)

sz =
1

�
2

(R13 Š R24), (42c)

where

Rkm = |R k Š R m | (43)

and the R k are the radius vectors from the origin to the four corners of
the tetrahedron. Dimensionless normal coordinatesQx , Qy , Qz of a suit-
able nondegenerate reference state can be obtained by multiplication with
the appropriate inverseL -matrix which depends on the atomic masses and
the harmonic force constants of the reference state.51

Molecular orbitals transforming according to the T2 representation of
Td can be constructed as linear combinations of atomicp orbitals on the
four atoms

� x (r ) =
1
2

(� (1)
x + � (2)

x + � (3)
x + � (4)

x ), (44a)

� y (r ) =
1
2

(� (1)
y + � (2)

y + � (3)
y + � (4)

y ), (44b)

� z (r ) =
1
2

(� (1)
z + � (2)

z + � (3)
z + � (4)

z ). (44c)
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Expansion of the electrostatic Hamiltonian

Hes = Š
1
2

� 2 Š �( r ), (45a)

�( r ) =
4�

k=1

q
rk

, (45b)

whererk = |r Š R k | and q is the e�ective charge on the four identical nuclei,
up to “rst order in Q and calculation of matrix elements with the basis
functions [Eq. (44)] yields the spin-freeT2 × T2 JT Hamiltonian 28–31 (we
suppress the quadratic electrostatic JT coupling for simplicity and brevity)

Hes(T2 × T2) = ( TN +
1
2

	R 2)13 + H (1)
es (T2 × T2), (46a)

H (1)
es (T2 × T2) = a

�

�
0 Qz Qy

Qz 0 Qx

Qy Qx 0

	

� , (46b)

where

R =
�

Q2
x + Q2

y + Q2
z , (46c)

13 denotes the 3× 3 unit matrix, 	 is the harmonic vibrational frequency
of the T2 mode anda is the “rst-order electrostatic JT coupling constant.
Discussions of the adiabatic electronic potential-energy surfaces (the eigen-
values ofHes(T2 × T2) Š TN 13) can be found in the literature.28–31

HSO de“ned by Eq. (18) is expanded in a Taylor series inQx , Qy , Qz

in analogy to Eqs. (29)…(32). Assuming that SO coupling is weak compared
to the electrostatic interactions, the expansion is terminated after the “rst
order. The calculation of the matrix elements with the spin-orbital basis
functions

� +
x = � x (r )� (47a)

� +
y = � y (r )� (47b)

� +
z = � z (r )� (47c)

� Š
z = � z (r )� (47d)

� Š
y = � y (r )� (47e)

� Š
x = � x (r )� (47f)
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yields the SO-induced2T2 × T2 JT Hamiltonian (see Ref. 39 for details)

HSO (2T2 × T2) = H (0)
SO (2T2) + H (1)

SO (2T2 × T2), (48a)

H (0)
SO (2T2) = �

�

�
�
�
�
�
�
�
�

0 i 0 Š1 0 0
Ši 0 0 i 0 0
0 0 0 0 Ši 1

Š1 Ši 0 0 0 0
0 0 i 0 0 i
0 0 1 0 Ši 0

	















�

, (48b)

H (1)
SO (2T2 × T2) = �

�

�
�
�
�
�
�
�
�

0 0 ŠiQ x ŠiQ z Q+ 0
0 0 iQ y Qz 0 ŠQ+

iQ x ŠiQ y 0 0 ŠQz iQ z

iQ z Qz 0 0 iQ y ŠiQ x

QŠ 0 ŠQz ŠiQ y 0 0
0 ŠQŠ ŠiQ z iQ x 0 0

	















�

,

(48c)

where

Q± = Qx ± iQ y (48d)

and � and � are real constants which represent the zeroth-order SO split-
ting of the 2T2 state and the “rst-order relativistic 2T2 × T2 JT coupling,
respectively.

This analysis reveals that the T2 mode is JT active in “rst order both
in the electrostatic Hamiltonian [Eq. (46b)] as well as via the SO operator
[Eq. (48c)]. The electrostatic (a) and relativistic ( � ) coupling constants are
real, but can be positive or negative. There may thus be constructive or
destructive interference of the electrostatic and relativistic JT couplings.

The hermitian matrix H (0)
SO (2T2) of Eq. (48b) can be transformed to

diagonal form by a unitary transformation U

�H (0)
SO (2T2) = U• H (0)

SO (2T2)U. (49)

In the transformed basis

�� = U• �, (50)

where � is the vector of electronic basis functions de“ned in Eq. (47), the
SO vibronic matrix takes the form

�H (0)
SO (2T2) = diag( Š� , Š � , Š � , Š � , 2� , 2�) . (51)
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In agreement with the group-theoretical result [Eq. (10b)], the zeroth-order
SO coupling splits the 6-fold degenerate2T2 manifold into a doubly degen-
erate manifold (E5/2 ) and a quadruply degenerate manifold (G3/2 ).

Rewriting the “rst-order electrostatic vibronic matrix [Eq. (46b)] in the
spin-orbital basis (47) (which means doubling of the 3× 3 matrix to a 6 × 6
matrix) and transformation of H (1)

es + H (1)
SO to the SO adapted basis

�H (1)
es (2T2 × T2) = U• H (1)

es (T2 × T2)U (52a)

�H (1)
SO (2T2 × T2) = U• H (1)

SO (2T2 × T2)U (52b)

yields

eH (2T2 × T2) =
„

TN +
1
2

�R 2
«

16 + eH (0) (2T2)

+ eH (1)
es (2T2 × T2) + eH (1)

SO (2T2 × T2) =
„

TN +
1
2

�R 2
«

16

+

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

Š� Š iea1Q+ 0 iea1Qz 0 iea2QŠ

iea1QŠ Š � Š iea1Qz 0 Š
i

�
3

ea2QŠ
i

�
3

ea2Qz

0 iea1Qz Š � iea1QŠ Š iea2Q+ 0

Š iea1Qz 0 Š iea1Q+ Š � Š i
2

�
3

ea2Qz Š
i

�
3

ea2Q+

0
i

�
3

ea2Q+ iea2QŠ i
2

�
3

ea2Qz 2� 0

Š iea2Q+ Š
i

�
3

ea2Qz 0
i

�
3

ea2QŠ 0 2�

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

,

(53)

where

�a1 =
1

�
3

(a + 2 � ), (54a)

�a2 =
1

�
2

(a Š � ). (54b)

It is seen that the e�ective “rst- order JT coupling parameters �a1, �a2 have
an electrostatic (a) and a relativistic ( � ) contribution.

For su�ciently large SO splitting �, the G3/2 manifold (with eigen-
value Š�) can be considered to be approximately decoupled from theE5/2

manifold (with eigenvalue 2�). In this approximation, the 2T2 × T2 JT
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Hamiltonian is reduced to a 4× 4 matrix

�H (1) 
G3/2 × T2

�
=

�
TN +

1
2

	R 2 Š �
�

14

+ i �a1

�

�
�
�

0 ŠQ+ 0 Qz

QŠ 0 ŠQz 0
0 Qz 0 QŠ

ŠQz 0 ŠQ+ 0

	





� . (55)

The eigenvalues of the vibronic matrix (55) are

V1,2 = Š� +
1
2

	R 2 Š | �a1|R, (56a)

V3,4 = Š� +
1
2

	R 2 + |�a1|R, (56b)

where R de“ned in Eq. (46c) and �a1 is given by Eq. (54a).
The adiabatic potentials (56) are doubly degenerate (Kramers degen-

eracy) and represent a •Mexican HatŽ in four-dimensional space (the
energy as a function of three nuclear coordinates). While theG3/2 × T2

JT Hamiltonian [Eq. (55)] of a 2T state in tetrahedral symmetry has been
given previously,52 the above analysis reveals explicitly that the electro-
static potential as well as the SO operator contribute to the linear JT
coupling.

It can be shown that the adiabatic electronic wave functions of the
G3/2 × T2 JT Hamiltonian [Eq. (55)] carry a nontrivial geometric phase.39

The geometric phase is de“ned by the contour integral53

 n (C) = i
�

C
dQ �U(Q) | � Q U(Q)� , (57)

whereU(Q) is a single-valued adiabatic wave function which depends para-
metrically on the nuclear coordinate vector Q. Evaluation of the contour
integral in an arbitrary plane through origin

aQx + bQy + cQz = 0 (58)

yields39

 1 =  3 = Š 2 = Š 4 =
�c

�
a2 + b2 + c2

. (59)

It is seen that the geometric phases depend on the orientation of the plane
spanned by the integration contour.
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The 2T2 × E JT Hamiltonian with inclusion of relativistic forces can be
derived in the same manner. Symmetry-adapted coordinates transforming
according to the E representation in Td are given by the following linear
combinations of the edgesRkm of the tetrahedron

sa =
1
2

(R13 + R24 Š R14 Š R23), (60a)

sb =
1

2
�

3
(2R12 + 2 R43 Š R13 Š R24 Š R14 Š R23). (60b)

Dimensionless normal coordinatesqa, qb can be obtained by multiplication
with the appropriate inverse L -matrix. 51

In the SO-adapted basis [de“ned by Eqs. (49) and (50)] the2T2 × E
Hamiltonian up to “rst order in qa, qb takes the form39

�H (2T2 × E) =
�

TN +
1
2

	� 2
�

16

+

�

�
�
�
�
�
�
�
�
�
�

Š � + �c1qŠ 0 0 �c1q+ Š�c2qŠ 0

0 Š� Š �c1qŠ Š�c1q+ 0 0 �c2q+

0 Š�c1q+ Š� + �c1qŠ 0 0 �c2qŠ

�c1q+ 0 0 Š� Š �c1qŠ �c2q+ 0

Š�c2qŠ 0 0 �c2q+ 2� 0

0 �c2q+ �c2qŠ 0 0 2�

	



















�

,

(61)

where

�c1 =
c
2

Š , (62a)

�c2 =
1

�
2

(c +  ), (62b)

and

q± =

�
3

2
qa ±

1
2

qb, (63a)

q± =
1
2

qa ±

�
3

2
qb, (63b)

� =
�

q2
a + q2

b. (63c)
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Here,c and  are the linear electrostatic and relativistic T2 × E JT coupling
constants, respectively.

If � is su�ciently large, the E5/2 manifold can be approximately decou-
pled from the G3/2 manifold. The 4× 4 JT Hamiltonian of the G3/2 manifold
becomes

�H (1) (G3/2 × E) =
�

TN +
1
2

	� 2 Š �
�

14

+ �c1

�

�
�
�

qŠ 0 0 q+

0 ŠqŠ Šq+ 0
0 Šq+ qŠ 0

q+ 0 0 ŠqŠ

	





� . (64)

The adiabatic potential-energy surfaces of the Hamiltonian (64) are

V1,2 = Š� +
1
2

	� 2 Š | �c1|�, (65a)

V3,4 = Š� +
1
2

	� 2 + |�c1|�. (65b)

Equation (65) represents a (doubly-degenerate) •Mexican HatŽ in three-
dimensional space (the energy as a function of two nuclear coordinates).
The adiabatic eigenvector matrix of the Hamiltonian (64) is real-valued,
which implies that the geometric phases (57) are zero (since n (C) must
be real).

In a 2E state of tetrahedral systems, as discussed in Sec. 2,E modes
are JT active through the electrostatic forces, whileT2 modes are JT active
through the relativistic forces. While the electrostatic E× E JT Hamiltonian
of tetrahedral systems is well known,28–31 the linear relativistic 2E × T2

Hamiltonian has been derived only recently.54

Two degenerate molecular orbitals transforming as the E representation
can be obtained with the projection-operator technique

� a(r ) = 2 Š 3
2 (Š � (1)

y + � (1)
z + � (2)

y Š � (2)
z

+ � (3)
y + � (3)

z Š � (4)
y Š � (4)

z ), (66a)

� b(r ) = 2 Š 3
2 3Š 1

2 (2� (1)
x + 2 � (2)

x Š 2� (3)
x Š 2� (4)

x Š � (1)
y + � (2)

y

+ � (3)
y Š � (4)

y Š � (1)
z + � (2)

z Š � (3)
z + � (4)

z ), (66b)

where the � (k)
x , � (k )

y , � (k )
z , k = 1 , 2, 3, 4, are atomicp orbitals. In analogy to

the above analysis for2T2 states, we evaluate matrix elements ofHSO in
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the basis of spin orbitals

� +
a = � a(r )�, (67a)

� +
b = � b(r )�, (67b)

� Š
a = � a(r )�, (67c)

� Š
b = � b(r )�. (67d)

The SO coupling matrix in “rst order of T2 normal-mode displacements
is given by54

HSO = i�

�

�
�
�
�

0 Qz Qx Š iQ y 0

ŠQz 0 0 ŠQx + iQ y

ŠQx Š iQ y 0 0 Qz

0 Qx + iQ y ŠQz 0

	







�

, (68)

where� is a real constant. The diagonal elements ofHSO are zero according
to the group-theoretical selection rule (10c). The elements of the antidiag-
onal of the matrix (68) are zero as a consequence of time-reversal symmetry.

Including the nuclear kinetic-energy operator TN and the harmonic
potential of the reference state, the total 2E × T2 Hamiltonian up to “rst
order in T2 normal modes given by

H =
�

TN +
1
2

	R 2
�

14

+ �

�

�
�
�
�

0 iQ z i (Qx Š iQ y ) 0

ŠiQ z 0 0 Ši (Qx Š iQ y )

Š i (Qx + iQ y ) 0 0 iQ z

0 i (Qx + iQ y ) Š iQ z 0

	







�

.

(69)

The adiabatic electronic potentials of the Hamiltonian (69) are

V1,2 =
1
2

	R 2 Š | � |R, (70a)

V3,4 =
1
2

	R 2 + |� |R. (70b)

They represent a (doubly-degenerate) •Mexican HatŽ in four-dimensional
space. The geometric phases of the adiabatic eigenvectors have been deter-
mined in Ref. 54. They are identical with those of theG3/2 × T2 Hamiltonian
of the T2 state, Eq. (59).
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The JT Hamiltonians obtained in cubic symmetry ( Oh , O�
h ) are identical

with those of tetrahedral systems, with the exception of possible additional
selection rules due to inversion symmetry.

5. Jahn–Teller and Spin-Orbit Coupling in High-Spin
States of Trigonal Systems

In transition-metal complexes as well as in rare-earth impurity centers in
crystals, one often encounters orbitally degenerate states (E or T) with high
spin multiplicity (triplets, quartets, quintets, etc.). It is therefore of interest
to develop microscopically founded JT Hamiltonians including SO coupling
for E and T electronic states with higher than two-fold spin multiplicity.
In this chapter we discuss the derivation of the SO…JT Hamiltonian for
triplet electronic states in trigonal symmetry as an example of higher spin
multiplicity. The derivations for quartet, quintet, etc. states are completely
analogous.

Let us consider two unpaired electrons in a molecular system with trig-
onal symmetry, e.g. a pyramidal molecule withC3v point-group symmetry.
The electrostatic Hamiltonian is given by Eqs. (12)…(14). For two unpaired
electrons, we have to include the two-electron terms of the BP operator.
The complete BP operator reads:55

HSO =
�

k

H (k)
SO +

�

k<l

H (kl )
SO , (71a)

H (k)
SO = Šig � 2Sk ·

3�

n =1

�q
r 3

kn
(r kn × � k ), (71b)

H (kl )
SO =

ig� 2

r 3
kl

[Sk · [r kl × (� k Š 2� l )] + Sl · [r lk × (� l Š 2� k )]],

(71c)

with

Sk =
1
2

(i � (k )
x + j � (k )

y + k� (k)
z ). (72)

Here � (k)
x , � (k )

y , � (k )
z are the Pauli spin matrices acting on the spin eigen-

states of the electron k. It should be noted that HSO is a two-electron
operator in the electronic coordinate space, but is a one-electron operator
in spin space.
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The generalization of the time-reversal operator for several unpaired
electrons is

�T =
�

k

�
0 Š1
1 0

�

k

�cc, (73)

where the product is over unpaired electrons.
Let us consider two unpaired electrons, where one electron occupies

one of the orbitals � ± of an E state [Eq. (34)] and the second electron
occupies a spatially nondegenerate orbital� A . Denoting spin-orbitals by
p�, q� , where p, q = � A , � ± and � = �, � , and Slater determinants by
|p�q� � , spin-adapted nonrelativistic two-electron basis functions for a3E
state are

� (1)
± = |� A �� ± � � ,

� (0)
± =

1
�

2
[|� A �� ± � � + |� A �� ± � � ], (74)

� (Š 1)
± = |� A �� ± � � .

These functions are orthonormal eigenfunctions ofS2 (with eigenvalue 2)
and Sz (with eigenvalues± 1, 0). Being linear combinations of Slater deter-
minants, they are antisymmetric with respect to electron exchange.

The basis functions (74) can be rewritten as follows

� (1)
± = � ± (r 1, r 2)� 1� 2,

� (0)
± =

1
�

2
� ± (r 1, r 2)(� 1� 2 + � 2� 1), (75)

� (Š 1)
± = � ± (r 1, r 2)� 1� 2,

where

� ± =
1

�
2

[� A (r 1)� ± (r 2) Š � A (r 2)� ± (r 1)]. (76)

These two-electron basis functions span the 6-dimensional Hilbert space of
the 3E state. They transform under C3 as

C3� (m )
± = e± 2i�

3 � (m )
± , (77a)

C2
3 � (m )

± = e� 2i�
3 � (m )

± , m = 1 , 0, Š1. (77b)
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The action of the time-reversal operator on these basis functions is

�T � (1)
± = � (Š 1)

� �cc,

�T � (0)
± = Š� (0)

� �cc, (78)

�T � (Š 1)
± = � (1)

� �cc.

The representation of �T in this basis is thus a 6× 6 matrix which can be
written as

�T =

�

�
0 0 1
0 Š1 0
1 0 0

	

� � � x �cc. (79)

Note that �T 2 = 1, as is required for a two-electron system.
Using the six diabatic two-electron basis functions of Eq. (75), the elec-

tronic Hamiltonian can be written as a 6× 6 vibronic matrix. To derive the
matrix elements, Hes and HSO are expanded in a Taylor series in powers of
the normal-mode displacement� up to second and “rst order, respectively.
The derivation of the 6× 6 spin-vibronic matrix is described in Ref. 56. The
result is

H = Hes + HSO , (80a)

Hes =
�

TN +
1
2

	� 2
�

16 + 1 3 � , (80b)

HSO = A3 � � z , (80c)

where 13 and 16 denote the three-dimensional and six-dimensional unit
matrix, respectively,

 =
�

0 X
X � 0

�
, (80d)

A3 =

�

�
�

� z � ei� 0

� eŠ i� 0 � ei�

0 � eŠ i� Š � z

	



� , (80e)

� =
�

� 2
x + � 2

y , (80f)

� = tan Š 1
�

� y

� x

�
, (80g)
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and X is de“ned in Eq. (37). � x , � y , � z are real-valuedmatrix elements
of the SO operator. The symbol� means that each element ofA3 is to be
multiplied by the Pauli matrix � z .

The matrix (80c) can be transformed to diagonal form by a unitary
matrix C. Since C is independent of the nuclear coordinates� , � , this
unitary transformation de“nes an alternative diabatic electronic basis. The
electrostatic part of the Hamiltonian is invariant under this transformation.
The “nal 3E × E Hamiltonian is

H =
�

TN +
1
2

	� 2
�

16 +

�

�
�
�
�
�
�
�
�

Š � X 0 0 0 0
X � � 0 0 0 0
0 0 0 X 0 0
0 0 X � 0 0 0
0 0 0 0 � X
0 0 0 0 X � Š�

	















�

, (81)

where

� =
�

� 2
z + 2 � 2. (82)

The upper-left and lower-right 2 × 2 matrices represent the familiar2E × E
JT Hamiltonian with SO splitting �, cf. Eq. (41). The central 2 × 2 block, on
the other hand, represents theE × E JT Hamiltonian without SO coupling,
cf. Eq. (36).

The adiabatic potentials are, after a suitable reordering of the eigen-
values,

V1 = V2 =
1
2

	� 2 Š
�

� 2 + |q|2, (83a)

V3 =
1
2

	� 2 Š |q|, (83b)

V4 =
1
2

	� 2 + |q|, (83c)

V5 = V6 =
1
2

	� 2 +
�

� 2 + |q|2. (83d)

In the case of linear JT coupling (g = 0), we have |q| = 
� and the adiabatic
potentials are independent of the azimuthal angle�.
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The lowest (V1, V2) and the uppermost (V5, V6) potentials are doubly
degenerate in the approximation of an isolated3E state. They exhibit the
well-known quenching of the JT coupling by the SO splitting.28–31 V3 and
V4, on the other hand, represent anE × E JT e�ect which is strictly unaf-
fected by the SO coupling.

The extension of this analysis to quartet and quintet states can be found
in Ref. 56. In systems with an odd number of electrons (and thus even
spin multiplicity M ), Kramers degeneracy applies and the two-fold spatial
degeneracy of theM E state is lifted by the SO coupling. In systems with an
even number of electrons (and thus odd spin multiplicity M ), there exist
M Š 1 pairs of adiabatic potentials, in which the JT e�ect is quenched
by the SO coupling, while one pair exhibits a JT e�ect which is strictly
una�ected by the SO splitting. 56 This implies that non-Born…Oppenheimer
e�ects tend to zero in systems with even spin multiplicity in the limit of
large SO coupling, while pronounced non-Born…Oppenheimer e�ects remain
in one pair of adiabatic potentials in systems with odd spin multiplicity.
The nonadiabatic e�ects in triplet, quintet, etc. E states are thus funda-
mentally di�erent from those in doublet, quartet, etc. E states in trigonal
systems.

JT coupling in quartet states has recently been experimentally observed
and theoretically analyzed by Hauseret al. in alkali trimers on the surface of
helium droplets.57 The vibronic spectra have been accurately reproduced by
calculations of vibronic energies and intensities based onab inito calculated
JT and SO coupling parameters.57

6. Examples: Transition-Me tal Tri�uorides and Group V
Tetrahedral Cations

Transition-metal (TM) halogenides form crystals of octahedral struc-
ture.58, 59 In the gas phase, transition-metal tri”uorides exhibit D3h struc-
ture.60 In MF 3 molecules, orbitally degenerate states (E� , E �� ) with high
spin multiplicities ( M = 3 , 4, 5, . . .) are very common. For a few of
these states, calculations have indicated strong JT coupling involving the
degenerate bending mode.60, 61 SO coupling has been ignored in these
calculations. Gas-phase TM tri”uorides have been investigated with elec-
tron di�raction 61 and vibrational spectroscopy.62 To the knowledge of
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the authors, no gas-phase electronic spectra of MF3 molecules have been
reported.

A systematic investigation of the JT e�ects in the electronic spectra of
TM tri”uorides is in progress in the laboratories of the authors.63 Many
4E � , 4E �� , 5E � , 5E �� states of TM tri”uorides exhibit moderate to strong JT
couplings, involving the degenerate bending and stretching modes. The SO
splittings of the M E � , M E �� states are of the order of 100…300cmŠ 1 for the
“rst row of the TMs and of the same order of magnitude as the bending
vibrational frequencies. Naturally, the SO splittings are larger for the second
and third rows of the TMs. Nevertheless,the use of nonrelativistic electronic
basis functions is appropriate for TM compounds.

For the sake of illustration, let us consider two examples: the lowest
5E � state of MnF3 and the lowest 5E � state of CoF3. For brevity, only the
(stronger) JT coupling by the degenerate bending mode is considered. The
electronic-structure calculations have been performed with the complete-
active-space self-consistent-“eld (CASSCF) method using themolpro suite
of programs. The computational details can be found in Ref. 63. The vibra-
tional frquency of the E mode has been obtained from the second derivative
of the mean value of theab initio energies. The calculated spectroscopic
data for the 5E states of MnF3 and CoF3 are collected in Table 1.

The adiabatic potentials as a function of the bending coordinateQx

of the lowest 5E � state of MnF3, calculated without (a) and with (b) SO
coupling are displayed in Fig. 1. Figure 1(b) illustrates the generic SO-
splitting pattern of a quintet E state which has been discussed in the
preceding section. The calculated value of the SO parameter � is 145 cmŠ 1.
It can be seen that there exists a pairof PE functions which are una�ected
by the SO coupling, as pointed out in Sec. 5.

Vibronic spectra, corresponding to transitions from a nondegenerate
reference state to the JT active states, have been calculated by the

Table 1. Zeroth-order SO splitting (�), harmonic
bending vibrational frequency (� ) and linear ( � ) and
quadratic ( g) JT coupling constants for the 5E � states of
MnF 3 and CoF 3.

molecule �(cm Š 1) � (cmŠ 1 ) � (cmŠ 1) g(cmŠ 1)

MnF 3 145.4 186.8 786.7 41.5

CoF3 292.9 191.2 545.9 27.4
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Fig. 1. Nonrelativistic (a) and relativistic (b) ab initio potential-energy of the 5E � state
of MnF 3 as a function of the coordinate Qx of E symmetry.

diagonalization of the Hamiltonian [Eq. (81)] in a basis set of two-
dimensional harmonic-oscillator functions. The calculated vibronic spec-
trum of the 5E � state of MnF3 is shown in Fig. 2 without (a) and with
(b) inclusion of SO coupling. The spectrum of Fig. 2(b) consists of a super-
position of three JT spectra with SO splittings 0, � , 2�. The double-hump
envelope of the spectrum in Fig. 2(a) is characteristic for a strong linear
E × E JT e�ect. 64 The irregular vibronic line position and intensities in
Fig. 2(a) are the result of a rather strong quadratic JT coupling. The inclu-
sion of SO coupling [Fig. 2(b)] leads to a drastic increase of the line density.
The upper hump of the spectral envelope is reduced in intensity and shifted
to higher energies by the SO coupling.It should be noted that the spectrum
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Fig. 2. Vibronic spectrum of the 5E � state of MnF 3 without (a) and with (b) inclusion
of SO coupling. The envelope represents the convolution of the stick spectrum with a
Lorentzian function of 5 meV FWHM.

of Fig. 2(b) contains exactly one replica of the electrostatic JT spectrum
in Fig. 2(a).

The adiabatic potentials of the lowest 5E � state of CoF3 are shown in
Fig. 3 without (a) and with (b) inclusion of SO coupling. As expected,
the SO splitting is larger in CoF3 (� = 293 cm Š 1) than in MnF 3. The
corresponding electronic spectra are shown in Fig. 4 without (a) and with
(b) inclusion of SO coupling. The rather strong SO coupling (� /	 = 1 .6)
has a pronounced e�ect on the vibronic spectrum. The intensity of the
upper spectral hump in Fig. 4(b) is strongly reduced. The separated clumps
of lines at about 0.15 eV and 0.20 eV in Fig. 4(b) correspond to the lowest
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Fig. 3. Nonrelativistic (a) and relativistic (b) ab initio potential-energy of the 5E � state
of CoF 3 as a function of the coordinate Qx of E symmetry.

energy levels of the two upper adiabatic surfaces, which are perturbed by
nonadiabatic coupling with the lower adiabatic PE surfaces.

The ab inito electronic-structure calculations for MF3 molecules con“rm
that the SO coupling is represented by a constant (the SO splitting at
the D3h reference geometry) to a very good approximation. There is no
need to take corrections (quadratic in � ) into account. In tetrahedral (and
octahedral) systems, the situation is quite di�erent, as explained in Sec. 4.
Here the SO coupling gives rise to relativistic JT forces which interfere
constructively or destructively w ith the electrostatic JT forces.

The vibronic spectra of the cluster cations P+
4 , As+

4 , Sb+
4 , Bi+

4 have
been observed by photoelectron spectroscopy of the tetrahedral clusters
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Fig. 4. Vibronic spectrum of the 5E � state of CoF 3 without (a) and with (b) inclusion
of SO coupling. The envelope represents the convolution of the stick spectrum with a
Lorentzian function of 5 meV FWHM.

P4, As4, Sb4, Bi4.65, 66 It has been found that they exhibit very pronounced
electrostatic E × E and T2 × T2 JT e�ects. 65–67

To determine the magnitude of the relativistic JT coupling parame-
ters, we have performed relativistic ab initio electronic-structure calcula-
tions for the 2E ground state and the 2T2 “rst excited electronic state of
the cluster cations P+

4 , As+
4 , Sb+

4 , Bi+
4 . The wavefunction of the electro-

static Hamiltonian has been constructed in the state-averaged CASSCF
approximation, employing the cc-pVTZ basis set. Matrix elements of the
BP Hamiltonian have been computed with the CASSCF wave functions.
For P+

4 , all-electron calculations have been performed, while relativistic
small-core pseudopotentials have been employed for the heavier systems.
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All ab initio calculations have been performed with themolpro suite
of programs. Vibrational frequencies of theT2 and E modes have been
obtained as second derivatives of the mean energy (V1,2 + V3,4)/ 2 for 2E
states and (V1,2 + V3,4 + V5,6)/ 3 for 2T2 states, respectively. The relativistic
JT coupling parameters have been determined by “tting the eigenvalues of
the 2E × (E + T2) and 2T2 × (E + T2) vibronic matrices to the ab initio
data.

To visualize the e�ects of the nonrelativistic and relativistic JT
couplings, the ab initio adiabatic PE surfaces of the 2E and 2T2 states
of Sb+

4 are shown in Fig. 5 as a function of the symmetry coordinatesz of
T2 symmetry (sx , sy and sz are equivalent) without (a) and with (b) inclu-
sion of SO coupling. Figure 5(a) illustrates the very strong nonrelativistic
T2 × T2 JT coupling in the 2T2 state and the absence of a nonrelativistic
E × T2 coupling in the 2E state. Figure 5(b) illustrates the zeroth-order
SO splitting of the T2 state and the existence ofa relativistic linear E × T2

JT coupling in the 2E state, which partially lifts the four-fold degeneracy
of this state. Figure 6 displays the ab initio adiabatic PE surfaces of the
2E and 2T2 states of Sb+4 as a function of the symmetry coordinate sb

of E symmetry. Figure 6(a) illustrates the very pronounced nonrelativistic
E × E JT coupling in the 2E state, while the T2 × E JT coupling is weak.
Figure 6(b) illustrates the absence of a quenching of the strong electrostatic
JT e�ect in the 2E state by the SO coupling.

Table 2 (for the 2T2 state) and Table 3 (for the 2E state) contain
the zeroth-order SO splitting �, the vibrational frequencies 	 and the
dimensionless linear relativistic JT coupling parameters. The tables include
the linear electrostatic T2 × T2 (a/	 T2 ), T2 × E (c/	 E ) and E ×
E (b/	 E ) JT coupling parameters for comparison. It should be mentioned
that the electrostatic E × E and T2 × T2 JT e�ects in the P +

4 , As+
4

and Sb+
4 cluster cations are among the strongest JT e�ects known in

nature.65, 67

The zeroth-order SO splitting � of the 2T2 state exhibits the expected
increase with the atomic number Z of the atoms, see Table 2. While the
magnitudes of the electrostatic T2 × T2 (a/	 T2 ) and T2 × E (c/	 E ) JT
coupling parameters ”uctuate throughout the series, the relativistic JT
coupling parameters increase monotonously withZ . For Bi +

4 , the rela-
tivistic T2 × T2 JT coupling is of the same order of magnitude as the
electrostatic JT coupling and represents a truly pronounced JT e�ect
(|� |/	 T2 � 2). For the 2E ground state, the electrostatic E × E JT
coupling (b/	 E ) is likewise roughly constant throughout the series, while
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(a)

(b)

Fig. 5. Nonrelativistic (a) and relativistic (b) ab initio potential-energies of Sb +
4 as a

function of the coordinate sz of T2 symmetry.
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(a)

(b)

Fig. 6. Nonrelativistic (a) and relativistic (b) ab initio potential-energies of Sb +
4 as a

function of the coordinate sb of E symmetry.
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Table 2. Zeroth-order SO splitting �, vibrational
frequencies (� T2 , � E ), electrostatic ( a/� T2 , c/� E ) and
relativistic ( �/� E , �/� T2 ) linear JT coupling param-
eters for the 2T2 state of the group V tetramers. For
the T2 and E modes of P+

4 and the E mode of As+
4 ,

the relativistic coupling parameters are too small to be
reliably determined by the least-squares “t.

T2 × (E + T2) P +
4 As+

4 Sb+
4 Bi +

4

� (meV) � 5.18 � 25.07 � 71.45 � 264.30
� E (meV) 41 .01 17.61 14.90 10.49
� T2 (meV) 51 .88 22.72 19.97 14.21

c

� E
� 0.51 0.68 0.11 0.55

a

� T2

2.78 4.11 3.19 3.49

�
� E

„ „ 0 .21 0.54

�
� T2

„ � 0.43 � 0.96 � 2.01

Table 3. Vibrational frequencies (� T2 , � E ), elec-
trostatic ( b/� E ) and relativistic ( �/� T2 ) linear JT
coupling parameters for the 2E state of the group V
tetramers. For P +

4 , the relativistic coupling parameter
(�/� T2 ) is too small to be reliably determined by the
least-squares “t.

E × (E + T2) P +
4 As+

4 Sb+
4 Bi +

4

� E (meV) 40.57 18.16 15.00 10.65
� T2 (meV) 46.46 18.07 17.99 12.89

b

� E
4.86 6.29 5.68 5.98

�

� T2

„ 0.30 0.48 1.18

the magnitude of the relativistic 2E × T2 JT coupling ( |� |/	 T2 ) increases
with Z (see Table 3). It should be noted that the T2 mode is not JT
active in the 2E state in the nonrelativistic approximation. The relativistic
forces, however, result in a distortion � R = |� |/	 T2 along the T2 radial
coordinate R which is substantial for the heavier group V cluster cations
(see Table 3).
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7. Conclusions

The intention of this chapter has been the outline of a systematic general-
ization of JT theory to include the SO operator at the same level of approx-
imation as the electrostatic Hamiltonian in the spin-free JT theory. The BP
operator is expanded in a Taylor series in normal-mode displacements at
the reference geometry and matrix elements are taken with nonrelativistic
diabatic spin-orbital basis functions, taking account of the symmetry selec-
tion rules (spin double-group symmetry and time-reversal symmetry).

While the mutual quenching of SO splitting and linear JT coupling is
very well known (often referred to as the Ham e�ect),28–31 this phenomenon
is just a special case of SO vibronic coupling, arising in spin-double groups
which lack irreducible representations with dimension larger than two. In
tetrahedral and cubic systems, on the other hand, JT forces of relativistic
origin exist and may either enhance or weaken the electrostatic JT forces.
Making use of existing electronic structure codes, the vibronic-coupling
parameters arising from the SO operator have been calculated for a few
exemplary systems. Theab initio calculations indicate that the relativistic
JT forces are comparable with or can even exceed the electrostatic JT forces
in systems with very heavy elements.68

As discussed in the introduction, the theory of nonadiabatic dynamics
at conical intersections needs to be generalized by a systematic inclusion
of SO coupling e�ects. Such developments are prerequisite for a “rst-
principles theoretical understanding of the photophysics and photochem-
istry of complexes containing heavy elements. This problem has been
addressed by Matsika and Yarkony from the point of view of ab initio
computational chemistry.16–20 In this chapter, we have emphasized the
group-theoretical aspects in systems of high symmetry. It is suggested
that the relativistically generalized JT theory can provide important guide-
lines for the development and computational realization of a comprehensive
theory of nonadiabatic dynamics in systems with strong SO coupling.
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1. Introduction

One of the de“ning properties of a conical intersection (CI) is that the
adiabatic electronic wave function changes sign upon following a closed loop
around the CI. This property is referred to as the geometric phase (GP),
or sometimes the Berry phase.1 The GP was “rst identi“ed in molecular
systems by Herzberg and Longuet-Higgins,2, 3 who showed that the GP
is a direct consequence of the “rst-order lifting of the degeneracy about
the CI. Because the total (electronic + nuclear) wave function must be
single-valued, the GP produces a corresponding change in the boundary
condition of the nuclear wave function.4…8 When one discusses GP e�ects
on the dynamics, one is therefore addressing how the properties of the
nuclear wave function are a�ected by this change in boundary condition.

The e�ect of the GP on bound state, time-independent wave functions
has been known for a long time. It is easy to visualise the e�ect by consid-
ering a particle on a ring, with wave function exp(im� ). In place of the
usual continuity boundary condition, which requires that m be an integer,
the GP boundary condition requires that m be a half-integer. As a result,
the GP boundary condition changes the nodal structure of the wave func-
tion, and produces a shift in the energy levels. Similar changes in nodal
structures and shifts in energies have been calculated and observed in the
spectra of Jahn…Teller molecules.9…12

The e�ect of the GP on other nuclear wave functions is, however,
more complicated. In time-independent scattering wave functions, or time-
dependent wave packets (for both scattering and bound systems), the wave
function can be generated by Feynman paths that loop a “nite number of
times around the CI. The e�ect of the GP is to change the relative sign of
the odd and even-looping paths, which, in general, describe di�erent types
of dynamics. This e�ect of the GP was understood in the early 1970s,13…16

where it was demonstrated in model two-dimensional calculations of the
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Aharonov-Bohm e�ect (which is e�ectively a two-slit experiment with GP
boundary conditions). However, these simple results were not taken up at
the time by the chemical physics community; as a result, the e�ect of the GP
on time-independent scattering wave functions and on time-dependent wave
functions (of any kind) remained something of a mystery.

Here we review work we have done over the past “ve years17…24to adapt
and apply the theory just described to molecular systems. This work was
inspired by a long running puzzle in the prototype hydrogen-exchange reac-
tion25…34 but the results apply generally (and rigorously) to all dynamical
systems that have a conical intersection (except for time-independent bound
states, which are something of a special case, as already mentioned). It turns
out that one does not need to use path-integral theory if one does not want
to: one can apply symmetry arguments in a double space, which make it
mathematically trivial to extract (rigorously) the contributions from even-
and odd-looping Feynman paths from the nuclear wave function. This tech-
nique allowed us to solve the hydrogen-exchange puzzle just mentioned, and
more generally turns out to be a useful tool for analysing nuclear dynamics
at conical intersections. In particular, the technique allows one to estimate
the e�ect of interference between even- and odd-looping paths on popula-
tion transfer.

This chapter is structured as follows: Section 2 describes the appli-
cation of the symmetry and equivalent path-integral approaches to time-
independent scattering wave functions, in which the dynamics is con“ned to
the lower of two conically intersecting potential energy surfaces. Section 3
describes the equivalent application in the time domain. Section 4 gener-
alises Sec. 3, to cover time-dependentdynamics on both coupled surfaces.
Section 5 summarises the results of applications to the hydrogen-exchange
reaction (5.1) and to time-dependent dynamics on two surfaces (5.2).
Section 6 concludes the chapter.

2. Time-Independent Description of Single-Surface
Dynamics

2.1. Topology and encirclement

Let us consider a system withN nuclear degrees of freedom, which possesses
one CI seam of dimensionN Š 2. The topology of the nuclear space can
then be represented schematically as shown in Fig. 1.18 The line at the
centre represents every CI point in the seam. Each circular cut through the
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N
…

2

(a) (b) (c)

Fig. 1. (a) Diagram illustrating the topology of the N -dimensional nuclear coordinate
space of a reactive system with a conical intersection (CI). The vertical line represents
the ( N Š 2)-dimensional space occupied by the CI seam. The grey disc represents a 2D
branching-space cut through one point on the seam, with the angle � describing internal
rotation around the CI. (b) A nuclear wave function which wraps around the CI, but is
not a torus, and thus exhibits only trivial GP e�ects. (c) A torus-shaped nuclear wave
function encircling the CI. [Reprinted with permission from Ref. 18. Copyright 2006,
American Institute of Physics.]

cylinder represents the two degrees of freedom in the nuclear •branching
spaceŽ, in which the adiabatic potential energy surfaces have the familiar
double-cone shape, centred about theCI point. We assume that the seam
line extends throughout the entire region of energetically accessible nuclear
coordinates space. We also assume that the system is con“ned to the lower
(adiabatic) electronic state, because it has insu�cient energy to approach
the region of strong coupling with the upper state close to the CI. The CI
seam line is therefore surrounded by a tube of inaccessible coordinate space.

We then de“ne an internal coordinate � such that � = 0 � 2� denotes
a path which has described one complete loop around the CI in the nuclear
branching space. Other than this, we need not specify further details about
� . It is su�cient that � permits us to count how many times a closed loop
has wound around the CI. Using this de“nition of � , we can express the
e�ect of the GP on the adiabatic ground state electronic wave function �( � )
and the nuclear wave function �( � ) as

�( � + 2 n� ) = ( Š1)n �( � ), (1)

�( � + 2 n� ) = ( Š1)n �( � ). (2)

The dependence on the otherN Š 1 nuclear degrees of freedom has been
suppressed.

The e�ects of the GP are therefore the di�erences between the nuclear
dynamics described by the wave function

� [G](� ) = ( Š1)n � [G](� + 2 n� ), (3)
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which correctly includes the GP boundary condition, and the wave function

� [N ](� ) = � [N ](� + 2 n� ), (4)

which ignores it (and is therefore physically incorrect). It is well known in
the literature that the GP will produce a non-trivial e�ect on the dynamics
only when the time-independent wave function � [G](� ) encircles the CI.
Otherwise the e�ect is simply a change in the phase of �[N ](� ), which has
no e�ect on any observables. Hence we seek to explain how the dynamics
described by � [G](� ) di�ers from the dynamics described by � [N ](� ), when
these wave functions encircle the CI. (Note that the requirement for encir-
clement applies to the time-independentwave function; it is not necessary
for the corresponding time-dependentwave function to encircle the CI at
any instant in time, as we discuss in Sec. 3.)

It is worth clarifying what is meant by encirclement. The notion of
taking a cut through nuclear coordinate space in order to see whether
� [G](� ) encircles the CI in this cut is not useful. Figure 1(b) shows a
nuclear wave function which, if a certain choice of nuclear coordinates
were used, could easily be made to •encircle• the CI if a suitable 2D cut
were taken. However, this particular wave function would not show non-
trivial GP e�ects, because it does not encircle the CI: it has unconnected
•ends•. For non-trivial GP e�ects to appear, |� [G](� )|2 must have the form
of a torus in the nuclear coordinate space, as shown in Fig. 1(c). If one
were to take a series of branching-space cuts through this wave function,
none of them would encircle the CI, and hence one might get the mistaken
impression that this wave function would only show a trivial phase change
upon inclusion of the GP boundary condition. However, the wave function
of Fig. 1(c) would de“nitely show strong, non-trivial GP e�ects. There are
various ways in which one can prove this and we will mention one below.
It is important to emphasise that it is |� [G](� )|2 which has the form of a
torus, and not the wave function � [G](� ).

2.2. Symmetry approach

To explain the e�ect of the GP on the nuclear dynamics [i.e. to explain the
di�erence between the dynamics described by an encircling �[G](� ) and an
encircling � N (� )], we need to compare the topology of �[G](� ) with the
topology of � [N ](� ). In Sec. 2.3, we review how this can be done using
the homotopy of the Feynman paths13…16 that contribute to these wave
functions. But “rst, to demonstrate the simplicity of the problem, we use
the diagrammatic approach developed in Refs. 17 and 18.
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(a) (b)

02�

�

04�

Fig. 2. (a) Schematic picture of the potential surface of a reactive system, indicating
that there is an energetically accessible (grey) •tube• through the potential surface,
permitting encirclement of the CI (dot at centre). The •arms• are the reagent and product
channels. (b) The same surface, represented in the 0 � 4� cover space. The rectangle
represents a 0 � 2� sector which can be cut out of the double space so as to map back
onto the single space, where the � = 0 and � = 2 � •edges• are joined together at the
cut line (chains). [Reprinted with permission from Ref. 18. Copyright 2006, American
Institute of Physics.]

We represent the internal coordinate space occupied by the nuclear wave
function as shown in Fig. 2. The grey arearepresents the energetically acces-
sible region of the potential energy surface; the conical intersection is the
point at the centre; the •arms• represent the reactant entrance and product
exit channels. To simplify the discussion, we place a restriction on� (which
will be relaxed later), which is that � tends to a constant value as the system
moves down the entrance or exit channel towards an asymptotic separation
of the reactants or products. This places no restriction on the generality
of the diagram, other than that the conical intersection should be located
in the •strong-interaction region• of the potential energy surface, where all
the nuclei are close together. Note that, although we have restricted the
number of product channels to one, the diagram is immediately generalis-
able to systems with multiple product channels. We also assume that the
reaction is bimolecular (leaving unimolecular reactions until Sec. 2.4), which
means that it is initiated at the asymptotic limit of the reactant channel, at
the value of � which is reached in this limit. We will de“ne this to be � = 0.

Figure 2(b) represents the potential surface of the same system, mapped
onto the double-cover space.18 The latter is obtained simply by •unwinding•
the encirclement angle� , from 0 � 2� to 0 � 4� , such that two (internal)
rotations around the CI are represented as one in the page. The potential is
therefore symmetric under the operation �R2� , de“ned as an internal rota-
tion by 2� in the double space. To map back onto the single space, one cuts
out a 2� -wide sector from the double space. This is taken to be the 0� 2�
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sector in Fig. 2(b), but any 2� -wide sector would be acceptable. Which
particular sector has been taken is represented by a cut line in the single
space, so in Fig. 2(b) the cut line passes between� = 0 and 2� . Since the
single space is the physical space, any observable obtained from the total
(electronic + nuclear) wave function in this space must be independent of
the position of the cut line.

To construct a diagrammatic representation of the wave function, we
start in the double space, as shown in Fig. 3(a). The arrow at the top
indicates that the incoming boundary condition is applied here, and the
arrows at each of the other channels indicate outgoing boundary conditions.
Note that we are treating the second appearance of the reactant channel
(at � = 2 � ) as though it were a product channel, and are treating the
second appearance of the product channel (in the 2� � 4� sector) as
though it were physically distinct from the “rst appearance of this channel
(which is indicated by the use of wavy lines). As a result, the wave function
� [e] is neither symmetric nor antisymmetric under � � � + 2 � , which
means it cannot be mapped back onto the physical space independently of
the position of the cut line. In other words � [e] is the wave function of a
completely arti“cial system.

To construct wave functions which can be mapped back onto the phys-
ical space, one needs to take symmetric and antisymmetric linear combi-
nations of � [e](� ) and � [o](� ) = � [e](� + 2 � ), and these are illustrated
in Fig. 3(b). It is then clear that these functions can be mapped onto
the physical space [Fig. 3(c)], and that they correspond to �[N ] and � [G]

02�04�

(a) (b) (c)

Fig. 3. (a) The unsymmetrised nuclear wave function � [e] (solid line) in the double
space. The arrows indicate the application of incoming and outgoing scattering boundary
conditions. (b) The symmetrised linear combinations of � [e] (solid) and � [o] (dashed),
which yield � [N/G ] = 1 /

�
2{ � [e] ± � [o] } . (c) The same functions mapped back onto

the single space. [Reprinted with permission from Ref. 18. Copyright 2006, American
Institute of Physics.]
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respectively. Thus we may write,

� [G] =
1

�
2

�
� [e] Š � [o]� ,

� [N ] =
1

�
2

�
� [e] + � [o]� . (5)

This equation is the main result needed to explain the e�ect of the GP on
the nuclear dynamics of a chemical reaction. Clearly the sole e�ect of the
GP is to change the relative sign of � [e] and � [o]. Within each of these func-
tions the dynamics is completely una�ected by the GP. We emphasise that,
despite remaining unnoticed for so long in the chemical physics community,
Eq. (5) is exact.

If we can compute � [G] and � [N ] numerically (as described below), it
is therefore trivial to extract � [e] and � [o] by evaluating

� [e] =
1

�
2

�
� [N ] + � [G]� ,

� [o] =
1

�
2

�
� [N ] Š � [G]� . (6)

Once one has extracted �[e] and � [o], an explanation of the GP e�ect
on the nuclear dynamics will follow immediately. The dynamics in � [e] is
decoupled from the dynamics in � [o], and thus any observable will show
GP e�ects only if the corresponding operator depends on �[e] and � [o] in
a region of space where these functions overlap. In a non-encircling nuclear
wave function, � [e] and � [o] never overlap, and this gives us a diagrammatic
proof (Fig. 4) of the well-known result that a non-encircling wave function
shows no non-trivial GP e�ects.

2.3. Path-integral approach

Here, we explain the path-integral approach of Refs. 13…16 which, as we
will show in Sec. 2.4, is equivalent to the wavefunction-based theory just
described. This approach was developed originally to treat the Aharonov…
Bohm system, in which an electron encircles but does not touch a magnetic
solenoid. The vector potential of the solenoid has an e�ect which is exactly
equivalent to the application of the GP boundary condition, and scat-
tering boundary conditions are applied at long range. The Aharonov…Bohm
system is therefore exactly analogous to a nuclear wave function in a reac-
tive system which encircles a CI.
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04�02�

(a) (b)

Fig. 4. (a) Single-space and (b) double-space representations of � [e] (solid) and � [o]

(dashed) for a system which does not encircle the CI. [Reprinted with permission from
Ref. 18. Copyright 2006, American Institute of Physics.]

Only a few basic concepts of path integrals are required to understand
this theory. We review these here in a heuristic manner, beginning with the
celebrated result of Feynman,35 which is that the time-evolution operator
or Kernel, K = exp( Ši �Ht/ � ), can be constructed using

K (x, x0 |t) =
�

Dx(t) eiS (x ,x 0 |t ) /� . (7)

HereDx(t) represents the sum over all possible paths connecting the points
x and x0 in the time interval t, and S is the classical action evaluated along
each of these individual paths. It is useful to point out two properties of
this expression: (a) the overall sign of the Kernel is arbitrary, becauseS is
only de“ned up to an overall constant (becauseS is the time-integral over
the Lagrangian, and the latter is only de“ned up to a total derivative in
t36); (b) each path has equal weight, so the relative contribution of a given
path to the sum is determined by the extent to which it is cancelled out by
its immediate neighbours.

Any prediction expressed in the language of path integrals must have
an equivalent formulation in the language of wave functions. Point (a) is
equivalent to saying that a wave function is only speci“ed up to an overall
phase factor. Point (b) can be thought of as saying that, when computing
K (x, x0 |t), all possible paths betweenx and x0 in time t are •coupled•. If
we start with one particular path between x and x0 , then we need to know
all of its immediate neighbours, in order to assess the extent to which this
path is cancelled out by them. These neighbouring paths are obtained by
all possible tiny distortions that can be applied to the “rst path. We then
need to know all of the immediate neighbours of each of the latter paths
(in order to assess the extent to which each of these is cancelled out), and
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then we need to “nd out the immediate neighbours of the new paths, and
so on. In other words, if we start with one particular path between x and
x0 , then this path is •coupled• (in the sense just described) to all the other
paths into which it can be continuously deformed. This is equivalent to
saying that one cannot compute accurately just part of a wave function;
one must compute all of it, since all parts of the function are coupled by
the Hamiltonian operator.

In their work on the Aharonov…Bohm system, Schulman, deWitt and
others13…16 found that points (a) and (b) must be modi“ed when applying
path-integral theory in a multiply-connected space. The term •multiply-
connected• simply means that the spacecontains an inaccessible region or
obstacle, which •gets in the way•, such that a given path betweenx and x0

cannot be continuously deformed into all other possible paths. It can only
be deformed into a subset of such paths. This subset de“nes ahomotopy
class: paths that belong to di�erent homotopy classes are called di�erent
homotopes. The concept that there exist di� erent classes of paths, such that
a path that belongs to one class cannot be continuously deformed into a
path that belongs to another, is calledhomotopy.

The nuclear coordinate space shown in Fig. 1 is a multiply-connected
space, because there is an energetically inaccessible •tube• of space
surrounding the CI seam. An explanation of the homotopy of such a space
will be found in any elementary text on topology.37 Let us take “rst a
system with only two nuclear degrees of freedom, so that the CI is just a
point at the centre of the branching space, and there are no other degrees
of freedom. The homotopy of a given path within this space is simply the
number of entire loops it follows around the CI. We can thus classify each
homotopic class according to a winding numbern, as de“ned in Fig. 5. Note
that the sign of n indicates the senseof the path, and that it is useful to
adopt the convention that even n refer to paths that make an even number

n = 0

n = Š1

n = 1 n = 2

Fig. 5. Examples of Feynman paths belonging to di�erent homotopy classes, illustrating
how the winding number n is de“ned. [Reprinted with permission from Ref. 18. Copyright
2006, American Institute of Physics.]
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of clockwise loops or an odd number of counterclockwise loops; and oddn
vice versa. It is easy to prove that the set of all these homotopic classes forms
an in“nite group (which is called the •Fundamental Group• of a circle37).

The same classi“cation into winding numbers can be used in a system
with N nuclear degrees of freedom, in which the CI seam is an (N Š 2)-
dimensional hyperline as in Fig. 1. For example, if we takeN = 3, then the
seam is a line; the homotopy of this system is just the same as for theN = 2
system, since the number of loops made around the line can be represented
by a winding number de“ned exactly as for the 2D case. Although it is
di�cult to visualise, the generalisation continues to all higher N in the
same way, so that one can always classify a path by its winding number
around the (N Š 2)-dimensional CI hyperline. In many systems, each class
of paths designated by the winding numbern will in fact include more than
one homotopy class, because it will be possible to further classify the paths
according to their winding about other energetically inaccessible regions
in the potential surface (which may exist in addition to the tube around
the CI seam). However, to understand the GP, we do not need to consider
these classes, and so, for shorthand, we will use the terms •homotopy class•
and •winding number• interchangeably.

Retracing the argument used to justify point (b) above, it is clear that, in
a multiply-connected space, a given path is only coupled to those paths into
which it can be continuously deformed. By de“nition, these are all the paths
that belong to the same homotopy class. Paths belonging to di�erent homo-
topy classes are thus decoupled from one another.13…16For a reactive system
with a CI which has the space of Fig. 1, this means that a path with a given
winding number n is coupled to all paths with the samen, but is decoupled
from paths with di�erent n. As a result, the Kernel separates into13…16

K (x, x0 |t) =
��

n =Š�

ein� K [n ](x, x0 |t) , (8)

where

K [n ](x, x0 |t) =
�

Dn x(t) eiS (x ,x 0 |t ) /� (9)

and Dn x(t) denotes the sum over all paths linkingx0 to x that have winding
number n.

Each K [n ] in Eq. (8) has a di�erent overall phase, which arises because
a di�erent Lagrangian can be used for each value ofn. However, there is a
strong constraint on these phases, which arises because the set of Kernels
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K [n ] must form an irreducible representation of the Fundamental Group
of the circle. As a result, the phases have the formein� [given in Eq. (8)],
so that there is only one parameter� that can be varied. To determine
possible values of� , let us consider the operation� � � + 2 � on K [n ].
This operation is equivalent to rotating the end points of all the paths
around the CI by 2� , thus increasing the winding number of each path
from n to n + 1. As a result, K [n ] � K [n +1] , which means that, overall,
K � exp(i� )K . In other words, specifying � is equivalent to specifying
the � � � + 2 � boundary condition which is to be satis“ed by the Kernel.
Thus, we can obtain Kernels corresponding to GP and non-GP boundary
conditions by choosing� = � and � = 0, which gives

K [G](x, x0 |t) =
1

�
2

�
K [e](x, x0 |t) Š K [o](x, x0 |t)

�
,

K [N ](x, x0 |t) =
1

�
2

�
K [e](x, x0 |t) + K [o](x, x0 |t)

�
, (10)

where K [e] =
�

K [n ], with the sum running over all even n, and K [o] is
similarly de“ned for odd n.

To put this result in context, one should imagine a crude semiclassical
calculation, in which one propagates Newtonian trajectories, each of which
is given a phase exp(iS/ � ). One could implement the GP boundary condi-
tion by counting the number of loops n made by each trajectory around
the CI, and adding an extra n� to the associated phase. To our knowledge,
no such calculation has been reported, almost certainly because it would
be di�cult to disentangle genuine GP e�ects from errors in the approxi-
mation. However, Eq. (10) tells us that such an intuitive approach can be
applied to the Feynman paths, and thus implemented rigorously, without
approximation.

2.4. Relation between symmetry and path-integral
approaches

The separation of the Feynman paths in Eq. (10) is equivalent to the split-
ting of the wave function into � [e] and � [o] in Eq. (6). To demonstrate this,
we connect the Kernel to the wave function using Ref. 38,

�( x) =
1

A(E)

�
dx0

� �

0
dteiEt/ � K (x, x0 |t) �( x0 ), (11)
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where �( x0 ) is an initial wave packet, which contains a spread of ener-
gies A(E). At time t = 0, �( x0 ) is localised in the reactant channel,
at a su�ciently large reactant separation that the interaction potential
can be neglected. The function �( x) given by Eq. (11) is the time-
independent wave function, with incoming boundary conditions in the reac-
tant channel, as represented schematically in Fig. 3. It follows immediately
from Eq. (11) that K [e] generates � e(� ), and K [o] generates � [o](� ). Hence
unwinding the nuclear wave function according to Eq. (6) is equivalent to
separating the evenn Feynman paths [which are contained in � [e](� )] from
the odd n paths [which are contained in � [o](� )].

Some care must be taken when applying the Feynman interpretation to
Eq. (6), as the interpretation must be consistent with the position of the
cut line (used to map from the double to the single space). For example,
Figs. 6(a) and 6(b) show two di�erent choices of cut line. It is clear that
the relative sign of � [e](� ) and � [o](� ), and hence all the GP e�ects, are
independent of the position of the cut line. However, the overall phase of
� [G](� ) does depend on the cut line. This phase is important, because it
must cancel out a corresponding phase in the electronic wave function �(� ),
to give a total wave function � [G](� )�( � ) which is independent of the posi-
tion of the cut line. Because of this, one needs to de“ne the winding number
n with respect to the cut line and not with respect to the (� = 0) point
at which the nuclear wave function enters the encirclement region. Thus in

(a) (b) (c)

Fig. 6. Diagram showing how the winding number n of the Feynman paths should
be de“ned with respect to the cut line. In (a) the cut line (chains) is placed between
� = Š � and 2� Š � ; in (b) between (approx) � = �/ 4 and Š 7�/ 4. In (c) the wave
function describes a unimolecular reaction, in which the initial state occupies the (grey
shaded) area shown. Feynman paths originate from all points within this area (inset);
their winding number n is de“ned with respect to the common cut line. [Reprinted with
permission from Ref. 18. Copyright 2006, American Institute of Physics.]
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Fig. 6(b), a path which starts at � = 0 and terminates at � = �/ 2, and
has made no loops around the CI, is classi“ed as ann = 0 path. However,
a path which starts at � = 0 and terminates just short of the cut line at,
say, � = �/ 6, and has also made no loops around the CI, is ann = Š1
path. A path which enters at � = 0 and makes one clockwise loop around
the CI will be an n = 0 path if it terminates just short of the cut line, and
will only become an n = 1 path once it has passed the cut line; and so
on. By classifying the Feynman paths with respect to the cut line in this
way, we ensure that the overall phase of �[G](� ) has the correct depen-
dence on� needed to cancel the corresponding dependence of the phase
of �( � ).

In Fig. 3, we placed the cut line between� = Š� and � = 2 � Š �
(where � is an arbitrarily small number). This will often be the most conve-
nient choice of cut line, becausen then describes exactly the number of
complete loops that the system has made around the CI since entering the
encirclement region. Thus the paths that scatter inelastically will each have
described an (internal) rotation of exactly � = 2 n� .

However, it will not always be possible to “x the cut line at the same
value of � as the entry points, for the reason that the system does not
enter the encirclement region at one unique value of� . Up till now, we
have assumed (see Sec. 2.1) that the reaction is bimolecular, that it can
only encircle the CI when the nuclei are all close together, and that the
reactants and products are distinguishable. These conditions are what are
required to guarantee that the system starts at one unique value of� (which
we have taken to be� = 0). We can now relax these conditions, and consider
unimolecular reactions, and reactions that can encircle the CI at large sepa-
rations of the reactants or products.

We can represent a unimolecular reaction using the diagram of Fig. 6(c).
The grey blob indicates the initial state of the system. For example, it could
be the Frank…Condon region accessed in a photodissociation experiment.39

All the Feynman paths that contribute to the nuclear wave function will
originate in the initial state. Hence the paths will have a spread of start
points, distributed over the range of � for which the initial state is non-
negligible. Clearly, the symmetry argument of Sec. 2.2 applies immediately
to this system, so we may unwind the wave function, and extract � [e] and
� [o] using Eq. (6). We can then interpret these functions as containing the
even n and odd n Feynman paths respectively, wheren is de“ned with
respect to a “xed cut line. Note that, when we discuss, say, the evenn
Feynman paths, we are not referring topaths that all necessarily complete
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an even number of loops around the CI, since the paths may have started
on di�erent sides of the cut line (if the latter passes through the initial
state), or on di�erent sides of the end point. The reader may verify that, in
either of these cases, the evenn paths will contain a mixture of paths that
have looped an even and an odd number of times around the CI.

Hence, when applied to a unimolecular reaction, Eq. (6) does not give
such a neat separation into even- and odd-looping Feynman paths. However,
the separation that it does give (into even and oddn, each of which contains
a mixture of even-looping and odd-looping paths) is the one that is neces-
sary to explain the e�ect of the GP, since these are the two contributions
to � whose relative sign is changed by the GP. Clearly, if we were to
compute directly the Kernels, we could then separate out the odd-looping
and even-looping paths, because we would know the starting point of each
path. In the wave function, however, we do not know the starting points
of the individual paths, nor do we need to in order to explain the e�ect
of the GP.

Similar arguments to those just given apply to bimolecular reactions
in which the CI can be encircled whenthe reactants are still well sepa-
rated from one another. For such systems, one cannot de“ne� such that
it tends to a unique value as the system travels out along the reactant
channel. The incoming boundary condition must then be applied across a
range of � , which is analogous to the range of� contained in the initial
state of the unimolecular reaction. Applying Eq. (6) will then separate out
the even n and odd n paths with respect to a “xed cut line, which paths
may contain a mixture of odd-looping and even-looping paths (as in the
unimolecular case).

2.5. Distinction between scattering and bound states

This chapter focuses on reactive systems, in which the nuclear wave function
satis“es scattering boundary conditions, applied at the asymptotic limits of
the reactant and product channels. Here we discuss brie”y how such wave
functions di�er from bound state wave functions, when subjected to the
analysis described in the preceding sections.

Let us attempt to apply the procedure of Sec. 2.2 to a bound state wave
function. This is illustrated schematically in Fig. 7. It is clear immediately
that we cannot construct an unsymmetric � [e] in the double space, because
each bound state eigenfunction must be an irreducible representation of the
double-space symmetry group. Thus a bound state function in the double
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++… +

(a)

(b)

(c)

G N

anti

sym

Fig. 7. Relation between � [G ] and � [N ] for a bound state system. The functions in
the single space (a) can be mapped onto the double space (b) where they have opposite
symmetries with respect to rotation around the CI by 2 � , and therefore correspond to
di�erent symmetry blocks of the double-space hamiltonian matrix (c). [Reprinted with
permission from Ref. 18. Copyright 2006, American Institute of Physics.]

space is necessarily symmetric or antisymmetric under�R2� , and is thus
either a � [G] or a � [N ] function. For a � [G] function, we have � [N ] = 0
(since � [G] and � [N ] cannot form a degenerate pair) which implies [from
Eq. (6)] that

� [e] = Š� [o] = � [G]. (12)

Similarly, for a � [N ] function,

� [e] = � [o] = � [N ]. (13)

In other words, if we map a bound state wave function onto the double space
using Eq. (6), we simply duplicate the function, because the contribution
from the even n Feynman paths is exactly equal to (or equal and opposite
to) the contribution from the odd n paths.
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An encircling reactive wave function is thus topologically di�erent from
an encircling bound state wave function. This is why, in Sec. 2.1, we said
that, when the wave function encircles the CI, it is |�( � )|2 which has the
form of a torus, rather than �( � ). A reactive wave function �( � ) is not
a torus „ it is essentially a coil, since it can be unwound. A bound state
function � [G](� ), on the other hand, is a torus (with a twist), because if
one imagines calculating it by propagating a function around the CI, then
the two ends of the function must match. In a reactive wave function, no
such matching is ever required, and we may loop each end of the function
around the CI as many times as we please, before allowing each end to pass
out through one of the entrance or exit channels (where it is then matched
to the asymptotic scattering functions). We therefore suggest that the term
•encirclement• often used in the GP literature should be quali“ed as •weak
encirclement•, when the system is reactive, and •strong encirclement• when
it is bound.

Mapping onto the double space will therefore reveal nothing new about
the e�ect of the GP on a bound state system, since this is purely a
boundary-condition e�ect. However, it does give us an alternative repre-
sentation of the GP and non-GP wave functions, which may sometimes
be clearer than the equivalent single-space representation (in which one
deduces the symmetry � from the total wave function ��). For example,
in the double space, it is very clear that the GP will cause all the bound
states to be doubly-degenerate when the (single-space) molecular symmetry
group is isomorphic with C2v (because the double-space group is then
isomorphic with C4v ). Similarly, the double-space picture is analogous to
a double-well system, with periodic boundary conditions, and this may
also sometimes be useful in rationalising the e�ect of the GP on the
spectrum.

The distinction between reactive and bound state wave functions obvi-
ously becomes less clear-cut when one considers very long-lived reactive
resonances (see Ref. 18). Also, we emphasise that this distinction only
applies to time-independent wave functions. For a time-dependent wave
function (evaluated at a “nite time t), the Feynman paths that survive in
the Kernel describe a “nite number of loops around the CI, irrespective of
whether the system is bound or scattering. Time-independent bound-state
wave functions are thus a special case; they are the only nuclear wave func-
tions in which the Feynman paths can loop an in“nite number of times
around the CI, and for which the decomposition into � [e] and � [o] simply
regenerates the original � [G] and � [N ].
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3. Time-Dependent Description of Single-Surface
Dynamics

The various expressions obtained in Sec. 2 can be converted into forms
that apply to time-dependent wave functions, by taking Fourier transforms.
However, it is simpler and more instructive to apply the approach directly
in the time-domain, as follows.23

3.1. Symmetry approach

Let us write the complete time-dependent wave packet for a two-surface
system as

� [�] (�, t ) = � [�]
1 (�, t )� 1(� ) + � [�]

2 (�, t )� 2(� ), (14)

where � 1(� ) and � 2(� ) are the ground and excited (adiabatic) electronic
states, and � [�]

1 (�, t ) and � [�]
2 (�, t ) are the coupled nuclear wave functions

associated with each of these states. Following Sec. 2, we suppress the
dependence of the wave function on all nuclear degrees of freedom, except
for the encirclement angle� ; the superscript [�] denotes whether the wave
function satis“es the geometric phase (G) boundary condition

� [G]
� (� + 2 n�, t ) = ( Š1)n � [G]

� (�, t ), (15)

(where � = 1 or 2) or the continuity (non-geometric phase, N ) boundary
condition

� [N ]
� (� + 2 n�, t ) = � [N ]

� (�, t ). (16)

We assume that the initial t = 0 wave function � [�]
� (�, 0) is a wave

packet which is su�ciently localised not to encircle the CI. This condition
is satis“ed in most of the femtosecond pump-probe experiments used to
probe quantum dynamics at conical intersections. Figure 8 gives single-
and double-space representations of the wave packet� [�]

� (�, t ), analogous
to those used to represent the time-independent wave function in Figs. 2…6;
i.e. one can map from the double to the single space by cutting out a 2� -wide
sector from the double space, which we take as the interval� = 0 � 2� .
Each representation shows the packet at the initial time t = 0, when it is
localised, and at some later timet, when it has spread.

Let us consider the initial wave packet� [�]
� (�, 0) in Fig. 8 (where � can

be either G or N ). In the single (physical) space, this packet is assumed to
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00 4�
� �

2�

t=0

t>0

Fig. 8. Schematic diagram showing the single-space (left) and double-space (right)

representations of a time-dependent wave packet � [�]
� (�, t ) (� = G or N ) at initial

time t = 0, and at a later time t. The dark and light-shaded areas represent the wave
packets � [e]

� (�, t ) and � [o]
� (�, t ). [Reprinted with permission from Ref. 23. Copyright 2008,

American Institute of Physics.]

consist of one localised piece, as shown in Fig. 8. Equations (15) and (16)
then tell us that � [�]

� (�, 0) must consist of two localised pieces in the double
space, which, in anticipation of what follows, we write as� [e]

� (�, 0)/
�

2 and
� [o]

� (�, 0)/
�

2. We then have

� [G]
� (�, 0) =

1
�

2

�
� [e]

� (�, 0) Š � [o]
� (�, 0)

�
,

� [N ]
� (�, 0) =

1
�

2

�
� [e]

� (�, 0) + � [o]
� (�, 0)

�
, (17)

where

� [o]
� (�, 0) = � [e]

� (� + 2 �, 0). (18)

The pieces � [e]
� (�, 0)/

�
2 and � [o]

� (�, 0)/
�

2 are shaded dark and light in
Fig. 8, which can be regarded as a schematic representation of either
� [G]

� (�, t ) (when the dark and light-shaded packets are assumed to have
opposite signs) or� [N ]

� (�, t ) (when they are assumed to have the same sign).
For convenience later on, we have de“ned� in Fig. 1 such that the 0 � 2�
cut line passes through� [e]

� (�, 0) and � [o]
� (�, 0). In the single space, there-

fore, � [�]
� (�, 0) consists of two pieces joined together at the cut line: to the

right of the cut line,
�

2� [�]
� (�, 0) is equal to the 0� 2� piece of� [e]

� (�, 0);
to the left, it is equal to the 0 � 2� piece of± � [o]

� (�, 0).
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Let us now consider� [G]
� (�, t ) and � [N ]

� (�, t ) at some later time t. From
Eqs. (17) and (18), and from the linearity of the time-evolution operator,
it follows that

� [G]
� (�, t ) =

1
�

2

�
� [e]

� (�, t ) Š � [o]
� (�, t )

�
,

� [N ]
� (�, t ) =

1
�

2

�
� [e]

� (�, t ) + � [o]
� (�, t )

�
, (19)

and

� [o]
� (�, t ) = � [e]

� (� + 2 �, t ). (20)

These expressions give us a simple interpretation of the e�ect of the GP.
They show that the wave packet� [�]

� (�, t ) is a superposition of two compo-
nents � [e]

� (�, t ) and � [o]
� (�, t ), and that the sole e�ect of the GP is to change

their relative sign. When represented in the single (i.e. physical) space,
the components� [e]

� (�, t ) and � [o]
� (�, t ) are twisted together inside � [�]

� (�, t )
as shown schematically in Fig. 8, and their dynamics are coupled by the
time-evolution operator. When represented in the double space, however,
� [e]

� (�, t ) and � [o]
� (�, t ) map onto two separate wave packets. The dynamics

of one packet is mirrored in that of the other through the symmetry rela-
tion of Eq. (20), but the dynamics of the two packets are completely decou-
pled. Equation (19) is in fact Eq. (5), re-expressed in the time domain.
In the single space, the components� [e]

� (�, t ) and � [o]
� (�, t ) correspond to

the contributions from even and odd-looping Feynman paths, as we shall
clarify in Sec. 3.2. Non-trivial GP e�ects will arise whenever � [e]

� (�, t ) and
� [o]

� (�, t ) overlap, which is equivalent to requiring that � [G]
� (�, t ) follows a

path that encircles the CI. This in turn is equivalent to requiring that the
time-independent wave function encircles the CI.

3.2. Path-integral approach

It is straightforward 23 to link the time-dependent wave functions � [e]
� (�, t )

and � [o]
� (�, t ) to the corresponding Feynman paths, as was done for �[e] and

� [o] in Sec. 2. We write the wave packet� [�]
1 (�, t ) in terms of the action of

the kernel (time-evolution operator) on an initial wave packet

� [�]
1 (x, t) =

�
dx0K [�] (x , x0|t) � [N ]

1 (x0, 0), (21)
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where the N nuclear degrees of freedom (which include the encirclement
angle � ) are now included explicitly as the vector x. Note that the same
initial wave packet � [N ]

1 (x0, 0) is used to generate both � [G]
1 (x, t) and

� [N ]
1 (x, t), since the e�ects of the GP boundary condition and cut line

are included in the kernel; i.e. the e�ect of K [G](x, x0|0) on � [N ]
1 (x0, 0)

is to switch the sign of the � < 0 part, thus converting this function
into � [G]

1 (x, 0). We will often drop the � superscript in what follows,
leaving it to be understood that K (x, x0|t) represents either K [G](x, x0|t)
or K [N ](x, x0|t).

From Eq. (21), it then follows that K [e](x, x0 |t) generates� [e]
1 (�, t ) and

K [o](x, x0 |t) generates� [o]
1 (�, t ), provided one uses a de“nition ofn which

treats paths with di�erent x and x0 consistently. We will use the de“nition
illustrated in Fig. 9(a), which shows a single-space plot of the initial wave
packet � [�]

1 (�, 0), together with examples of Feynman paths with various
n. To determine the value of n for a given path, one begins at its starting
point x0 and sets n = 0 if x0 is located to the right of the cut line, or
n = Š1 if x0 is located to the left. One then traces the path through to its
end point x, increasing (or decreasing)n by 1 every time the path crosses
the cut line in a clockwise (or counterclockwise) direction. When the paths
are plotted in the double space [see Fig. 9(b)], only the paths with even
(odd) values of n that originate in � [e]

1 (�, 0) [� [o]
1 (�, 0)] have end-points in

n=0

n=0
n=1

n= 1Š

n= 1Š

02

04 ��

�

(a) (b)

Fig. 9. (a) Single-space representation illustrating how the winding number n of a
Feynman path is de“ned with respect to the initial wave packet and the cut-line.
(b) Double-space representation showing that the even- n paths originating from � [e]

1 (�, t )

(solid light grey lines) and the odd- n paths from � [o]
1 (�, t ) (dashed dark grey lines) termi-

nate in the 0 � 2� sector that maps onto the single (physical) space. The odd- n paths

from � [e]
1 (�, t ) (dashed light grey lines) and the even- n paths from � [o]

1 (�, t ) (solid dark
grey lines) terminate in the 2 � � 4� sector. [Reprinted with permission from Ref. 23.
Copyright 2008, American Institute of Physics.]
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the 0 � 2� region of space that maps onto the single-space. Hence, in the
single-space

� [e]
1 (x, t) =

�
dx0K [e](x, x0|t) � [N ]

1 (x0, 0),

� [o]
1 (x, t) =

�
dx0K [o](x, x0|t) � [N ]

1 (x0, 0). (22)

In words, � [e]
1 (�, 0) [� [o]

1 (�, 0)] is the result of applying a kernel which
contains only the even-n (odd-n) Feynman paths.

4. Time-Dependent Description of Dynamics
on Two Coupled Surfaces

The decomposition of the wave function into even- and odd-looping
Feynman paths can be generalised to treat systems in which there is su�-
cient energy to access both the potential surfaces coupled by CI. Such
systems are most often studied using femto-second resolved pump-probe
spectroscopy, and hence we extend the time-dependent approaches of Sec. 3.

4.1. Symmetry approach

To extend the symmetry approach of Sec. 3.1 to treat dynamics on two
coupled potential energy surfaces, we have simply to replace the wave packet
� [�]

1 (�, t ) by the coupled wave packets{ � [�]
1 (�, t ), � [�]

2 (�, t )} .23

At “rst sight, one might object that such an approach would be prob-
lematic, since a two-surface system has in general enough energy to access
points along the CI seam. The angle� is unde“ned at such points, and hence
the concept of a single-to-double space mapping breaks down. However, the
de“nition of the adiabatic electronic states also breaks down at the CI seam
(for the same reason, that� is unde“ned), but this does not invalidate the
widely used concepts of adiabatic states and conical intersections. The CI
seam occupies a region of space corresponding to a set of points of measure
zero. Hence the properties of the wave function along the seam have no
e�ect on its properties elsewhere (i.e. everywhere). For the same reason,
our inability to de“ne a single-to-double space mapping at points along the
CI seam has no e�ect on the validity of the mapping elsewhere.

We may therefore map the coupled wave packets{ � [�]
1 (�, t ), � [�]

2 (�, t )}
from the single to the double space. We can apply every step in the
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approach of Sec. 3.1, with the only change being that there are now two
coupled functions where before there was one. Hence, Eq. (19) applies,
with � = 1 , 2, and the coupled pairs of packets{ � [G]

1 (�, t ), � [G]
2 (�, t )} and

{ � [N ]
1 (�, t ), � [N ]

2 (�, t )} are found to be superpositions of two sets of coupled
packets,{ � [e]

1 (�, t ), � [e]
2 (�, t )} and { � [o]

1 (�, t ), � [o]
2 (�, t )} . In the double space,

the dynamics of the set{ � [e]
1 (�, t ), � [e]

2 (�, t )} is completely decoupled from
that of { � [o]

1 (�, t ), � [o]
2 (�, t )} , but mirrors it through the symmetry relation

of Eq. (20). The functions � [e]
1 (�, t ) and � [e]

2 (�, t ) [and similarly � [o]
1 (�, t ) and

� [o]
2 (�, t )] remain coupled to one another, through the derivative coupling

terms.
In the single-space, the functions� [e]

� (�, t ) and � [o]
� (�, t ) will in general

overlap one another. They will also twist round the CI to join at the cut
line, which ensures that� [�]

� (�, t ) satis“es Eq. (15) or (16). This overlapping,
twisting and joining is shown schematically in Fig. 8. In many two-surface
systems, however, the dynamics is such that this description simpli“es.
Figure 10 is a schematic diagram of a system whose dynamics is such that
the wave packet has split into two parts. One part has become trapped and
cannot reach the region of space surrounding the CI; the other part has
passed through this region. Since� [e]

� (�, t ) and � [o]
� (�, t ) overlap in only the

latter part of the wave packet, this is the only part which is a�ected by
the GP. The type of dynamics illustrated in Fig. 10 is found in many coni-
cally intersecting systems, and we discuss two simple examples in Sec. 5.2.

The most important property of a CI is its ability to transfer population
between the two adiabatic surfaces. Equation (19) shows that the extent of
transfer between surfaces is a�ected by the sign of the interference between
� [e]

� (�, t ) and � [o]
� (�, t ), if the overlap integral between these functions is

signi“cant. Hence the separation into � [e]
� (�, t ) and � [o]

� (�, t ) reveals the
e�ect of the GP on population transfer.

00 4
� �

� �2

t>0

Fig. 10. Schematic showing the simpli“cation in the structure of the upper-surface wave
packet � [G ]

2 (�, t ) that often occurs in a typical pump-probe experiment. The dynamics
has caused the wave packet to split into two separate localised pieces. [Reprinted with
permission from Ref. 23. Copyright 2008, American Institute of Physics.]
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Finally, we point out that, if we can apply the mapping approach just
described to a time-evolving wave packet in the adiabatic representation,
then we can also apply it in the diabatic representation. However, since the
main purpose of the approach is interpretation of the dynamics, we expect
that it will “nd most use in the adiabatic representation.

4.2. Time-ordered-product path-integral approach

If we attempt to extend the path-int egral analysis of Sec. 3.2 to a two-
surface system, we encounter the usual di�culties of applying path-integral
theory to a system with a discrete degree of freedom. We cannot associate a
classical actionS with � , and hence we cannot write down a simple sum over
paths in the form of Eq. (7). Even if we could write such a sum, it is doubtful
whether we could classify the paths in it according to their winding number
n, since n is de“ned only for paths that can be continuously deformed
into one another (with their ends held “xed). Paths that hop between two
discrete states (� = 1 , 2) would seem not to have this property.

Fortunately, there are alternative approaches to constructing path inte-
grals when dealing with systems with discrete degrees of freedom. The “rst
of these is to write the path integral as a time-ordered product, which was
“rst done for non-adiabatic quantum dynamics by Pechukas.40 The second
approach is to map the discrete degree of freedom� onto continuous degrees
of freedom, and an elegant mapping for non-adiabatic quantum dynamics
has been developed by Thoss, Miller and Stock.41 We will base our anal-
ysis on the “rst approach, although an equivalent result can probably be
obtained using the second.

We begin23 by writing down the two-surface analogy to Eq. (21):

� [�]
� P

(xP , t) =
�

� 0 =1 ,2

�
dx0 K [�]

� P � 0
(xP , x0|t) � [N ]

� 0
(x0, 0), (23)

where, in anticipation of the next step, we use the labels� P and � 0 in place
of the label � , and the vectors xP and x0 in place of the N -dimensional
coordinate vectorx. The label � will often be dropped in what follows (but
should be understood).

Starting from Eq. (23), we employ the commonly used technique of
splitting the time t into P equally spaced intervals � = t/P . We can then
split the propagator into a sequence ofP propagators to obtain

K � P � 0 (xP , x0|t) =
�

� PŠ 1

· · ·
�

� 2

�

� 1

K � P ...� 1 � 0 (xP , x0|t) , (24)
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where

K � P ...� 1 � 0 (xP , x0|t) =
�

dxPŠ1 . . .
�

dx2

�
dx1 K � P � PŠ 1 (xP , xPŠ1|�) . . .

. . . K � 2 � 1 (x2, x1|�) K � 1 � 0 (x1, x0|�) . (25)

This time-ordered product form of the propagator allows us to develop a
Feynman-path interpretation of � [e]

� (�, t ) and � [o]
� (�, t ). Let us consider “rst

the special case that the system is con“ned to the lower adiabatic surface.
In this case, Eq. (24) contains just one term, with � 0 = � 1 = · · · = � P = 1,
and Eq. (25) is equivalent to Eq. (7) in the limit that P � � , because
the multi-dimensional integral in Eq. (25) can be evaluated by summing
all the paths obtained by tracing through a given sequence of pointsx0 �
x1 � · · · � xP . Each of these paths has an associated phase, which is the
sum of the individual phasessi i +1 = ln[ K 11(x i +1 , x i |�)] contributed by
each x i � x i +1 segment of the path. It is easy to show thatsi i +1 tends
to the classical action associated with thex i � x i +1 segment of the path
as P � � , and hence that the total phase is equal to the classical action
S(x, x0 |t) associated with the path.

Let us consider now the generalcase, in which Eq. (24) includes 2P

terms, each describing a di�erent sequence of hops� 0 � � 1 � · · · �
� P between the two surfaces, and let us pick out just one of the terms
K � P ...� 1 � 0 (xP , x0|t), corresponding to one particular sequence of hops. We
can convert this term into a path integral

K � P ...� 1 � 0 (xP , x0|t) =
�

Dx(t) exp[iS� P ...� 1 � 0 (xP , x0|t) / � ] (26)

for the same reason that we could do this for the one-surface case [namely
that the multi-dimensional integral over ( x1, x1 · · · xP Š 1) describes the sum
over all paths betweenx0 and xP ]. The only di�erence between Eq. (26) and
Eq. (7) is in the form of the action S� P ...� 1 � 0 (xP , x0|t) associated with each
path x0 � x1 � · · · � xP . As in the one-surface case, this action is the
sum of the individual actions si i +1 associated with the segmentsx i � x i +1

that make up the total path. However, the form of si i +1 associated with
each path segment depends on the values of� i and � i +1 . When � i = � i +1 ,
si i +1 is the classical action for motion on surface� i (where � i = 1 or 2);
when � i �= � i +1 , si i +1 is the action obtained by taking the P � � limit
of the o�-diagonal � i �= � i +1 elements ofK � i � i +1 (x i , x i +1 |�).

Hence the paths in Eq. (26) pass continuously through the spacex,
following the sequences of pointsx0 � x1 � · · · � xP . They do not •hop•
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between the two surfaces. Instead, it is the form of the action that •hops•,
according to the (predetermined) sequence� 0 � � 1 � · · · � � P . The only
topological di�erence between the paths in Eq. (26) and the paths in the
one-surface system of Eq. (7) is therefore that the former are free to pass
through points along the CI seam. However, such paths make no contribu-
tion to the integral, since, as mentioned earlier, the CI seam occupies a set
of points of measure zero. The paths in Eq. (26) may therefore be classi“ed
by a winding number n, de“ned exactly as in the one-surface integrals of
Eq. (9). We may therefore split up the Kernel K � P ...� 1 � 0 (xP , x0|t) into,

K [�]
� P ...� 1 � 0

(xP , x0|t) =
�

n

ein� K [n ]
� P ...� 1 � 0

(xP , x0|t) , (27)

where K [n ]
� P ...� 1 � 0 (xP , x0|t) includes only those paths with winding number

n, and the phase-angle� determines whether � = G (� = � ) or N (� = 0).
Clearly, we can apply Eq. (27) to every term in the sum in Eq. (24).

Thus we can write

K [�]
� P � 0

(xP , x0|t) =
�

n

ein� K [n ]
� P � 0

(xP , x0|t) , (28)

where

K [n ]
� P � 0

(xP , x0|t) =
�

� PŠ 1

· · ·
�

� 2

�

� 1

K [n ]
� P ...� 1 � 0

(xP , x0|t) . (29)

We can also collect together all the even-n terms into K [e]
� P � 0 (xP , x0|t) /

�
2,

and the odd-n into K [o]
� P � 0 (xP , x0|t) /

�
2, to obtain

K [G]
� P � 0

(xP , x0|t) =
1

�
2

�
K [e]

� P � 0
(xP , x0|t) Š K [o]

� P � 0
(xP , x0|t)

�
,

K [N ]
� P � 0

(xP , x0|t) =
1

�
2

�
K [e]

� P � 0
(xP , x0|t) + K [o]

� P � 0
(xP , x0|t)

�
. (30)

If we de“ne the winding number n exactly as in Fig. 3, then the relations

� [e]
� (xP , t) =

�

� 0

�
dx0 K [e]

� P � 0
(xP , x0|t) � [N ]

� 0
(x0, 0)

� [o]
� (xP , t) =

�

� 0

�
dx0 K [o]

� P � 0
(xP , x0|t) � [N ]

� 0
(x0, 0) (31)

hold in the single (i.e. physical) space. This equation is the desired
Feynman-path interpretation of the wave packets� [e]

� (x , t) and � [o]
� (x , t). In
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words, it states that the wave packets� [e]
� (x , t) ( � [o]

� (x , t)) result from the
application of a propagator that contains only even-looping (odd-looping)
Feynman paths when the Kernel is expressed as a sum of time-ordered
products.

4.3. Behaviour of Feynman paths at CI seam

As mentioned in Sec. 4.2, we do not need to consider paths that pass
precisely through the CI seam (since it spans a set of points of measure
zero). However, we do need to considerpaths that pass through a very small
region of space surrounding the CI seam. These paths have well-de“ned
winding numbers n, and will in general make a non-zero contribution to
the path integral. We discuss the properties of such paths here.23

Some insight into the nature of paths close to the CI can be obtained
by considering the form of the hamiltonian in this region. A general expres-
sion for the hamiltonian can be obtained using standard procedures,42, 43

starting with the assumption that it can be approximated very accurately
by a (quasi-)diabatic43, 44 representation of the form

�H dia = Š
� 2

2M

�
� 2 0
0 � 2

	
+



W11(x) W12(x)

W12(x) W22(x)

�

, (32)

where � is the extended gradient operator in theN -dimensional space of
nuclear coordinatesx, which have been scaled so that the same massM
is associated with each. The hamiltonian �H dia is related to the adiabatic
hamiltonian �H adia through the mixing angle,

�( x) =
1
2

arctan
2W12(x)

W22(x) Š W11(x)
. (33)

In the limit that the system approaches the CI, �( x) � 1
2 � (x) [where � (x)

is the encirclement angle de“ned above], and hence

�H adia � Š
� 2

2M



� 2 Š G(x) 2F(x) · �

Š2F(x) · � � 2 Š G(x)

�

+
�

V1(x) 0
0 V2(x)

	
, (34)

where F(x) = 1
2 � � (x) and G(x) = 1

4 {� � (x)} · {� � (x)} .
Both F(x) and G(x) are positive and singular at the CI point. Hence

it is tempting to think that the non-hopping paths experience G(x) as a
strongly repulsive potential •spike•, which stops them from passing through
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the region of space close to the CI; the hopping paths do not experience
the •spike•, and are thus free to pass through this region. However, this
picture is only partially true, since it implies that there exist non-hopping
paths which re”ect from G(x), which survive the sum over paths, and which
therefore contribute a re”ected component to the wave packet. Clearly this
cannot happen, since the equivalent diabatic description of the dynamics
does not allow for re”ection from the CI.

To obtain a clearer picture of the nature of the paths close to the CI, we
need to consider the form of theP � � propagator K � i +1 � i (x i +1 , x i |�)
in the short-time limit, in which it can be factored into a potential energy
part and a kinetic energy part [K 0]� i +1 � i (x i +1 , x i |�). We are concerned
only with the latter, since the potential part is diagonal in � . We can write
out [K 0]� i +1 � i (x i +1 , x i |�) by transforming to the diabatic representation
in which it is diagonal in � , and then transforming back again, to yield

K 0(x i +1 , x i |�) = K 0(x i +1 , x i |�)

×



cos[�( x i +1 ) Š �( x i )] Š sin[�( x i +1 ) Š �( x i )]

sin[�( x i +1 ) Š �( x i )] cos[�( x i +1 ) Š �( x i )]

�

,

(35)

where K 0(x i +1 , x i |�) is the free particle propagator.
The hopping and the non-hopping path segments betweenxi and x i +1

are thus generated by the same free particle kernelK 0(x i +1 , x i |�), and are
then weighted by a factor which depends on the di�erence in the mixing
angle betweenxi and x i +1 . When the system is far away from the CI, �( x)
changes slowly withx, and the weight factors are thus approximately unity
for non-hopping path segments, and zero for hopping segments. On moving
closer to the CI, the weight factors for the hopping paths increase at the
expense of the non-hopping paths. A path segment that passes through a
small region of space enclosing the CI satis“es �(x i +1 ) Š �( x i ) � ± �/ 2,
and hence its weight factor is approximately zero if the segment does not
hop, and unity if it does. In other words, non-hopping paths that attempt
to pass through a small region enclosing the CI are simply removed from
the sum; there is no re”ected component.

5. Numerical Applications

Here we give examples to illustrate the application of the above theory.
These include an application of the time-independent theory of Sec. 2 to
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the hydrogen-exchange reaction (Sec. 5.1), and an application of the time-
dependent theory of Sec. 4 to a reduced dimensionality model of pyrrole
(Sec. 5.2).

5.1. Cancellation of GP e�ects in the
hydrogen-exchange reaction

The hydrogen-exchange reaction H + H2 � H2 + H is a benchmark in
reactive scattering, since it is one of the few reactions for which ab initio
theory can yield quantitati ve agreement with experiment.51 In particular,
theoretical state-to-state di�erenti al cross sections [measuring the angular
distribution of the H 2(v� , j � ) product with respect to the initial H+H 2(v, j )
approach vector] agree quantitatively with experimental measurements. It
is well known that H3 is an E × e Jahn…Teller system, with a CI seam
running through all equilateral triangle geometries of the three nuclei.2, 52…54

A longstanding puzzle25…33has been why GP e�ects are not seen in the cross
sections of this reaction. Calculations by Kendrick showed that GP e�ects
are present in the reaction probablities for this reaction, but that they
cancel out in the cross sections. We will refer to this as the •cancellation
puzzle•. The following two subsections explain how the theory of Sec. 2 was
used to solve the puzzle, and explain why the GP e�ects cancelled in the
cross sections.

5.1.1. Reaction paths and potential energy surface

Figure 11 shows a schematic representation of the H + H2 potential energy
surface,19 plotted using the hyperspherical coordinate scheme of Kupper-
mann.45 We will treat the three hydrogen nuclei as distinguishable particles,
ignoring the requirement that the nuclear wave function be antisymmetric
under exchange of two1H nuclei. The exchange symmetry is easy to incor-
porate by taking appropriate linear combinations of the unsymmetrised
(distinguishable particle) wave functions.18 Hence we consider here only
the e�ects of the GP on the unsymmetrised wave functions. These are the
e�ects caused by reaction paths that encircle the CI, which give rise to the
•cancellation puzzle•.

Hence we consider wave functions in which the reaction starts at an
asymptotic separation of one uniquely speci“ed arrangement of the atoms
(A + BC), and analyze the cross sections produced by reactive scattering
into one of the product channels (AC + B). It is well known 46, 47 that the
dominant H + H 2 reaction path passes over one transition state (1-TS),
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�

×

H + H HA B C

+ H HA CHB+ H HA BHC

‚ ‚

‚

Fig. 11. Schematic representation of the 1-TS (solid) and 2-TS (dashed) reaction paths
in the reaction H A + H B HC � HA HC + H B . The H 3 potential energy surface is repre-
sented using the hyperspherical coordinate system of Kuppermann, 45 in which the
equilateral-triangle geometry of the CI is in the centre ( × ), and the linear transition
states (‚ ) are on the perimeter of the circle; the hyperradius � = 3 .9 a.u. The angle � is
the internal angular coordinate which describes motion around the CI. [Reprinted with
permission from Ref. 19. Copyright 2007, American Institute of Physics.]

as illustrated schematically in Fig. 11. Since GP e�ects are found in the
reaction probabilities at su�ciently high energies 17, 31…34 (> 1.8 eV above
the potential minimum), the wave function must encircle the CI at these
energies, and thus also contain reaction paths that pass over two transition
states (2-TS). For the AC + B products, the 1-TS paths make less than
one full revolution, loop in a clockwise sense around the CI (see Fig. 11),
and are assigned a winding numbern = 0 (following the convention of
Sec. 2.3). The 2-TS paths also make less than one full revolution, but loop
in an anticlockwise sense, and are assignedn = Š1.18 This means that the
1-TS (Feynman) paths are contained in � [e] and the 2-TS paths in � [o].
In principle, there are also paths with higher winding numbers present in
both � [e] and � [o], but these can be ignored (since reaction paths passing
over three or more transition states are highly unlikely in H + H 2). In this
chapter, we will therefore use the terms •�[e] paths• and •1-TS paths• (and
•� [o] paths• and •2-TS paths•) interchangeably.

5.1.2. Cancellation of GP e�ects in state-to-state cross sections

The main experimental observable that we need to consider is the state-to-
state di�erential cross section (DCS), which can be written

d� [�]
n � � n

d�
(�, E ) =

1
2j + 1

�
�
� f [�]

n � � n (�, E )
�
�
�
2

, (36)
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wheren and n� denote the quantum states (v, j ) and (v� , j � ) of the reactants
and products, � is the centre-of-mass scattering angle between the velocity
vectors of the reactants and products,E is the total energy, d� is the
element of solid angle swept out by� ,48 and f [�]

n � � n (�, E ) is the state-to-
state scattering amplitude, obtained by projecting the wave function �
onto the product quantum state (v� , j � ), in the asymptotic limit of in“nite
separation of the products. The wave function � is expanded in terms of
partial waves, each corresponding to a particular value of the total angular
momentum quantum number J (which is a good quantum number). The
set of projections of the partial waves onto the product quantum states,
in the limit of asymptotic separation of the products, is referred to as the
S-matrix, S[�]

n � � n (J, E ). One can construct f [�]
n � � n (�, E ) from the S-matrix

using

f [�]
n � � n (�, E ) =

1
2ik vj

�

J

F (J )(2J + 1) dJ
� � � (� Š � )S[�]

n � � n (J, E ), (37)

where dJ
� � � (� Š � ) is a reduced Wigner rotation matrix, 49 and 	, 	 � are the

projections of j and j � on the initial and “nal velocity vectors. There is
a rough correspondence betweenthe classical impact parameterb (i.e. the
perpendicular distance of the colliding reactants from the centre-of-mass
approach vector) and the quantum numberJ , such that � J � b× velocity.
We insert a “lter F (J ) into Eq. (37), which is set either to unity, to give the
full cross section, or to a value which smoothly includes only a range of low
values of J (J = 0 � 6), to give the low-impact parameter cross sections
(corresponding approximately to head-on collisions). Another important
observable is the state-to-state integral cross section (ICS)

� [�]
n � � n (E ) =

2�
2j + 1

� �

0
|f [�]

n � � n (�, E )|2 sin � d�, (38)

which is the total amount of product scattering into “nal quantum states
(v� , j � ) at energy E.

The •cancellation puzzle• is that GPe�ects are present in the state-to-
state reaction probabilities

P [�]
n � � n (J, E ) =

�
�
�S[�]

n � � n (J, E )
�
�
�
2

, (39)

but cancel completely in the state-to-state ICS and low-impact parameter
(i.e. J = 0 � 6) DCS. Small GP e�ects do survive as oscillations in the
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complete state-to-state DCS, but then cancel out very e�ciently on inte-
grating over � to yield the integral cross sections. To explain these cancel-
lations we need to map contributions from the 1-TS and 2-TS reaction
pathways onto the DCS.

In general, it is di�cult to map contributions from di�erent reaction
paths onto the DCS. However, Eq. (6) tells us that, in a reaction with a CI,
one can easily map the contributions from thee and o (Feynman) paths
onto the DCS. Since Eq. (6) applies to the entire wave function, we can
apply it to the asymptotic limit of the scattering wave function, and thus
to S[G] (E ) and S[N] (E ), to obtain

S[e](E ) =
1

�
2

�
S[N] (E ) + S[G] (E )

�
,

S[o] (E ) =
1

�
2

�
S[N] (E ) Š S[G] (E )

�
. (40)

These equations are all that we need to explain the e�ect of the GP on scat-
tering cross sections such as the DCS and ICS. They allow us to compute
separatee and o cross sections using Eq. (37), which show the scattering
produced by the e and o reaction paths in isolation. They tell us that we
can only expect GP e�ects if f [e]

n � � n (�, E ) and f [o]
n � � n (�, E ) overlap.

In the case of the H + H2 reaction, Eq. (40) specialises to

S[1Š TS] (E ) = S[e](E ),

S[2Š TS] (E ) = S[o] (E ). (41)

Hence, simply by adding and subtracting the computed S[G] (E ) and
S[N] (E ), we can identify the contributions from the 1-TS and 2-TS reaction
paths in the DCS and ICS, and thus explain the e�ects of the GP on the
H + H 2 reaction.

Application of this technique17, 19 to the low-impact parameter cross-
sections yields the results of Fig. 12, which demonstrate that the reason the
GP e�ects cancel in these cross sections is simply that the 1-TS and 2-TS
paths scatter their products into di�erent regions of space. The 1-TS paths
are predominantly backward-scattered, and the 2-TS forward-scattered (at
these low impact parameters). When applied to the full DCS, we obtain17, 19

the results of Fig. 13. These show that the 1-TS and 2-TS paths now scatter
into overlapping regions of space, which is to be expected since these cross
sections manifest small GP e�ects. The reason these e�ects cancel so e�-
ciently in the ICS is revealed by plotting the phases of the amplitudes
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Fig. 12. Low impact parameter DCS at 2.3 eV, for H + H 2(v = 1 , j = 0) � H2(v� =
2, j � = 5 , � � = 0) + H, describing the scattering of (a) � [G ] (solid lines) and � [N ] (dashed
lines), and (b) � [e] (solid lines) and � [o] (dashed lines). [Reprinted with permission from
Ref. 19. Copyright 2007, American Institute of Physics.]

[Fig. 13(c)]. The 1-TS and 2-TS phases vary in opposite senses as a func-
tion of � , and hence the resulting interference term varies rapidly with� ,
and thus cancels out e�ciently on integration. The reason the phases vary
as they do is that the 1-TS paths scatter predominantly into the nearside55

hemisphere, and the 2-TS paths into the farside hemisphere [as de“ned in
Fig. 13(d)]. The di�erent scattering dy namics re”ect di�erences in the the
1-TS and 2-TS reaction mechanisms: the 1-TS paths correspond to a recoil
mechanism; the 2-TS paths to an insertion mechanism.19

5.2. Geometric phase e�ects in two-surface
population transfer

5.2.1. Wave packet calculations onE × e Jahn…Teller model

Here we illustrate the time-dependent, two-surface treatment of Sec. 4 with
a calculation23 on a simple 2-dimensional model of anE × e Jahn…Teller
system. The hamiltonian has the form6

�H = �T R + �T � +



	R 2/ 2 Š kR 0

0 	R 2/ 2 + kR

�

(42)

with

�T R = Š
� 2

2mR




R
R




R

�
1 0
0 1

	
(43)
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and

�T � = Š
� 2

2mR2




 2/
� 2 Š 1/ 4 Š
/
�


/
� 
 2/
� 2 Š 1/ 4

�

. (44)

The polar coordinates (R, � ) are de“ned such that the CI point is at
the origin, and � is the encirclement angle. The constantsk and 	 control
the steepness of the CI and the depth of the •Mexican hat• minimum in the
ground state adiabatic surface;m is the mass. The values taken by these
parameters (in atomic units) were k = 0 .017, 	 = 6 × 10Š 3 and m = 1000.

As explained in Secs. 3 and 4, the even- and odd-looping Feynman paths
can be separated by computing� [G]

� (�, t ) and � [N ]
� (�, t ), and then adding

and subtracting these functions to extract � [e]
� (�, t ) and � [o]

� (�, t ), according
to Eq. (19). It was straightforward to propagate � [G]

� (�, t ) and � [N ]
� (�, t )

numerically for the hamiltonian of Eq. (42). To simplify the calculations,
we propagated� [G]

� (�, t ) in the diabatic representation, and � [N ]
� (�, t ) in the

adiabatic representation, and applied single-valued boundary conditions in
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each case. Numerical wave packet propagation in the adiabatic representa-
tion is potentially di�cult, because the o�-diagonal coupling terms become
singular as the system approaches the CI seam. We avoided the singu-
larity by representing the wave packet on an equally spaced grid, which
was chosen such that no grid point coincided with the CI at R = 0. We
found that the same grid spacing (0.06 a.u.) was su�cient to yield results
converged to better than 1% in both the adiabatic and diabatic calcula-
tions. A similar grid technique is used regularly in (single-surface) wave
packet calculations in Jacobi coordinates,50 where the centrifugal potential
also becomes singular atR = 0. In both calculations, the initial wave packet
was taken to be of the form

� 1(x, y|0) = 0

� 2(x, y|0) =
1

�
� x � y �

eŠ (x Š x 0 )2 /(2 � 2
x )Š (yŠ y0 )2 /(2 � 2

y )+ik x x +ik y y (45)

with ( x0, � x , kx ) = (0 , 0.3, 0), and (y0, � y , ky ) = (1 .7, 0.3, Š7.0) atomic
units.

Snapshots of the resulting |� [e]
� (�, t )|2 and |� [o]

� (�, t )|2 are plotted in
Fig. 14. In this simple example, the system is unable to loop completely
around the CI, and hence� [e]

� (�, t ) and � [o]
� (�, t ) correspond respectively

to the n = 0 and n = Š1 paths only; i.e. to paths that make less than
one complete loop around the CI in the clockwise and counterclockwise
senses. At 8 fs, the system has completed its transfer from the upper to the
lower state, and the parts of the wave packet that have been transferred to
the lower state retain a •memory• of the sense in which the paths looped
around the CI on the upper state, previous to the transfer. In a more
complex, less symmetric, system, these paths could involve very di�erent
reaction mechanisms, and the separation into� [e]

� (�, t ) and � [o]
� (�, t ) would

therefore reveal the contribution made by each mechanism to the relaxation
through the CI.

5.2.2. E�ect of GP on population transfer

The ability to separate the wave packet into � [e]
� (�, t ) and � [o]

� (�, t ) allows
one to investigate and explain the e�ect of the GP on population transfer
between the two surfaces. Figure 15 shows the population transfer versus
time for the Jahn…Teller system of Fig. 14, obtained from� [G]

� (�, t ) and
� [N ]

� (�, t ). The GP increases the terminal population ratio of the lower
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to the upper state from 1.25:1 to 1.93:1, by producing constructive inter-
ference between� [e]

1 (�, t ) and � [o]
1 (�, t ). (The interference is constructive

because the non-adiabatic coupling produces opposite signs in� [e]
1 (�, t ) and

� [o]
1 (�, t ), which are then cancelled out by the GP.)

E�ects such as the above are signi“cant, and would be detectable in
a femtosecond pump-probe experiment measuring quantum yield versus
time. However, the GP will have a large e�ect on the population transfer
only when the overlap integral between� [e]

� (�, t ) and � [o]
� (�, t ) is signi“cant.

In many systems this integral will become very small as a result of phase
averaging. For example, Fig. 15(c) shows the e�ect of the GP on population
transfer obtained using a 2-dimensional model of the1B1 Š S0 intersection
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in pyrrole due to Vallet et al.56 The two degrees of freedom in this model are
a radial distancer associated with stretching of the NH hydrogen atom, and
an angular degree of freedom� associated with bending of the NH bond.
The moment of inertia associated with the latter is about 40,000 a.u. The
initial wave packet was a Gaussian, chosen to approximate the position and
initial momentum of the photoexcited initial wave packet of Ref. 56 (the
packet was centred atr = 4 .2 bohr, with average momentum 3.0 a.u. in the
positive r direction). This gave the initial wave packet an excess energy of
> 1 eV with respect to the CI point on the potential surface. Figure 15(c)
shows that these conditions give a de Broglie wavelength that is su�ciently
short for the overlap integral between � [e]

� (�, t ) and � [o]
� (�, t ) to average to

a very small value. Hence the GP has no appreciable e�ect on population
transfer in this system.

6. Conclusions

The central theme running through this chapter has been a simple one,
that the nuclear wave function at a CI can be decomposed, rigorously, into
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contributions from Feynman paths that loop an even and an odd number
of times about the CI. This decomposition does not require a semiclas-
sical approximation in order to extract trajectories from the wave func-
tion. Rather, it can be applied to the exact nuclear wave function, without
approximation, by exploiting the symmetry of the system in a double space.

For a scattering system, or for a bound state system evolving over a
“nite time, the even- and odd-looping components correspond to di�erent
dynamics. The decomposition technique therefore allows one to extract
separate wave functions that describe each of these processes indepen-
dently. Extracting these functions allows one to interpret and visualise the
dynamics, and also to explain how the GP (which changes the relative sign
of the interference between these components) a�ects experimental observ-
ables.

An important question that arises from this work is whether interference
between even- and odd-looping paths in the immediate vicinity of a CI
in”uences the amount of population transfer. This e�ect is easy to compute
in simple systems (as we showed above). In many of the systems typically
studied in pump-probe experiments, it is unlikely that such interference
will be important, because the topography of the potential surfaces is such
that the system accelerates through the CI and thus has a short de Broglie
wavelength, causing interference e�ects to average out. However, in systems
with sloped conical intersections, or that access the CI through tunnelling,
it is likely that such interference will in”uence considerably the amount of
population transfer. Such e�ects may also be important in the condensed
phase on account of the rapidity of the relaxation through the CI.
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8. J. Schön and H. K öppel, J. Chem. Phys. 108, 1503 (1998).
9. B.K. Kendrick, Phys. Rev. Lett. 79, 2431 (1997).

10. B.E. Applegate, T.A. Barckholtz and T.A. Miller, Chem. Soc. Rev. 32, 38
(2003).

11. C.A. Mead, Chem. Phys. 49, 23 (1980).
12. D. Babikov, B.K. Kendrick, P. Zhang and K. Morokuma, J. Chem. Phys.

122, 044315 (2005).
13. L.S. Schulman, Phys. Rev. 176, 1558 (1968).
14. L.S. Schulman, J. Math. Phys. 12, 304 (1971).
15. L.S. Schulman, Techniques and Applications of Path Integration (Wiley, New

York, 1981).
16. M.G.G. Laidlaw and C.M. Morette DeWitt, Phys. Rev. D 3, 1375 (1971).
17. J.C. Juanes-Marcos, S.C. Althorpe and E. Wrede, Science 309, 1227

(2005).
18. S.C. Althorpe, J. Chem. Phys. 124, 084105 (2006).
19. J.C. Juanes-Marcos, S.C. Althorpe and E. Wrede, J. Chem. Phys. 126,

044317 (2007).
20. F. Bouakline, S.C. Althorpe and D. Pel´aez Ruiz,J. Chem. Phys. 128, 124322

(2008).
21. J.C. Juanes-Marcos, A.J. Varandas and S.C. Althorpe, J. Chem. Phys. 128,

211101 (2008).
22. S.C. Althorpe, J.C. Juanes-Marcos and E. Wrede, Adv. Chem. Phys. 138, 1

(2008).
23. S.C. Althorpe, T. Stecher and F. Bouakline, J. Chem. Phys. 129, 214117

(2008).
24. F. Bouakline, B. Lepetit, S.C. Althorpe and A. Kuppermann, in The Jahn…

Teller E�ect, Springer Series in Chemical Physics vol. 97 , ed. H. Köppel,
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1. Introduction

1.1. Electron spectroscopies

In this chapter we are primarily concerned with electron photodetachment
spectroscopies in which electrons are detached from negative ions, thereby
accessing electronic states of the neutral coupled by conical intersections.
We will not go into the relative advantages of these spectroscopies, which
include anion photoelectron spectroscopy (anion PES),1, 2 anion zero elec-
tron kinetic energy3, 4 (anion ZEKE) spectroscopy and anion slow electron
velocity-map imaging5 (anion SEVI) spectroscopy, either with respect to
each other or to photon spectroscopies. In this regard, we refer the reader
to the recent review by Neumark.6 However, several fundamental advan-
tages are worth emphasizing. Electron based spectroscopies, although ulti-
mately electric dipole driven processes, are •universalŽ, in that there are no
dark states7 as in photon spectroscopies. Furthermore, the use of negative
ions facilitates mass selection, which is invaluable in studies of clusters and
solvation.8–10

With respect to spectral analysis, the identi“cation of the electronic
state from which a spectral feature originates is facilitated by determining
the anisotropy parameter,11 obtained via the measurement of the photo-
electron intensity as a function of the angle between the electric vector
and the detection axis. Photoelectron angular distributions yield even more
detailed information regarding the electronic states involved in the detach-
ment process, but are correspondingly more di�cult to determine under
general circumstances.11–14

While this work focuses on the frequency domain, it should be noted that
time resolved photoelectron spectroscopy (TR-PES) is another extremely
powerful tool in current use. This class of techniques was recently reviewed
by Stolow.7 Experiments in the time domain provide a valuable complement
to frequency domain methods in the study of electronically nonadia-
batic processes. Time resolved spectroscopic techniques allow for the indi-
rect observation of the evolution of nuclear motion on coupled electronic
potential energy surfaces, yielding information that was once exclusively
the domain of theoretical simulation.
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1.2. Scope of this work

The e�ect of nonadiabatic interactions on electron photodetachment
spectra, or alternatively, what can be learned about nonadiabatic
interactions from electron photodetachment spectra, is the general subject
of this work. It is now generally appreciated that conical intersections play
a key role in nonadiabatic processes.15–17 Conical intersections fall into two
categories: those required by symmetry, denoted here as Jahn…Teller conical
intersections,18, 19 and those which are not, denoted generally as accidental
conical intersections.20 Accidental conical intersections in turn exist in two
forms: symmetry-allowed intersections, in which two states carrying distinct
irreducible representations of a spatial point group intersect conically, and
same symmetry intersections, where point group symmetry plays no role
or is absent.20 It is the appreciation of the prevalence of same symmetry
conical intersections that has led to the current interest in this once arcane
topographical feature.

This chapter describes the simulation of photoelectron spectra involving
electronic states strongly coupled by accidental and same symmetry
conical intersections using the vibronic(i.e. vibrational el ectronic) coupling
model,21 originally introduced by Cederbaum, Köppel and Domcke22 more
than a quarter of a century ago. In the intervening period, the original
model has seen a myriad of extensions and applications, and has been
the subject of numerous reviews,22 including an excellent review in this
series in 2004.21 The purpose of this article is to describe work that has
been done since that review to extend the computational utility of the
vibronic coupling model and some applications that have exploited these
new capabilities. We will review work done in other venues but the detailed
discussion will emphasize work done by the current authors and our collab-
orators. In this regard we note that there are in general two distinct
approaches to the simulation of electron photodetachment spectra: the
time-independent approach and the time-dependent approach.21 Consid-
erable progress in the implementation of the time-dependent formulation
has been made in the context of the multicon“gurational time-dependent
Hartree (MCTDH) approach. 23 Recent progress in direct dynamics tech-
niques,24 including the multiple spawning25 and the variational Gaus-
sian wave packet approaches26 should also be noted. However, in this
chapter we focus on the time-independent method which is nicely summa-
rized in Ref. 27. In many cases, time-independent methods permit an
analysis of individual lines in the spectrum. Complementarily, time-
dependent approaches, in addition to their relative computational e�ciency,
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permit the observation of wave packet evolution in the vicinity of conical
intersections.

2. Vibronic Coupling Model

We begin with a review requisite concepts for the computation of the spec-
tral intensity distribution function,

I (E ) = 2 �
�

f

|Ai
f |2� (E Š Ef ), (1a)

Ai
f = � f |µ|i � , (1b)

using the vibronic coupling model. In Eq. (1b), |i � denotes the “xed initial
state, |f � denotes a “nal state, and µ is a transition moment operator.
The initial state, |i � , is assumed to be well described by a single electronic
potential energy surface, on which vibrational motion is harmonic. The “nal
state |f � is a complicated vibronically coupled state. Extensions to coupled
initial states have also been discussed.28 In the present formulation, we
consider a molecule withN int = 3 N atom Š 6 internal degrees of freedom
and neglect molecular rotation. While the discussion that follows is phrased
in the language of negative ion photoelectron spectroscopy, the concepts
and algorithms discussed are applicable to other electron and even photon
spectroscopies.

The presentation of the theoretical framework is organized as follows.
We begin by describing the wave function prior to and after photodetach-
ment. The description of these wave functions provides for a concise, but
precise, statement of the level of treatment and the approximations inherent
in our multimode vibronic coupling approach. We will consider two cases:
molecular states in which the spin-orbit interaction must be included, and
those for which it can be neglected. Since the spin-orbit interaction is a rela-
tivistic e�ect, we refer to attributes de termined with the spin-orbit interac-
tion included (ignored) as relativistic (nonrelativistic) attributes. Elegant
analyses of the spin-orbit interaction in the presence of conical and Renner…
Teller intersections have been reported by Domcke and Poluyanov29–31 and
are reviewed in this volume.

The “nal state is presented in both the relativistic and nonrelativistic
formulations to explain how the spin-orbit interaction is included. These
representations for the “nal state |f � are then used to organize the
discussion of secular equations usedin their determination. The relevant
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Hamiltonians for each level of treatment are described and the origin
of the Ham reduction e�ect32, 33 in the relativistic case is explained. We
then turn to the evaluation of the spectral intensity distribution function
using a pedagogical approach based on Ref. 34. The evaluation of the rela-
tivistic spectral intensity distributio n function addresses issues encountered
working in a time-reversal adapted electronic basis35, 36 and demonstrates
the origin of spin-orbit induced intensity borrowing.

The “nal portion of the theoretical section deals with three compu-
tational issues. The “rst is central to the vibronic coupling model:
the construction of the nonrelativistic coupled electronic state quasi
diabatic Hamiltonian that reproduces the electronic structure aspects of
the problem. This issue is germane to both time-dependent and time-
independent approaches. There are several procedures for determiningH d

currently in use, which include (i) a •diabatization by ansatzŽ approach
in which energies (only) are matched using least squares “tting,37–39 (ii) a
diabatization by maximizing overlap approach,40 and (iii) approaches using
analytic energy gradients.21, 27 The advantages of the approach reviewed in
this work are that (i) it provides an a ccurate representation of the region
around a point of conical intersection, (ii) it can be made more accurate
in a systematic manner, and (iii) given the way it incorporates derivative
couplings into the “tting procedure, it is maximally diabatic in a least
squares sense.

The two remaining issues that will be discussed are speci“c to the
time-independent approach and address the solution of the nonrelativistic
vibronic secular equation. In particular we describe (i) an approach for
reducing the size of the Hamilonian matrix used in the vibronic Schrödinger
equation by careful choice of the basis used to expand|f � and (ii) an open-
ended “ne-grained parallel Lanczos based algorithm for solving that secular
problem.

2.1. Vibronic wave functions

The vibronic wave functions are expressed as a sum of products of an
electronic term � e

� (r N el
; q) and a vibrational term, � f

� (q, t), where r N el

denotes the coordinates of theN el electrons andq is a set ofN int internal
coordinates.41 Here, e can take the valuesa or d depending on whether
� e

� (r N el
; q) denotes an adiabatic or quasi-diabatic electronic state, respec-

tively. The possible time dependence of the vibrational functions is indi-
cated by t. In a time-independent approach, t is eliminated. The adjective
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quasi is used to indicate that, in general, rigorous diabatic electronic states
do not exist.42–44 Having said this, we will drop the modi“er quasi for the
remainder of this work.

2.1.1. The initial state

The initial state, which in the case of many negative ion photoelectron
spectroscopies is the cold anionic ground electronic state, is written as

|i � = � a
0(r N el +1 ; Q�)� 0

I (Q�), (2)

where

� 0
I (Q� ) = � 0

I (Q� ) =
N int
�

j =1

� 0,j
I j

(Q�
j ). (3)

This representation of the initial state requires some explanation. Firstly,
note that the electronic state � a

0 is an adiabatic electronic state for a
molecule with N el + 1 electrons, whose coordinates are denotedr N el +1 .
This electronic state has an equilibrium geometry denotedqa,min . The Q�

are the normal modes of the corresponding harmonic potential and are
given as a linear transformation of theq as

Q� = L �(q Š qa,min ), (4)

while � 0,j
m denotes themth harmonic oscillator function corresponding to

the j th mode of the anion harmonic potential. Owing to the assumption
of a harmonic potential for the anion, its (low-lying) vibrational levels are
represented by anN int dimensional vector I = ( I 1, I 2, . . . , I N int ), where I m

indicates the number of phonons in themth mode, and I = 0, is the ground
vibrational state. The corresponding vibrational wave function is given by
� 0

I (Q�), the multimode product in Eq. (3).

2.1.2. The Þnal state: Nonadiabatic Ansatz

The “nal state is a vibronic level of the neutral molecule, which hasN el

electrons and one electron photodetached. The “nal state wave function is
much more challenging to determine (and describe). Firstly, there is the
issue of the coordinates. In the time-independent approach, a set of normal
coordinatesQ, are employed to describe the “nal state vibronic levels:

Q = L(q Š q0). (5)
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However, there is no universal choice for eitherL or q0. In fact, in the
applications discussed in Sec. 3, two di�erent choices are made. We simply
observe here that it is quite common to chooseQ = Q�, whereas in our
work Q �= Q� with L �= L � and q0 �= qa,min . The implications of this are
discussed in Sec. 2.2.1.

Unlike the anion wave function, for which a single electronic state
su�ces, the wave function for the neutral species must be expanded as
a sum of vibronic products, that is

|f � =
N state
�

� =1

� d
� (r N el

; Q)� f
� (Q, t), (6)

where � d
� are diabatic electronic states. Note that these areN el, rather

than N el + 1, electron wave functions. Therefore, although the wavefunc-
tion can provide a correct description of the neutral or photodetached
species, it cannot describe the photodissociation process, that is the matrix
element µf,i = � f |µ|i � , since the outgoing electron is ignored. In order
to incorporate the outgoing electron, and thus enable the determination
of µf,i in the vibronic coupling model, the wave function is assumed to
be unaltered by the photodetached electron in a simpli“cation termed the
sudden approximation.34 This approximation allows us to determine the
“nal state, |f � , without “rst determining the transition moment, which
may be a formidable computational challenge in itself.

2.1.2.1. Time-independent nonrelativistic wave functions
In the time-independent approach, the vibrational wave functions � f

� (Q)
in Eq. (6), are expanded as a sum of the multimode products, that is

� f
� (Q) =

�

m

df
�, m � �

m (Q) =
�

m

df
�, m

N int
�

i =1

� �,i
m i

(Qi ), 0 � mi < M i , (7)

so that

� T,nr
f (r N el

, Q) =
�

m ,�

� d
� (r N el

; Q)df
�, m

N int
�

i =1

� �,i
m i

(Qi ). (8)

The same multimode basis is used for each electronic state, an approxi-
mation that is essential to the e�ciency of the computational approach
discussed in Sec. 2.4. Note that in Eq. (7) there areN vib =

� N int

i =1 M i terms.
While strongly dependent on the system under study,N vib is routinely in
the tens to hundreds of millions and can often exceed 109. The special
techniques required to treat such large expansions are discussed in Sec. 2.4.
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2.1.2.2. Wave functions including the spin-orbit interaction
Because of the large size of the expansion in Eq. (8) and the potential need
for complex arithmetic in treating the spin-orbit interaction, the relativistic
eigenstates � T,so

l are expanded in the nonrelativistic eigenbasis, �T,nr
f . In

order to explain the form of these eigenstates, the spin quantum numbers
of � d

� (r N el
; Q) must be speci“ed. Since this review is concerned exclusively

with photodetachment from singlet states, the � d
� are doublets which we

denote � d,M s
� whereM s = ± 1

2 . It is convenient to work in the time reversal
adapted electronic basis.35, 36

� d,±
� =

± 1
�

2
(� d,1/2

� ± i � d,Š 1/2
� ). (9)

The time-reversal basis simpli“es the treatment of the spin-orbit interaction
and is brie”y reviewed in Appendix A. Replacing � d

� in Eq. (8) with � d,±
� ,

the eigenstates ofH T,nr can be written as

� T,nr,p
f (r N el

, Q) =
�

m ,�

� d,p
� (r N el

; Q)df
�, m

N int
�

i =1

� �,i
m i

(Qi ), p = ± . (10)

Since the nonrelativistic energies are independent ofp, these states come in
degenerate pairs, called Kramers doublets.45 Using the lowest 2N eig nonrel-
ativistic eigenstates as the basis, the eigenstates of total relativistic Hamil-
tonian with energy E T,so

m are given by

� T,so
m =

�

p = ±
k = 1 Š N eig

cm
p,k � T,nr,p

k . (11)

Since �T� T,nr, +
k = � T,nr, Š

k , the Kramers degenerate pair (� T,so
m , �T � T,so

m ),
where �T is the time reversal operator, is contained in this expansion.

2.1.3. Determination of time-independent wave functions

2.1.3.1. Nonrelativistic Schrödinger equation
In the nonrelativistic case, the N state N vib dimensional eigenvectordk

�, m

and the associated energyE T,nr
k are determined from the nonrelativistic

nuclear-electronic Schrödinger equation

(H T,nr Š E T,nr
f )� T,nr

f = 0 , (12)
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where

H T,nr = T nuc + H 0(r ; Q). (13)

In the above, H 0 is the Coulomb or nonrelativistic Hamiltonian and T nuc

is the nuclear kinetic energy operator.
The working form of Eq. (12) is obtained by inserting Eq. (8) into

Eq. (12), then multiplying by � d
� (r N el

; Q)� �
m (Q) and integrating succes-

sively with respect to r and Q to get
�

�
�
�
�

H vib ,nr
1;1 H vib ,nr

1;2 · · · H vib ,nr
1;N state

H vib ,nr
2;1 H vib ,nr

2;2 · · · H vib ,nr
2;N state

· · ·
H vib ,nr

N state ;1 H vib ,nr
N state ;2 · · · H vib ,nr

N state ;N state

�

�
�
�
	

�

�
�
�
�

df
1

df
2

·
df

N state

�

�
�
�
	

= E T,nr
k

�

�
�
�
�

df
1

df
2

·
df

N state

�

�
�
�
	

, (14)

where we have noted that the � d
� (r N el

; Q) are diabatic, and de“ned

H vib ,nr
�, m ;� � m = � � �

m (Q)|H d,0
�,� � (Q)|� � �

m � (Q)� Q , (15)

and

H d,0
�,� (Q) = � � d

� (r N el

; Q)|H 0|� d
� (r N el

; Q)� r . (16)

In Eq. (14) each H vib ,nr
i ;j is an N vib × N vib matrix. The construction of

H d,0
�,� � (Q) from ab initio electronic structure data is a signi“cant issue in

the spectral simulation and is discussed at length in Sec. 2.4.1. When no
confusion will take place,H d,0 will be abbreviated H d. The diagonalization
of H vib ,nr

i ;j is a computational challenge, one frequently tackled employing a
Lanczos algorithm.46, 47 An open-end “ne grained parallel implementation47

is described in Sec. 2.4.

2.1.3.2. Schrödinger equation including the spin-orbit interaction
The total nuclear-electronic Hamiltonian including the spin-orbit interac-
tion, H T,so , is

H T,so = T nuc + H 0(r ; Q) + H so(r ; Q), (17)
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where H so is the spin-orbit operator in the Breit…Pauli approximation48

H so(r ; Q) =
N el
�

i =1

hso,1Š 2(r i , Q) · si , (18)

and hso,1Š 2 includes the one (spin-orbit) and two electron (spin…same orbit
and spin…other orbit) parts of the Breit…Pauli spin-orbit operator.48 The
relativistic wave functions in Eq. (12) satisfy the relativistic electronic-
nuclear Schrödinger equation,

(H T,so Š E T,so
m )� T,so

m = 0 . (19)

To determine � T,so
m , the matrix elements

H T,so
kz ;k � ,z � = � � T,nr,z

k |H T,so |� T,nr,z �

k � �

= � k,k � � z,z � E T,nr
k + � � T,nr,z

k |H so|� T,nr,z �

k � � (20)

are required. Using the de“nition of � T,nr,z
k (r , Q) in Eq. (10), we have

� � T,nr,z
f |H so|� T,nr,z �

l � =
�

m , �
m � , � �

� df
�, m � �

m |H e,so
�,z ;� � ,z � |dl

� � ,m � � � �

m � � Q

=
�

m , �
m � , � �

df
�, m H̄ so

m ,�,z ;m � � � ,z � dl
� � ,m � , (21)

where

H̄ so
m ,�,z ;m � ,� � ,z � � � � �

m (Q)|H e,so
�,z ;� � ,z � (Q)|� � �

m � (Q)� Q (22a)

and

H e,so
�,z ;� � ,z � (Q) � � � d,z

� (r N el
; Q)|H so|� d,z �

� � (r N el
; Q)� r . (22b)

To evaluate H e,so
�,z ;� � ,z � (Q) we assumeN state = 2 but the results are readily

extended to larger values ofN state . Using the Slater…Condon rules, with
the basis functions ordered as �d,+

� , � d,+
� , � d,Š

� , � d,Š
� , the H e,so

�,z ;� � ,z � (Q) are
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given by

H e,so

=

�

�
�
�
�
�
�
�

0 iH rso
Y 0 iH rso

Z + H rso
X

Š iH rso
Y 0 ŠiH rso

Z Š H rso
X 0

0 iH rso
Z Š H rso

X 0 ŠiH rso
Y

Š iH rso
Z + H rso

X 0 iH rso
Y 0

�

�
�
�
�
�
�
	

,

(23)

where

H rso
� (Q) = i




� d,1/2
�

�
�
�
�
�
�

N el
�

i =1

h1Š 2
� (r i , Q)sz(i )

�
�
�
�
�
�
� d,1/2

�

�

r

, � = X, Y, Z.

(24)
Note that Eq. (23) involves only the approximation that interactions with
other nonrelativistic electronic wave states can be neglected. The fact
that only one combination of the Ms values is required in Eq. (24) is a
consequence of the Wigner…Eckart theorem.48–50 Using Eq. (23), Eq. (21)
reduces to

� � T,nr,z
f |H so|� T,nr,z �

l �

=
�

m ,m �

(df
1,m dl

2,m � Š df
2,m dl

1,m � )[iH so
Y,m ,m � ]

� i (H A,so
Y )f,l for z = z� = + (25a)

=
�

m ,m �

(df
1,m dl

2,m � Š df
2,m dl

1,m � )[iH so
Z, m ,m � + H so

X, m ,m � ]

� (iH A,so
Z + H A,so

X )f,l for z = + , z� = Š (25b)

and the z = z� = Š and z = Š, z� = + results are obtained from

� � T,nr, Š
k (r , Q)|H so|� T,nr, Š

l (r , Q)�

= � � T,nr, +
k (r , Q)|H so|� T,nr, +

l (r , Q)� � , (26a)

� � T,nr, Š
k (r , Q)|H so|� T,nr, +

l (r , Q)�

= Š� � T,nr, +
K (r , Q)|H so|� T,nr, Š

l (r , Q)� � , (26b)
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which is a consequence of the use of a time-reversal adapted electronic basis
as re”ected in Eq. (23) [and see also Appendix A].35, 36 Equations (25) and
(26) are particularly illuminating in the limit that H e,so

� ·z;� � ,z � (Q) is indepen-
dent of Q. In that case, Eqs. (21), or (25), (26) reduce to

� � T,nr,z
k (r , Q)|H so|� T,nr,z �

l (r , Q)� = Ok,l H e,so
�,z ;�z � , (27a)

where

Of,l =
�

m

(df
1,m dl

2,m Š df
2,m dl

1,m ). (27b)

Since |Ok,l | is less than 1, it has the e�ect of reducing the net spin-orbit
interaction [Eq. (27a)] and hence is referred to as a generalized Ham reduc-
tion factor. 32, 33

Using Eqs. (11), (20), (25a) and (25b), Eq. (19) becomes:


ET,nr + iH A,so
Y iH A,so

Z + H A,so
X

iH A,so
Z Š H A,so

X ET,nr Š iH A,so
Y

� 
cm

+

cm
Š

�

= E T,so
m


cm

+

cm
Š

�

; (28)

here E T,nr
k,l = � k,l E T,nr

k . In practice, Eqs. (27a) and (27b) are used to

simplify the N eig × N eig antisymmetric matrices H A,so
W . Since the matrix on

the left hand side of Eq. (28) is complex hermitian it is diagonalized by the
standard technique of separating the real and imaginary parts, such that

�

�
�
�
�
�
�

ET,nr H A,so
X ŠH A,so

Y ŠH A,so
Z

ŠH A,so
X ET,nr ŠH A,so

Z H A,so
Y

H A,so
Y H A,so

Z ET,nr H A,so
X

H A,so
Z ŠH A,so

Y ŠH A,so
X ET,nr

�

�
�
�
�
�
	

�

�
�
�
�
�
�

cm,R
+

cm,R
Š

cm,I
+

cm,I
Š

�

�
�
�
�
�
	

= E T,so
m

�

�
�
�
�
�
�

cm,R
+

cm,R
Š

cm,I
+

cm,I
Š

�

�
�
�
�
�
	

,

(29)

where cm
± = cm,R

± + icm,I
± .

2.2. Spectral intensity distribution function

This section evaluates the working expressions for the spectral intensity
distribution functions, I nr (E ) and I so(E ). Two key issues are addressed:
(i) the nature of the transition moments to the diabatic states of the
neutral and (ii) the intensity borrowing induced by the spin-orbit inter-
action. The derivation of I nr (E ) presented here follows that of Ref. 34. As
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noted previously, the photodetachedelectron must be explicitly considered
in order to determine I (E ). The outgoing electron is assumed to be in an
orbital � c

f wherec denotes the fact that this orbital describes a continuum
electron and f denotes the vibronic channel. While even this simpli“ed
analysis is beyond the scope of this review, Appendix B suggests how this
question might be addressed.

2.2.1. Nonrelativistic formulation

Using � d,± 1/2
� and the continuum orbital � c

f , we can construct theN el + 1
electron spin singlet as

� d,S
� =

1
�

2
A[� d,Š 1/2

� (r N el
; Q)� c

f (r N el +1 )�

Š � d,1/2
� (r N el

; Q)� c
f (r N el +1 )� ], (30)

where A is the N el + 1 electron antisymmetrizer and � c
f (r N el +1 ) is a one-

electron function of the N el + 1 electron. In this case,

µnr,f,I =



�

�

1
�

2
A

�
� d,Š 1/2

� (r N el
; Q)� c

f (r N el +1 )� Š

� d,+1 /2
� (r N el

; Q)� c
f (r N el +1 )�

�

× � f
� (Q)|µ|� a

0(r N el +1 ; Q�)� 0
I (Q� )

�

r ,Q

. (31)

The diabatic state transition moment, µ�, 0(Q) is de“ned as:

µ�, 0(Q) =
�

1
�

2
A[� d,Š 1/2

� (r N el

; Q)� c
f (r N el +1 )�

Š � d,+1 /2
� (r N el

; Q)� c
f (r N el +1 )� ]|µ|� a

0(r N el +1 ; Q�)
�

r
. (32)

The diabatic state dependence ofµ�, 0(Q) is attributed entirely to the
diabatic electronic state, since� c

f depends on the vibronic level only. Using
Eqs. (3) and (6) the nonrelativistic spectral distribution function reduces
to

µnr,f, I =
�

�

� � f
� (Q)|µ�, 0|� 0

I (Q�)�

�
�

�

µ�, 0� � f
� (Q)|� 0

I (Q�)�

=
�

m ,�

df
�, m [µ�, 0o(m, I )] = s• d, (33)



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch06

210 M. S. Schuurman and D. R. Yarkony

where, the approximate equality in Eq. (33) assumesµ�, 0(Q) is independent
of Q,

o(m, I ) =



N int
�

i =1

� �,i
m i

(Qi )

�
�
�
�
�
�

N int
�

j =1

� 0,j
I j

(Q�
j )

�

, (34)

and

s�, m = µ�, 0o(m, I ). (35)

The vector of Franck…Condon overlap factorso(m, I ) has length N vib .
Although N vib is large, e�cient algorithms for evaluating o(m, I ) based
on well-known recursion relations51–54 have been reported.55

The evaluation of s• df , the dot product of two vectors of dimension
N state N vib , is intimately related to the diagonalization procedure used to
solve Eq. (14), as discussed in Ref. 21 and Sec. 2.4.3. The transition inten-
sities, s• df , are readily determined if s is used as the seed or initial guess
vector in the Lanczos procedure used to determinedf .

2.2.2. Inclusion of spin-orbit coupling

The derivation of the spectral intensity distribution including the spin-orbit
interaction proceeds in a fashion similar to that in the nonrelativistic case,
except that some care must be taken in dealing with the time reversal
adapted electronic basis. Starting with Eq. (11) and using the sudden
approximation, we construct two N el + 1 electron wave functions

� T,so,�
m =

�

p = ±
k = 1 Š N eig

cm
p,k � T,nr,p

k (� c
m � ) and

� T,so,�
m =

�

p = ±
k = 1 Š N eig

cm
p,k � T,nr,p

k (� c
m � ), (36)

where the parenthesis indicates that when the continuum orbital is included,
N el + 1 antisymmetrized products must be formed. These linear combina-
tions can be re-expressed in terms of spin-eigenfunctions by forming

� T,so, ±
m =

1
�

2
(� T,so,�

m ± i � T,so,�
m ). (37)
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Since thecm
p,k are independent of� c

m and its spin, the electronic part of the
wave functions in Eq. (37) is given below (suppressing theN el superscript),
for p = +, terms in the sum in Eq. (36):

1
�

2
(� d,+

� (� c
m � ) ± i � d,+

� (� c
m � ))

=
1
2

(� d,1/2
� (� c

m � ) + i � d,Š 1/2
� (� c

m � ) ± i (� d,1/2
� (� c

m � ) + i � d,Š 1/2
� (� c

m � ))) .

(38a)

and for p = Š, terms in the sum in Eq. (36):

1
�

2
(� d,Š

� (� c
m � ) ± i � d,Š

� (� c
m � ))

=
1
2

(� d,1/2
� (� c

m � ) Š i � d,Š 1/2
� (� c

m � ) ± i (� d,1/2
� (� c

m � ) Š i � d,Š 1/2
� (� c

m � ))) .

(38b)

It can be seen from the form of � d,S
� in Eq. (30) that Eq. (38a) contains

one singlet term which occurs for theŠi combination in Eq. (37), while
Eq. (38b) contains one singlet term which occurs for the +i combination in
Eq. (37). Thus each of the wave functions in Eq. (37) makes an independent
contribution to the line intensity

�
2µso,m, I ,+

=



�

p = ±
f = 1 Š N eig

cm
p,f (� T,nr,p

f (� c
m � ) + i � T,nr,p

f (� c
m � ))| µ|� a

0 � 0
I

�

=



�

f =1 Š N eig

cm
Š ,f (� T,nr, Š

f (� c
m � ) + i � T,nr, Š

f (� c
m � ))| µ|� a

0 � 0
I

�

(39a)

and
�

2µso,m, I ,Š

=



�

p = ±
f = 1 Š N eig

cm
p,f (� T,nr,p

f (� c
m � ) Š i � T,nr,p

f (� c
m � ))| µ|� a

0 � 0
I

�

=



�

f =1 Š N eig

cm
+,f (� T,nr, +

f (� c
m � ) Š i � T,nr, +

f (� c
m � ))| µ|� a

0 � 0
I

�

. (39b)
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Then the line intensity is given by

2|Aso
m, I | = |µso,m, I ,+ |2 + |µso,m, I ,Š |2. (40)

To be speci“c, we insert Eqs. (2), (6) and (7) into Eq. (39a) giving:

µso,m, I ,+ =



N eig
�

f =1

cm
Š ,f

�

s,�

df
�, s

�

�
N int
�

i =1

� (n ) ,i
si

(Qi )

�

� (� d,Š
� (� c

m � )

+ i � d,Š
� (� c

m � ))| µ|� a
0

N int
�

j =1

� 0,j
I j

(Q�
i )

�

. (41a)

Using Eqs. (32)…(35) and assuming the electronic transition moment is
independent ofQ, this becomes

µso,m, I ,+ =
N eig
�

f =1

cm
Š ,f

�

m � ,�

df
�, m � µ�, 0o(m � , I ) =

N eig
�

f =1

cm
Š ,f µnr,f, I . (41b)

Similarly,

µso,m, I ,Š =
�

f =1 Š N eig

cm
+,f µnr,f, I . (41c)

Note that in the nonrelativistic limit, cm
p,f = � f,m � p,+ or cm

p,f = � f,m � p,Š , so
Eq. (40) becomes equivalent to Eq. (33). Equations (41b) and (41c) evince
the intensity borrowing in the relativistic case.

2.3. Hamiltonians

2.3.1. Coulomb or nonrelativistic diabatic Hamiltonian, H d

In the vibronic coupling approximation, the nonrelativistic diabatic Hamil-
tonian matrix H d in Eq. (16), has the form

H d,0
�,� (Q) = � � d

� (r N el
; Q)|H 0|� d

� (r N el
; Q)� r

= E 0
� (Q0)� �,� +

�

i

V (1) ,�,�
i Qi +

1
2

�

i,j

V (2) ,�,�
i,j Qi Qj + · · · (42)

Here we have explicitly written H d,0 through second order. The determi-
nation of the unknown coe�cients is discussed in Sec. 2.4.1. This quadratic
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vibronic coupling Hamiltonian is the workhorse of the “eld, although Hamil-
tonians with higher order terms have been reported.38, 39, 56 In this chapter
we will review a study which addresses the limits of utility of this quadratic
approach and how that limit can be achieved.57 Note that H d is unchanged
if the time reversal adapted electronic wave functions in Eq. (10), � d,±

� , are
used, that is

� � d,z
� |H 0|� d,z �

� � r = H d,0
�,� (Q)� z,z � , (43)

wherez, z� = ± . The electronic Schrödinger equation corresponding toH d is

(H d(Q) Š E 0
J (Q)I )eJ (Q) = 0. (44)

2.3.2. Kinetic energy operator

As Eqs. (14) and (18) show, construction ofH T,nr or H T,so requires deter-
mination of the kinetic energy operator. This is generally addressed by
working in a normal mode basis of a reference Hamiltonian. Thus

H T,nr = T nuc + H 0 = ( T nuc + V ref ) + ( H 0 Š V ref ) � H T, ref + � H. (45a)

The contributions of H T, ref will only appear in the diagonal elements of
H T,nr and are given by the harmonic oscillator energy expression:

� � �
m |H T, ref |� �

m � =
N int
�

i =1

	 �
i (mi + 1 / 2). (45b)

The choice of which normal coordinates, and thus the form ofH T, ref , to
employ in a vibronic coupling computation will be discussed in further
detail in the following section.

2.4. Computational issues

In this section we review three computational issues relevant to the simu-
lation of photoelectron spectra. Firstly we consider the construction of
diabatic Hamiltonians from electronic structure data. This key issue is rele-
vant to both the time-dependent and time-independent formulations of the
multimode vibronic coupling model. Then we turn to two issues which have
enabled us to extend considerably the range of applicability of the time-
independent approach: (i) the reduction of the size of the vibronic expansion
in Eq. (7) by ”exible choice of the � �,i

m (Qi ) and (ii) the development of an
open-ended “ne-grained parallel Lanczos solver to treat Eq. (14).



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch06

214 M. S. Schuurman and D. R. Yarkony

2.4.1. Construction of diabatic Hamiltonians for bound states

The working equations are obtained by di�erentiating the electronic
Schrödinger equation shown in Eq. (44) and inserting the gradient ofH d

from Eq. (42). The resulting equations, based on energy gradients and
derivative couplings, through which the second-, and potentially higher,
order coe�cients may be obtained, are given by:

M̄ I,J
k (q(n ) ) =

�

1 < �, � � N state

1 � l � N int

[eI
� (q(n ) )eJ

� (q(n ) )q(n )
l ]V (2) ,�,�

k,l , (46a)

where

M̄ I,J
k (q(n ) ) = M I,J

k (q(n ) ) Š
N state
�

�,� =1

eI
� (q(n ) )eJ

� (q(n ) )V (1) ,�,�
k , (46b)

M I,J
k = ( E 0

J Š E 0
I )f I,J

k ; M J,J
k =


E 0
J


q k
; (46c)

for 1 � n � N point , 1 � k � N int , and 1 � I, J � N state . In these equa-
tions, the diagonal M I,I are the energy gradient of stateI , while the M I,J ,
I �= J are the energy di�erence scaled derivative couplings, referred to as the
interstate coupling gradients, with f I,J the derivative coupling of adiabatic
states I and J . The q(n ) denote the set of selectednuclear con“gurations.
To these equations we (may choose to) add the energy equations

M̄ I,I
0 (q(n ) ) =

1
2

N int
�

k,l =1

N state
�

�,� =1

[eI
� (q(n ) )eJ

� (q(n ) )q(n )
k q(n )

l ]V (2) ,�,�
k,l , (47a)

where

M̄ I,I
0 (q(n ) ) = M I,I

0 (q(n ) ) Š E 0
I (q0)

Š
N int
�

k=1

N state
�

�,� =1

eI
� (q(n ) )eI

� (q(n ) )q(n )
k V (1) ,�,�

k (47b)

and M I,I
0 (q) = E 0

I (q). The M I,J
k are obtained from ab initio MRCI wave

functions. The “rst order coe�cients, V (1) ,�,�
k , are determined exactly using

energy gradient and interstate coupling gradients at the origin of the expan-
sion and thus appear on the right-hand side of Eq. (46b) as known quan-
tities. As a practical matter, the q(n ) may be expressed in displacements
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in natural internal coordinates,41 or in intersection adapted coordinates58

(a particular linear combination of the natural internal coordinates, see
Sec. 3.3.3.) if the origin of the expansion is a conical intersection. The coef-
“cients obtained in these cases can be transformed to a normal coordinate
basis for use in Eq. (8) using the transformations shown Eqs. (4) and (5).

Taking all the equations represented by Eqs. (46a) and (46b) and casting
them as a matrix equation, one obtains,

Wv = m̄ , (48)

where v is a vector denoting the unique elements ofV , W is constructed
from the terms in the square brackets in Eqs. (46a) and (47a), andm̄ is a
vector containing all the values ofM̄ I,J . Neglecting any potential numerical
issues, if the number of coe�cients on the left-hand side of Eq. (48) are
exactly equal to the number of equations, then theab initio data employed
in the “t will be exactly reproduced by the resultant H d.

For typical values of N point , however, there are many more equa-
tions than unknowns, which results in Eq. (48) being over determined.
Furthermore, the length of v, and thus the number of unique non-zero
coe�cients may be reduced via the enforcement of vibronic point group
symmetry (resulting in numerous coe�cients being identically zero), or
by only including the symmetry unique coe�cients (in which a subset
of coe�cients can be represented aslinear combinations of other coe�-
cients). This latter case is realized when degenerate point group symmetry
is present, which results in numerous symmetry related coe�cients for e
or t symmetry vibrational modes. Requiring that these over determined
equations be solved in a least squares sense yields the pseudo normal
equations59

W • Wv = W • m̄ . (49)

Equation (49) has the form of a set of normal equations,60 but is deemed
•pseudoŽ since these equations must be solved self-consistently given that
W includes contributions from the eJ, which are in turn determined using
the V (2) ,�,�

k,l .
The unique aspect of Eq. (49) comes from Eq. (46a) forI �= J which

requires that H d reproduce an interstate coupling gradient. Consequently,
Eq. (49) yields anH d that is as diabatic as possible, in a least squares sense.
In Sec. 3.2. we show computationally that the derivative couplings are in
general well reproduced byH d and are particularly well reproduced near a
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conical intersection. Since Eq. (49) is a least squares system of equations,H d

can be straightforwardly and systematically improved through the inclu-
sion of additional data points in regions of interest on the potential energy
surfaces, or by including weights in Eq. (49).

2.4.2. Optimal bases and FranckÐCondon overlaps

The choice of Q in Eq. (5) signi“cantly impacts the computational
e�ort required to simulate a photoelectron spectrum. The predominant
approach21, 27 has been to employ the normal modes at the minimum of
the initial state, which in the case of a photodetachment spectrum, results
in the 	 i in Eq. (50) and the Q�, Q in Eqs. (4) and (5) corresponding to the
harmonic frequencies and normal coordinates, respectively, of the anion.

The impetus for this approach lies in the signi“cant formal simpli“ca-
tions that are realized with this choice of basis. For, in this case, the deter-
mination of |i � is trivial and the Franck…Condon integrals in Eq. (34) are
simple � -functions, o(m, I ) = � m ,I . In some instances, for example the study
of short time nuclear dynamics in the Franck…Condon region, this choice of
basis may be desirable for physical reasons. In the time-independent case,
however, the trade-o� for this formal simpli“cation is that the neutral states
are expanded in a sub-optimal basis, particularly if the relevant minima on
the neutral state manifold are signi“cantly di�erent from the minimum
energy structure of the anion. Employing such an •anion biasedŽ basis
results in slower rates of convergence of the vibronic levels with respect to
basis set size, necessitating larger basis set expansions.

To address this issue, recent studies have examined the utility of
employing basis sets tailored to the vibronic states of interest in the neutral
species.55 The price one pays for this change of basis is that the initial
anion state is no longer straightforward to determine, but rather, must be
expanded in a •neutral biasedŽ vibronic basis, necessitating the computa-
tion of N vib Franck…Condon overlap integrals, as shown in Eq. (34). This
additional complication is justi“ed given that it is computationally more
e�cient to describe the single anion state using a neutral biased basis, than
to determine the multitude of neutral states using an anion biased basis.
In addition, these integrals need only to be computed a single time for the
generation of the seed vector, shown in Eq. (33).

The evaluation of the o(m, I ) employing generating function techniques
has been discussed by several authors.61–64 However, since the sizes of the
vibronic expansions have the potential to grow to truly large dimensions
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(> 109), it is imperative that the determi nation of these terms be as e�cient
as possible. The most computationally economical approach involves the use
of well-known recursion relations.51, 52, 54, 65, 66

The harmonic oscillator basis functions have the form:

� �,i
m i

(Qi ) =
1

�
2m i mi !

� 	 i

�

� 1/4
Hm i (

�
	 i Qi )eŠ � i Q2

i /2 , (50)

where 	 i are the harmonic frequencies (in atomic units), and theHn are
Hermite polynomials. The two sets of functions are related by a linear trans-
formation that converts one set of normal mode coordinates to another:

Q = TQ � + d, (51)

with 	 and 	 � the harmonic frequencies associated with normal modes
Q and Q�, respectively. Using this de“nition, it is possible to derive (see
Ref. 55) a recursion relation, forI = 0

C(m, mi + 1) = 2( b• Ā )i C(m)

Š 2
N int
�

j =1

(I Š �A )i,j C(m, mj Š 1)mj , i = 1 Š N int , (52a)

o(m, 0) = �G

�

�
N int
�

i

1
�

2m i mi !

�

� C(m), (52b)

whereC(0) = 1 , C(m) is a coe�cient for the vibronic basis function m, and
C(m, mi + 1) is the C(m) with the i th index increased by 1. In Eqs. (52a)
and (52b) I is an N int × N int unit matrix and �G is a scalar constant given
as

�G =

�
det T

�
i (	 i 	 �

i )1/2

det A
exp

�
�

i

Š
	 �

i

2
d2

i

�

exp[b• A Š 1b], (53)

and the matrices A , �A , and Ā and vector b, are de“ned by

Ai,j � =
	 j

2
� i,j � +

�

l

	 �
l

2
Tl,i Tl,j ;

�Ai,j =
�

	 i AŠ 1
i,j

�
	 j ; Ā i,j = AŠ 1

i,j
�

	 j ; (54a)

bj =
�

i

di
	 �

i

2
Ti,j . (54b)
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Most importantly, with regards to computational e�ciency, Eq. (52a)
demonstrates that each of theo(m, 0) may be determined at a cost of only
N int + 1 multiplies. In order to make e�cient use of the recursion relation
in Eq. (52a), each of theC(m, mi Š 1) in the summation must be readily
available. Thus, the terms C(m) are determined in batches for ascending

values of k(m) =
� N int

i =1 mi , ensuring that each C(m, mi Š 1) required to
compute C(m) has already been calculated from the recursion relation. In
this way, each element of the seedvector for the Lanczos procedure,s�, m

in Eq. (35), is determined only once.
The di�erent computational approaches to evaluating these integrals

using the recursion relations has been discussed previously.53, 67, 68 While
the above discussion has emphasized determining a set of Franck…Condon
overlap integrals relative to a ground vibrational state, denoted o(m, 0),
a more general solution would involve a second recursion to iterate the
initial state as well in order to compute o(m, m �). Storage and indexing
requirements for the determination of an arbitrary Franck…Condon integral
between two vibronic states generallynecessitates the use of a binary tree
algorithm. In this approach, the integrals required to evaluate the recursion
relation are located using pointer arithmetic to traverse a binary tree, as
opposed to explicitly computing an index in order to retrieve the desired
value from a table. Algorithms for implementing these techniques may be
found in the literature. 53, 67, 68

2.4.3. Lanczos procedure: Open-ended Þne grained
parallel approach

Owing to the large dimension ofH vib ,nr , the iterative Lanczos diagonaliza-
tion technique,46, 69–71 which only requires that the matrix-vector product
be computed, is the method of choicefor determining the eigenvalues of
H vib ,nr . In this approach, the eigenvalues of the large vibronic Hamiltonian
matrix are determined by diagonalizing a smaller, tri-diagonal matrix, T ,
constructed such that the eigenspectrum of this matrix approximates that
of H vib ,nr . The elements that composeT are determined at each Lanczos
iteration. While subtle variations on the algorithm exist, 69–72 the i th step
of the Lanczos algorithm may given by:

1. pi = si Š 1/ � si Š 1� ,
2. si = Hp i ,
3. � i = p•

i si ,
4. si = si Š � i pi Š � i Š 1pi Š 1,
5. � i = � si � ,
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where pi is the i th Lanczos vector, the elements of the matrixT are given
by Ti,i = � i , Ti,i +1 = Ti +1 ,i = � i , and the initial seed vector, s0, is appro-
priately chosen to reproduce the line intensities.21, 28 See also comments
following Eq. (35). SinceT is only of dimensionN iter × N iter , where N iter

is the number of Lanczos iterations, it may be diagonalized using standard
techniques. In general,N iter is on the order of 103, with both the size of
H vib ,nr and the number of eigenvalues desired in”uencing the number of
iterations performed.

While the reader is referred to othersources for a more detailed discus-
sion of the speci“cs of the algorithm,21, 70, 71 a couple characteristic proper-
ties of the method should be noted.

Firstly, while in exact arithmetic each Lanczos vector pi is orthogonal
to pj , 1 � j � i Š 1, the orthogonality of the Lanczos vectors deteriorates as
the number iterations increase due round-o� error. If one does not period-
ically pause to re-orthogonalize the Lanczos vectors, •ghostŽ roots, which
are spurious duplicates of converged eigenvalues, will appear in the eigen-
spectrum ofT . If these roots are recognized as being specious, little harm is
done. However, if computational resources are su�cient, periodic reorthog-
onalization of the Lanczos vectors ensure that e�ort is not wasted on the
convergence of these extra roots, andthus more unique eigenvalues can be
determined for a given number of iterations. Futhermore, if Ham reduction
factors, shown in Eq. (43b), are desired for the subsequent determination of
the spin-orbit spectrum, a rigorously orthogonal Lanczos space is required.

Secondly, the algorithm as presented above will converge the extremal
eigenvalues ofH vib ,nr “rst and then proceed to move •inwardsŽ to larger and
smaller values.69–71 Generally, one is primarily concerned with the smallest
eigenvaluesH vib ,nr , up to a given threshold. Thus, approximately half the
converged eigenvalues determined from the Lanczos algorithm are not of
much use in spectral simulations. This potential shortcoming is addressed
with the spectral transformation formulation 73 of the Lanczos algorithm
and with recent advances in “lter diagonalization approaches.74

From a cursory examination of the above algorithm, it is readily
apparent that the majority of the computational e�ort, from a ”oating point
operation perspective, is focused on the evaluation of the matrix-vector
product Hp i . Furthermore, the recursion relation requires the previous two
N vib length Lanczos vectors in order to iterate. As the vibronic expan-
sions increase to the order of 108 multimode basis functions, this creates
an additional storage issue that requires attention.

Fortunately, one of the de“ning characteristics of these vibronic Hamil-
tonian matrices is that they are very sparse. In particular, the number of
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non-zero matrix elements scales only linearly with the total dimension of
the vibronic Hamiltonian. In fact, it is possible to enumerate the number
of non-zero elements in Hamiltonian matrix. Taking for example the fully
quadratic vibronic coupling model discussed in this chapter, if the total
dimension of H vib ,nr is given by D H = N state N vib , then the number of
non-zero elements inH vib ,nr is given by:

Nnz =
N state + 1

2

�

�
�
�
�
�
�
�
�
�
�
�
�

1 + 2
N int
�

i

(M i Š 1)
M i

+2
N int
�

i

(M i Š 2 + � M i ,1)
M i

+4
N int
�

i>j

(M i Š 1)(M j Š 1)
M i M j

�

�
�
�
�
�
�
�
�
�
�
�
	

D H (55a)

=
N state + 1

2

�

� 1 + 4[N int ] Š 2
N int
�

i

3 Š � M i ,1

M i

Š 4
N int
�

i>j

M i + M j Š 1
M i M j

�

	 D H , (55b)

where M i is the number of basis functions in i th mode, and a quantity
in square brackets is evaluated as [x] = x (x +1)

2 . The “rst term in the
parentheses in Eq. (55a), the scalar 1, counts the diagonal elements of
H vib ,nr , which are computed via contributions from the kinetic energy,
diagonal second-order (i.e. matrix elements of the form� � i

m j
|x2

i |� i
m j

� ),
and constant terms. The three remaining terms enumerate the number
of “rst-order, one-index second-order, and two-index second-order terms
(given by the matrix elements � � i

m j
|xi |� i

m j ± 1� , � � i
m j

|x2
i |� i

m j ± 2� , and

� � i
m j

� i �

m j � |xi xi � |� i
m j ± 1� i �

m j � ± 1� ), respectively. As the basis approaches the

complete basis limit (i.e. M i 	 
 , i = 1 Š N int ), the slope of the
scaling curve,Nnz/D H , is a maximum given by (N state + 1)(1 + 4[ N int ])/ 2.
However, since the signs of the third and fourth terms in Eq. (55b) are
negative, the linear prefactor is generally signi“cantly less than this value
for typical basis set sizes (i.e.M i � 101, i = 1 Š N int ). Furthermore,
if symmetry is present and enforced, many of the “rst- and second-order
coe�cients will be zero, which reduces the number of terms in the above
summations.
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Given both the computational demands of the problem, but also the
favorable scaling of the number of non-zero elements as the dimension of the
vibronic Hamiltonian increases, an e�cient parallel Lanczos solver has been
developed for use in vibronic coupling computations. Firstly, the parallel
environment enables Lanczos vectors,pi , to be divided up among many
processors, thus reducing the memorystorage requirement per processor by
a factor of N proc . This aspect of the problem was addressed by employing
the Global Arrays Toolkit. 75

The initial step in the Lanczos procedure is the determination of the
seed vector, which in this case corresponds to the ground vibrational state
of the initial electronic state [see Eq. (35)]. Employing the recursion rela-
tion shown in Eq. (52), the C(m) are computed in order of increasing
value of the phonon counter� (m). Since it is assumed that accessingC(m)
that are located in non-local sections ofs0 is relatively expensive, each
process initially determines only a contribution to a given C(m, m i + 1)
using locally available C(m) and C(m, m j Š 1). Following the determi-
nation of the contributions to all the C(m) with a given value of � (m),
the algorithm pauses to sum all the contributions and distribute the C(m)
to the appropriate vector locations in s0 before incrementing � (m). The
number of C(m) terms for a particular value of the phonon counter is given
by the binomial coe�cient

� N int +�
�

�
.

As stated above, once the Lanczos iterations begin, the majority of the
computational e�ort is focused on evaluating the product of the vibronic
Hamiltonian with the current Lanczos vector. To take full advantage of the
sparsity of H vib ,nr , the algorithm pre-processes the Hamiltonian by iden-
tifying the location of the non-zero matrix elements. This may be accom-
plished without explicitly storing the indices of the elements, which itself
would present a signi“cant storage issue. Rather, given a basis set indexing
scheme that enumerates the vibronic basis functions,i = 1 Š N vib , where
the index of vibronic basis function m is given by

index(m) =
N int
�

i =1

�

� mi

N int
�

j =i +1

M j

�

� , (56)

one may determine the regular pattern with which the non-zero elements
arise as a set of o�sets and strides throughH vib ,nr . Each potential coe�-
cient in V (1) ,�,� , V (2) ,�,� , V (3) ,�,� , etc. will have an associated indexing
pattern that must be determined before the Lanczos iterations begin. Once
this pre-processing is complete, each matrix-vector multiplication involves
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simply looping over the non-zero elements for each non-zero potential term in
V (1) ,�,� andV (2) ,�,� . Initial applications of this algorithm 47, 76 demonstrated
that vibronic expansions whereD H > 109 could now be readily treated.

3. Applications

All nonrelativistic electronic structure calculations discussed in this work
employed the COLUMBUS suite of electronic structure codes.77, 78

3.1. Overview: Conical intersections
not required by symmetry

In the preceding “ve years, there have been a large number of experimental
and theoretical studies of nonadiabatic e�ects in electron photodetach-
ment spectra, including Refs. 27, 30, 79…86. While this section will focus
on electron detachment from negative ions, theoretical studies of electron
detachment from neutrals producing the spectrum of the corresponding
cation have also been reported including studies of ”uorobenzene,85 cyclo-
propane,80, 87 pentatetraene,81, 88 and ”uoromethane.89 The pentatetraene
and ”uorobenzene studies considered “ve coupled electronic states and used
the MCTDH method to compute the photo electron spectrum. The pentate-
traene work emphasized the advantages of the MCTDH method when both
a large number of internal degrees of freedom (there 21) and a broad spec-
tral range must be considered.

This section will describe recent work on the negative ion photoelectron
spectra for two classes of molecules „ the azolides and the alkoxides „
revealing the vibronic structure of the azolyls, “ve-member carbon-nitrogen
heterocycles of the form (CH)5-m Nm , m = 1 Š 5, and the alkoxy, R-O, radi-
cals. There has been considerable recent interest27, 76, 79, 90–93 in the azolyls,
attributable at least in part to their potential role in energetic materials.
Experimental,94–101 and computational37, 47, 102, 103 interest in the alkoxy
radicals re”ects their role in the combustion of hydrocarbon fuels, as well
as in atmospheric and interstellar chemistry.100, 104, 105

Here we focus on the enticing theoretical challenges presented by these
radicals. The common thread for these molecules is that they are substi-
tutional derivatives of the classic Jahn…Teller molecules, cyclopentadienyl
(C5H5) and methoxy (CH3O). The ground electronic state of the cyclopen-
tadienyl radical is a 2E ��

1 state,56, 86, 106 arising from “ve electrons in “ve
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� -orbitals. For methoxy the ground state is a 2E state and its spectrum is
impacted by both the seam of symmetry-required conical intersections,107

and the spin-orbit interaction.
Conical intersections in low symmetry species which correlate with

degenerate states in higher symmetry analogues provide an example of
the quasi Jahn…Teller e�ect.22 However, substitution of key substituents
can alter the topography near a conical intersection in non-uniform ways.
For example, in the case of the alkoxy radicals which are obtained by
replacing the hydrogen atoms of methoxy, (CH3O), with methyl or larger
alkyl groups, the low-lying 2A� and 2A�� states, correlate with methoxy•s2E
ground state. In this class of molecules, the quasi Jahn…Teller stabilization
energy is small and the relevant extrema can be found in close proximity to
the conical intersection. Thus, non-adiabatic e�ects are expected to impact
the minima on both the 2A� and 2A�� states in an approximately equivalent
manner. Our alkoxy study will focus on the isopropoxy radical and the e�ect
of the spin-orbit interaction on a low-l ying accidental conical intersection.

The azolyls present a more diverse range of energetics. We discuss three
azolyls for which detailed theoretical analyses have been reported: pyrrolyl,
imidazolyl, and pyrazolyl. Pyrrolyl is discussed in detail. In these molecules
which have C2v symmetry, the 2E

��
ground state of cyclopentadienyl is split

into 2A2 and 2B1 electronic states.

3.2. Azolyls: Electronic structure

In imidazolyl, (CH) 3N2, where the nitrogen atoms are nonadjacent, the
ground state minimum has 2B1 symmetry. The “rst excited state has 2A2

symmetry and is approximately 0.836 eV above the ground state including
di�erential zero point energy e�ects. 27 A second excited state, of 2B2

symmetry, is higher at 0.958 eV, again including zero point e�ects.27

In pyrrolyl, (CH) 4N, the ground state minimum has 2A2 symmetry and
is approximately 0.5 eV lower in energy than the lowest energy stationary
point on the 2B1 surface.79 This 2B1 extremum is in fact a saddle point,
and is much closer, geometrically and energetically, to the minimum energy
point on the 2A2 Š2 B1 seam of conical intersection than is the2A2

extremum, which is found in a relatively distant region of nuclear coor-
dinate space.57

In pyrazolyl, (CH) 3N2, with the nitrogens adjacent, the ground state
is again of 2A2 symmetry. The “rst excited state has 2B1 symmetry but
is only 0.046 eV above the ground state at the CCSD(T) level including
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di�erential zero point vibrational energies. 27 The lowest energy point on
the 2A2Š2B1 seam of conical intersection is only 0.294 eV above the ground
state minimum.76 A second excited state, with2B2 symmetry, is higher, but
still only 0.261 eV above the ground state at the CCSD(T) level including
zero point e�ects.27 This state, like the 2B1 state in pyrrolyl, is a saddle
point. The existence of three low-lying states is re”ected in (or is a conse-
quence of) the existence of a low-lying conical intersection of three electronic
states only 0.454 eV76 (0.426 eV93) above the 2A2 minimum. Three state
intersections are the subject of a chapter in this volume.

From these observations we conclude that the a�ects of conical intersec-
tions on the observed photoelectron spectra will vary dramatically among
these azolyl isomers.

3.2.1. Imidazolyl

The photoelectron spectrum of imidazolide, revealing the vibronic struc-
ture of imidazolyl, has been measured and analyzed by the Lineberger108

and Stanton27 groups. The measured spectrum spans approximately 0.5 eV
from the ground state band origin. The theoretical analyses conclude that
the measured spectrum is well described by a model in which the neutral
imidazolyl is represented by a single adiabatic �X 2B1 ground state. This is
understandable in terms of the above discussion since the minimum of the
excited state, which is below the lowest two state conical intersection, is
� 0.83 eV above the spectral threshold.

3.2.2. Pyrazolyl

Pyrazolyl is the most challenging of the azolyls studied to date. The photo-
electron spectra of pyrazolide-h3 and its fully deuterated analog pyrazolide-
d3, revealing the vibronic structure of pyrazolyl-h3 and pyrazolyl-d3

respectively, have been measured by Lineberger and co-workers.27, 90 The
measured spectra span approximately 0.4 eV from the ground state band
origin. Whereas nonadiabatic e�ects were found to be negligible for imida-
zolyl, quite the opposite is expected for pyrazolyl, since in this case there
are two low-lying excited states within � 0.3 eV of the ground state and a
three-state intersection within � 0.45 eV of the ground state minimum.

Adiabatic simulations involving the �X 2A2 and �A2B1 states for pyra-
zolide-h3 (Ref. 76) and the �X 2A2, �A2B1 and �B 2B2 states for pyrazolide-d3,
(Ref. 27) failed to reproduce the measured spectra. Of particular interest
for the discussion below, is the signi“cant over estimation of the intensity
of the lines in the region greater than 0.2 eV above threshold.
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In a series of careful calculations by Stanton and co-workers,27 using
a variant of the time-independent vibronic coupling approach described in
this chapter, it was shown that proper simulation of the measured photo-
electron spectra of the pyrazolides required inclusion of the2A2, 2B1 and
2B2 states. This is not unexpected given the electronic structure data noted
above. More di�cult to anticipate was the fact that the pyrazolide- h3 photo-
electron spectrum was much more challenging to simulate than was the
pyrazolide-d3 photoelectron spectrum. Indeed, Stantonet al. observed that
the pyrazolide-h3 photoelectron spectrum was not computable given the
state-of-the-art time-independent methods available at that time.27 Subse-
quently we were able to compute the pyrazolide-h3 photoelectron spectrum
using the neutral biased basis approach and open-ended Lanczos algorithm
described in this chapter.76 The reader is referred to Ref. 76 for the details
of that treatment.

3.2.3. Pyrrolyl

The photodetachment spectrum of pyrrolide reveals the vibronic structure
of pyrrolyl. The pyrrolyl radical occupies a middle position between the
largely adiabatic (over the measured spectral range) imidazolyl radical and
the completely nonadiabatic pyrazolyl radical. The photoelectron spec-
trum has been measured91, 109 and was initially analyzed using an adia-
batic model by Lineberger•s group,91 in a study denoted GIHKBL below.
It was subsequently studied by Domcke and co-workers,79 in a study
denoted MLWD below, using a variant of the time-independent method-
ology described in this work. InGIHKBL , an analysis based on an adiabatic
representation of the 2A2 and 2B1 states predicted that spectral features
attributable to both states should be observed in the measured spec-
trum. However, only features attributable to the 2A2 state were observed.
In the spectral region where features attributable to the 2B1 state were
expected to be seen, only a di�use continuum was observed. As discussed
by GIHKBL and MLWD, at least a partial explanation for this observa-
tion is that the proximity of the 2B1 state extremum to the 2A2 Š 2B1

conical intersection seam in pyrrolyl leads to a dispersion of the intensity
of transitions due to the 2B1 state in the photoelectron spectrum (PES) of
pyrrolide.

As noted by MLWD , a second factor may be relevant to the diminished
contribution from the 2B1 state to the spectrum: the strength of the bound-
free electronic transition moments, Eq. (32). This same issue has been raised
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in analyses of photodetachment spectra of CH3CCŠ (Refs. 110, 111) and
NOŠ

3 .112

In this review we use recent studies of the pyrrolide photoelectron spec-
trum in Refs. 57, 113 to consider two issues. For pyrrolyl, the region of
strong nonadiabaticity is distinct from the region of the lowest energy
minimum. This makes the simulation of its PES challenging since a correct
description of both regions is required if the low-lying vibrational levels and
the onset of nonadiabaticity are to be accurately described. A fundamental
question is whether the quadraticH d, the most commonly employed model
for quantitative computations, has su�cient ”exibility to describe this situ-
ation. The second issue to be addressed is the (diabatic) state dependence
of the electronic transition moment.

3.3. Pyrrolyl: Detailed computations

3.3.1. Electronic structure treatment

The geometric structure of the pyrrolyl radical is given in Fig. 1. The elec-
tronic structure data used to construct H d was obtained from multiref-
erence con“guration interaction (MRCI) wave functions using orbitals
computed employing a state-averaged multicon“guration self-consistent
“eld (SA-MCSCF) procedure.114 The SA-MCSCF treatment averaged two
states with equal weights and employed a “ve electron in “ve orbital
complete active space (CAS) expansion, comprising the “ve� orbitals from
the CH and N moieties. The correlation-consistent cc-pVTZ basis set115 was
employed on nitrogen and carbon while a polarized double zeta (DZP) basis

Fig. 1. The mass-weighted g and h vectors at the minimum energy intersection of the
12A and 22A states of the pyrrolyl radical. Dark (light) gray atoms are nitrogen (carbon).
Hydrogens are white. Redrawn using data from Ref. 113 with permission.
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was used on the hydrogens.116 Dynamic correlation was included at the
second order con“guration interaction level, with interacting space restric-
tions enforced. The resulting MRCI expansion consisted of 108.5 million
con“guration state functions (CSFs).

The anion wave functions were computed employing an aug-cc-pVTZ
atomic basis117 on the carbons and nitrogen atoms, and the DZP basis
set116 on the hydrogens. The molecular orbitals were determined from a
single con“guration SCF procedure. Dynamic correlation was included at
the single and double excitation CI level. The CI expansion consists of 27.5
million CSFs.

3.3.2. Construction and accuracy of H d

We begin with an analysis of the limits of accuracy for the fully quadaticH d

and the implication of those limitations for spectral simulations. Below we
designate four extrema:qmex , the minimum energy crossing point;qmin ,a ,
the minimum on the anion potential energy surface;qmin , the minimum
on the lowest potential energy surface; andqts , the “rst-order saddle point
near the minimum energy crossing. See Fig. 2 for an illustration.

Fig. 2. Electronic energies as a function of branching plane coordinates of the minimum
energy intersection of the 1 2A and 22A states of the pyrrolyl radical. Redrawn using data
from Ref. 113 with permission.
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Since the matrix elements ofH d are polynomials in the nuclear coordi-
nates, most procedures for constructingH d use data around a single point.
That point is usually taken as qmin ,a for reasons discussed in Refs. 55
and 118 (and in Sec. 2.4.2) althoughqmin is also used.27 Our experience
indicates that when states strongly coupled by conical intersections are
involved, qmex is the preferred choice. This is a consequence of the accu-
rate description of the singularity at the conical intersection by the V (1) ,�,�

terms in Eq. (42). This choice works nicely nearqmex (and qts ) However, it
can be less than optimal nearqmin . Below we illustrate the issues associated
with the choice of origin, and how potential problems can be overcome by
using geometrically diverse data in the context of our pseudo normal equa-
tions approach. Details of this study can be found in Ref. 57. Stanton•s
vertical and adiabatic approach27 for constructing H d is an alternative
approach to addressing these issues.

3.3.2.1. Nascent Hd

The diabatic Hamiltonian determined using only data in the vicinity of
qmex , also known as the nascentH d, will be subsequently denotedH d,W =0 .
The nascentH d employed in this work was constructed from Eq. (49) using
a data set, denotedD mex , which consists of energy gradients and derivative
couplings at N point = 21 points in an N int = 21 dimensional sphere of
radius 0.01 surrounding qmex . To this data set, data at the single point
qmin ,a was also added.

Firstly, we consider how well the nascentH d reproduces theab initio
determined structures of the four extrema noted above. Sinceqmex was
chosen as the origin ofH d,W =0 , the ab initio and H d,W =0 results for the
coordinates ofqmex are essentially in perfect agreement. However,H d,W =0

also works quite well near the neighboring pointqts . The performance of
H d,W =0 near the more distant qmin is less satisfactory, with errors as large
as of 0.01…0.02�A in the predicted bond lengths. The energies at these points
exhibit similar trends.

Since the ultimate goal of these calculations is to determine a photode-
tachment spectrum, the accuracy of the H d,W =0 determined harmonic
frequencies atqts and qmin is germane. Figure 3 reports the root mean
square (RMS) error in the H d,W =0 derived harmonic frequencies atqmin

and qts . As expected, the H d,W =0 derived frequencies are signi“cantly
better at qts than at qmin .

These de“ciencies inH d,W =0 at qmin do not represent a fundamental
limitation of the fully quadratic H d as we will now demonstrate.
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Fig. 3. The RMS error between the ab initio and H d,W determined harmonic frequen-
cies at the ground state minimum, qmin (squares markers), and transition state, qts

(diamond markers), of the pyrrolyl radical. Redrawn using data from Ref. 57 with permis-
sion.

3.3.2.2. Improving the accuracy and extending the domain
of utility of H d

There are two interrelated ways to improve the performance ofH d,W =0 in
the vicinity of qmin : (i) explicitly include data from nuclear con“gurations
in that region in Eq. (49), and (ii) adjust the weight (or number of repe-
titions for integer weights) of that data in those equations. To study these
approaches, a data setD min consisting of energy gradients and derivative
couplings at N point = 21 points, in an N int = 21 dimensional sphere of
radius 0.005 surrounding qmin was determined and employed to form a
composite data set,D m comprising D mex and D min with a weight W = m,
formally (for m an integer) D m = m(D min ) � D mex . The H d obtained from
D m is denotedH d,W =m .

Increasing m is found to improve the performance of H d,W =m with
regard to structures and energetics nearqmin while inducing only modest
adverse e�ects on the description of the vicinity of qts . To evince this
consider, Fig. 3 which reports the RMS error of the H d,W =m derived
harmonic frequencies. Here increasingm improves the performance of
H d,W =m near qmin while inducing limited, but systematically adverse,
e�ects on the description of the vicinity of qts . Note that Fig. 3 shows
that the frequencies at qmin improve dramatically until W = m � 100 and
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then improve only incrementally. Similarly the degradation of the frequen-
cies at qts is most signi“cant when m � 1. Analogous results are found for
the energy gradient and interstate coupling gradients.57 For example for
m � 0.001, signi“cant errors in the energy gradients nearqmin ,a for both
states are found. However form > 0.01 these large errors are eliminated.
This re”ects the observation that data near qmex alone does not provide a
viable description of the region ofqmin .

These comparisons illustrate both the versatility of the fully quadratic
vibronic coupling model and the ability of the normal equations approach to
exploit that ”exibility. However, the results also indicate that the quadratic
model is not without its limitations since (signi“cant) improvement in one
region comes at the expense of (here limited) diminution of the performance
in another region. Limitations in the fully quadratic model can be reduced
by including higher order terms in H d.38, 84

The present analysis also indicates that within the fully quadratic model
there is an optimal value for W , which is not necessarily the largest value.
For W beyond this optimal value, little improvement in the H d description
of the ab initio data is observed. In general, it would be recommended that
the sensitivity of the resultant spectral simulation to the chosen value of
W , in this caseW = 100, be investigated. With this in mind, we next assess
the dependence of the simulated PES on this parameter.

3.3.2.3. Sensitivity of simulated photoelectron spectrum to Hd,W

Here we consider how the changes inH d caused by changes in the domain
of “tting points and the weight of those points in the normal equations
are re”ected in the simulated spectrum. The spectral data, spectral inten-
sity distribution functions, are reported as spectral envelopes, employing
a comparatively narrow 20 cmŠ 1 Gaussian convolution. The spectra are
converged with respect to the neutral biased basis, the origin for which
is qmin . The origin for H d is qmex . In the nonadiabatic simulation, � �,j

m

are the normal modes of the Hessian corresponding to theH d harmonic
frequencies atqmin .

The anion is described by Eq. (2) with its equilibrium geometry, qmin ,a

and � 0,j
0 obtained from ab initio Hessian used to compute the anion frequen-

cies. Since neither the origins, nor frequencies of the harmonic oscillator
bases are the same for the anion and neutral, the Franck…Condon overlaps,
s0,m de“ned in Eq. (34) were calculated.D =

�
m |o(m,0)|2 = 0 .97. Based

on our previous experience with ethoxy47 and pyrazolyl,76 the remaining
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contribution to D is likely due to the C-H stretches which do not contribute
to this spectrum.

The origin for the simulated pyrrolyl spectrum is taken as the exper-
imentally determined ionization potential of the anion, 2.145 eV from
GIHKBL . The peak heights were uniformly scaled so that the “rst peak
height agrees with that of GIHKBL.

Figure 4 reports the PES constructed fromH d,W for W = 0, 1, 100,
1000. Comparing the W = 0, 1, 100 plates with the W = 1000 plate
demonstrates the signi“cant changes in going fromW = 0 to W = 1, and
W = 1 to W = 100 with the much smaller changes in going fromW = 100
to W = 1000. The changes are particularly pronounced for the low electron
binding energy (eBE) portion of the spectrum. Comparing the W = 100
results to the W = 1000 results evinces changes in the individual peaks.
However, despite these di�erences, the spectral envelope is reasonably stable
as a function ofW . The high energy portion of the spectrum, eBE> 2.6 eV,
is particularly stable in this regard.

Fig. 4. The simulated photoelectron spectra of the pyrrolide ion. The spectra were
determined employing W = 0 (a), 1 (b), 100 (c), 1000 (d). Redrawn using data from
Ref. 57 with permission.
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3.3.3. Photoelectron spectrum of pyrrolyl

In this section the PES of pyrrolide-h4 based onH d,W =100 is discussed. The
sharp spectral lines of the time-independent calculations are convoluted
with a Gaussian of width 15 meV (� 121 cmŠ 1) to re”ect the instrumental
resolution. The simulations will be compared with the experimental spec-
trum of GIHKBL presented in Fig. 5(a). In addition to the origin labeled
a, GIHKBL identify three lines at 925± 65, 1012± 25, and 1464± 20 cmŠ 1

denoted b, c and d respectively in Fig. 5(a). The focus of this discussion
is the transition from adiabatic to nonadiabatic behavior and the infer-
ences that can be drawn concerning the electronic transition moments
in Eq. (32).

Figure 5(b) presents the nonadiabatic simulation for the pyrrolide-h4

PES. The low energy region eBE< 2.5 eV, attributed to the 2A2 state,
is well reproduced, with the exception of the peakb� , the low intensity
shoulder to red of peakb.

For electron binding energies greater than 2.9 eV, the well-resolved spec-
trum characteristic of a long-lived excited state is absent and in its stead
a broad continuum, quite similar to that reported by MLWD , is observed.
When the nonadiabatic PES is obtained for (µ

2 A 2 ,0, µ
2 B 1 ,0) = (1 , 1), so that

r = µ
2 A 2 ,0/µ

2 B 1 ,0 = 1, where µJ, 0, J = 2A2 and 2B1, are the transition
moments to the indicated diabatic states, this broad continuum, although
somewhat reduced in intensity compared toMLWD, is appreciably higher
in intensity than that found in the experimentally measured spectrum. The
observed lower intensities could be attributable to near threshold e�ects on
the photodetachment cross section.79 However, we believe that this discrep-
ancy is due to di�erences in the transition moments for the production of
pyrrolyl in its 2A2 and 2B1 states by electron detachment from pyrrolide,
as we now explain.

Figure 5(b) reports nonadiabatic spectrum with (µ
2 A 2 ,0, µ

2 B 1 ,0) =
(2, 1), r = 2. It was found that relative intensity of peaks a, b and c is
largely independent of r . However, the intensity of the broad continuum
and that of peak b� are quite sensitive to r . The intensity of peak b� is
found to be a quadratic function of r indicating that it is a b2 vibra-
tional level of the 2A2 diabat that borrows intensity from an a1 vibrational
level of the 2B1 diabat. Decreasing r too much eliminates the shoulder
on peak B which is contraindicated by the measured spectrum. The ratio
r = 2 appears to strike the best balance between preserving peakb�

and reducing the intensity of the broad continuum. The peak labeledb�
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Fig. 5. (a) Experimental photoelectron spectrum of the pyrrolide ion, taken from
Ref. 91. Lines labeled a, b, c, d were assigned in Ref. 91. (b) Nonadiabatic simula-
tion of the photoelectron spectrum of the pyrrolide ion where the ratio of the transition
dipole matrix elements is given by µ

2 A 2 ,0/µ
2 B 1 ,0 = 2. Redrawn using data from Ref. 113

with permission.

should be readily discernable using high resolution photoelectron detection
techniques.

A recurring issue in the simulation of vibronic spectra involving coupled
electronic states is the determination of the relative magnitudes of the tran-
sition dipole moments, µI, 0, for each of the diabatic states. Computational
techniques to accurately determine these transition moments are currently
lacking.21 When such techniques do become available, the results presented
here, based on accurate treatment of the nonadiabatic e�ects, will provide
valuable benchmarks.
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3.4. Isopropoxy

In this section, we describe a simulation of the isopropoxide-h7 anion PES,
which reveals the vibronic structure of isopropoxy radical. This spectrum
has been reported by Lineberger•s group,96 and is denotedL-PES below.
The vibronic structure of the isopropoxy radical has also been probed via
dispersed ”uorescence spectroscopy, by Miller•s group,100 denoted M-DFS
below. Figure 6 gives the molecular structure of this radical and indicates
the atom labeling used in this section.

In isopropoxy, the degenerate ground state of methoxy is split into the
nondegenerate �X 2A and �A2A states. The presented simulation provided119

the “rst theoretical determination of the �A Š �X splitting in isopropoxy
which properly accounts for nonadiabatic and zero point energy e�ects as
well as the spin-orbit interaction. We will explain that the nominal �A Š �X
splitting is largely a consequence of the spin-orbit interaction.

3.4.1. Electronic structure treatment

The electronic structure data used to construct H d was obtained from
MRCI wave functions using orbitals obtained from SA-MCSCF wave func-
tions. The SA-MCSCF treatment averaged two states with equal weights
and used wave functions obtained from a “ve electron in four orbital
complete active space expansion. The atomic orbital basis was composed

Fig. 6. The mass-weighted g (a) and h (b) vectors at the minimum energy intersection
of the 12A and 22A states of the isopropoxy radical. Redrawn using data from Ref. 119
with permission.
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of correlation-consistent basis sets,115 with cc-pVTZ bases on the carbon
and oxygen atoms and a cc-pVDZ basis on the hydrogen atoms. Dynamic
correlation was included at the second order con“guration interaction level,
with the generalized interacting space restrictions included. The resulting
MRCI expansion consists of 26 million CSFs.

The spin-orbit coupling between the 12A and 22A adiabatic states was
determined within the Breit…Pauli approximation48 including all one- and
two- electron terms, using a computer code based on the methodology
described in Ref. 120. The molecular orbitals were determined using the
DZP basis set and the above noted active space and SA-MCSCF procedure.
The corresponding second-order MRCI expansion comprises� 1.3 million
CSFs and includes core…core correlation.

The anion wave functions were computed using an atomic orbital basis
comprising aug-cc-pVTZ basis set,116 on the carbons and oxygen, and
the cc-pVDZ basis set on the hydrogen atoms. A single reference single
and double excitation CI treatment of electron correlation, comprising
3.5 million CSFs, was used.

3.4.2. An unexpected conical topography

As in the case of pyrrolyl, the key points on the ground state potential
energy surface includeqmin ,a (1A� ), the minimum energy structure of the
anion ground state; qmex (12A� Š 22A�� ), the minimum energy point on the
12A-22A seam of accidental conical intersection;qmin (12A� ), the minimum
on the ground state potential energy surface; andqts (12A�� ), a “rst-order
saddle point, also on the lowest energy adiabatic state. All these points also
possessCs symmetry, and the electronic state designations at these points
re”ect this fact. However, there exists an additional symmetry related pair
of minima, denoted qmin �

(12A) and qmin ��
(12A), as well as two symmetry

related saddle points, qts �
(12A) and qts ��

(12A) which connect qmin (12A� )
with qmin �

and qmin ��
. Both these sets of structures are ofC1 symmetry,

which is again re”ected by the electronic state notation. These lower
symmetry pair of structures are the lowest energy minima on the ground
state potential energy surface. The quasi Jahn…Teller stabilization energy
of this system is given by EqJTS = E 0

1 (qmex (2A�� Š 2A�)) Š E 0
1 (qmin ��

(2A)) =
193.8 cmŠ 1. It is a bending of the HCO bond angle that is primarily respon-
sible for the quasi Jahn…Teller stabilization. The six extrema and the conical
intersection at qmex are indicated on a contour plot, as shown in Fig. 7,
which reports the energiesE 0

1 (x, y) with ( x, y) in the branching plane (see
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Fig. 7. The electronic energy in the vicinity of Q mex plotted in terms of the branching
plane coordinates x and y presented as contour plot. The location of the three minima
and three saddle points that would be present in C3v symmetry are denoted Q min and
Q ts , respectively. Redrawn using data from Ref. 119 with permission.

below) of qmex . While the branching plane section of the potential energy
surface captures the essential character of the topography near the conical
intersection, it misses the detailed structure required to fully evince the six
extrema.

In order to better understand the existence of the three minima and
three saddle points, it is useful to express these extrema in terms of inter-
section adapted coordinates.58 Intersection adapted coordinates,Q, are an
orthogonal transformation of a set of internal coordinates,q, with a conical
intersection serving as the origin of the coordinate system. Of primary
concern are theg direction (denoted the x coordinate, which in this case
transforms as a� ) and the h direction (denoted the y coordinate, which
transforms asa�� ). These two coordinates, which are pictured in Figs. 6(a)
and 6(b) respectively, lift the degeneracy at the conical intersection at “rst
order. The x and y coordinates de“ne the branching58 or g Š h20 plane. It
is the explicit identi“cation of the branching plane that gives intersection
adapted coordinates their conceptual value. The relative magnitudes of the
gradients that de“ne these directions indicate the degree of asymmetry in
the cone, with � g� = � h� for a symmetry required Jahn…Teller intersection.
In the case of isopropoxy, one “nds that � g� = 0 .0211 � � h� = 0 .0210,



September 21, 2011 16:55 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch06

Conical Intersections in Electron Photodetachment Spectroscopy 237

which suggests that this intersection is closely analogous to what one would
expect to “nd in the C3v intersection of the methoxy radical. While the true
extrema are not located in the branching plane,119 they each have signif-
icant projections onto it. Replacing the x, y coordinates with the polar
coordinates, � and � , where x = � cos� , y = � sin � , the projection (�, � )
onto the branching plane of qmin , qmin �

, qmin ��
are given by (0.079, 0� ),

(0.084, 125.8� ), (0.084, Š125.8� ) while qts , qts �
, qts ��

are located at (0.065,
180� ), (0.057, 57.1� ), (0.057, Š57.1� ), respectively.

The following analysis serves to explain the locus of the extrema. For
a Jahn…Teller (E ×  ) system,18, 121 described by the coordinates� and � ,
the energy of the two adiabatic electronic states through second order in
displacements from the origin, a conical intersection, is given by:

E 0
± = b� 2 ± �g

�
1 Š 2(�/� 0) cos 3� + ( �/� 0)2, (57)

where � 0 = g/a , g is the linear constant, g = � g� = � h� , and a and
b are the quadratic constants. When the quadratic coupling constanta
is small, the term in the square root in Eq. (57) approaches 1 andE±

is independent of � . However, when quadratic coupling is large, and one
de“nes the coordinate system such that� 0 < 0, then at a given value of
� , E 0

Š will exhibit three minima located at � = 0 � , 120� , and Š120� , and
three maxima at � = 180� , 60� , and Š60� . These restricted extrema become
true (local) minima and saddle points when the� dependence is taken into
account. On the basis of the polar coordinates for (qmin , qmin �

,qmin ��
) and

(qts , qts �
,qts ��

) noted above, the branching plane projections of the three
minima and three saddle points observed on the ground state potential
energy surface for isopropoxy are seen to correspond quite closely to the
locus of the extrema in a quadraticE ×  Jahn…Teller system.

3.4.3. Photoelectron spectrum of isopropoxide

In each simulation, the anion wave function required to determineI nr (E )
or I so(E ) uses the wave function form in Eq. (2) with the anion equilibrium
geometry and� �,j

0 obtained from the ab initio calculations described above.
Figure 8(a) presents a nonrelativistic, nonadiabatic simulation of the

PES of isopropoxide-h7 appropriate for comparison with the measured
spectrum of L-PES, which is reproduced in Fig. 8(b). Given the nearC3v

symmetry behavior observed in the electronic structure discussed above,
the transition dipole moments employed wereµ1,0 = µ2,0. The location
of the origin band for the simulated nonrelativistic isopropoxide-h7 spec-
trum is taken as the experimentally determined ionization potential of the
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Fig. 8. (a) Nonrelativistic photoelectron spectrum of isopropoxide- h7 , employing a
10-meV convolution. Inset in panel (a) is the simulated relativistic photoelectron spec-
trum of isopropoxide- h7 for the region near the vibronic band origins. (b) Experi-
mental photoelectron spectrum of isopropoxide- h7 from L-PES. Redrawn using data
from Ref. 119 with permission.

anion, 1.847 eV from L-PES. The peak heights were uniformly scaled so
that the “rst peak height agrees with that of L-PES. To obtain a simu-
lation that most closely mirrors the experimental spectral resolution, the
lines of the time-independent calculation are convoluted with a Gaussian of
width 10 meV (� 80 cmŠ 1). The converged vibronic basis, which comprises
N state N vib = 0 .5 billion basis functions and for which D = 0 .96. The
remaining contribution to D is likely due to the C-H stretches which do not
contribute to this spectrum.

The nonadiabatic, nonrelativistic simulated spectrum and the measured
spectrum ofL-PES are in quite good agreement, with the possible exception
of the small feature in the simulation at electron binding energy (eBE) of
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� 2.4 eV, which is not found in the PES of L-PES. This feature is not
energetically precluded from the experimental spectrum, as the available
photon energy is 3.4 eV.96 The spectral features at 1.9 (labeledb and c),
1.95 (labeledd), 2.0…2.1 (labelede, f , g, h) and � 2.15 eV on the other hand
are well reproduced. The observation inL-PES of an absence of distinctive
� (anisotropy) parameters for any of these peaks is consistent with our
prediction of approximately 2E behavior for the strongly coupled 1,22A
electronic states.

Perhaps the most interesting feature observed in Fig. 8(a) is the
apparent single peak at threshold. A closer examination of this region of
the simulation reveals that this peak is in fact two transitions separated
by � 17.7 cmŠ 1. Taking a nonadiabatic perspective, the second peak could
potentially be identi“ed as the “rst ex cited vibronic level in the lower sheet
of the Mexican hat, i.e. an excited pseudo rotation122 state. It is this feature
which M-DFS denotes as the �A Š �X splitting. While the computed split-
ting is much smaller than the �A Š �X splitting reported by M-DFS, analysis
of the eigenvectors shows that these two vibronic states are largely the
zero phonon states of the two diabats. A small separation is perhaps not
entirely unexpected, since in Sec. 3.4.2. it was argued that the two elec-
tronic states in question behave approximately like the components of a2E
state. The described situation is precisely what would happen for a true2E
state, except that in the case of a true2E state the degeneracy would be
exact.18, 123

This analysis suggests that, as in the case of a true2E state, the split-
ting of these two states would be increased by including the e�ects of the
spin-orbit interaction. To this end H rso [Eq. (24)] was determined atqmex

and found to be H rso = (50 .3, 0.0, 37.3)cmŠ 1, with � H rso� = 62.6 cmŠ 1.
This computed magnitude for the spin-orbit coupling is in good accord
both with the spin-orbit coupling determined previously for ethoxy using
a similar methodology, H rso = (6 .32,0.0, 64.7), � H rso� = 65.0 cmŠ 1,103

as well as a high levelab initio calculation for methoxy,37 which found
H rso = (0 , 0, 67) cmŠ 1. When this value of H rso (taken as geometry
independent) is used in Eq. (29), the splitting of the origin bands, the
nominal �A Š �X splitting, is increased signi“cantly, as shown in the inset of
Fig. 8(a), to 60.6 cmŠ 1, in excellent agreement with the experimental value
of 68 cmŠ 1 reported in M-DFS. Note that these spin-orbit e�ects depend
only on � H rso � , and not on the individual components ofH rso . Signi“cantly
the vibronic Ham reduction e�ect 32, 33 has reduced the maximum possible
spin-orbit induced splitting of � 120 cmŠ 1 by approximately a factor of 2,
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suggesting that the good agreement between the computed and measured
nominal �A Š �X splitting is more than just fortuitous.

Finally, we note that the �A Š �X splitting would not have been visible
in the L-PES experiment owing to the resolution available in that exper-
iment. This is illustrated in the inset to Fig. 8(a) in which the relativistic
PES is convoluted with a 80 cmŠ 1 FWHM Gaussian to simulate the L-PES
resolution. Only a single peak is evident at threshold in this inset.

3.4.4. Implications

This analysis demonstrates that the quantity denoted as the �A Š �X splitting
is better thought of as the spin-orbit splitting of a nearly degenerate ground
state. It is therefore no surprise that a similar result has been obtained for
methoxy. There the spin-orbit induced ground state splitting was computed
to be 68 cmŠ 1, giving again a Ham reduction (of the above noted spin-orbit
interaction) of � 2.37 This computed value of the spin-orbit splitting in
methoxy is consistent with measured values of 61.8 (Ref. 124) 64 (Ref. 125,
126) and 63 (Ref. 94) cmŠ 1.

4. Conclusions

Since the review of this “eld in 2004,21 considerable progress has been
made in the area of electron photodetachment spectroscopy. On the exper-
imental side, the introduction of new time-resolved methods7 and the high
resolution SEVI method6 allows for a richer comparison to computational
simulations. Theoretical approaches for simulating such spectra in systems
for which nonadiabatic e�ects are important have also advanced consider-
ably. These include new techniques to describe the e�ects of the spin-orbit
interaction, which have been discussed in this chapter as well as elsewhere in
this volume. In the time-dependent approach, advances in the solution of the
time-dependent Schrödinger equation using the multicon“guration time-
dependent Hartree approach,127 and direct dynamics formulations24, 26, 128

have been signi“cant. The range of systems that can be treated is further
increased by new approaches for separating system and bath modes.129

Current methods that extend the accuracy of the quasi-diabatic Hamilto-
nians that describe the electronic structure aspects of photoelectron spec-
tral simulations include (i) the •diabatization by ansatzŽ approach which
includes terms through fourth and even higher orders in favorable circum-
stances,38, 39, 84 (ii) the analytic evaluation of coupling terms using the equa-
tions of motion coupled cluster approach,130 and (iii) the pseudo-normal
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equations method discussed at length in this work.59, 131 Working within
the time-independent approach, we have discussed methods that reduce
the size of the vibronic expansion by employing ”exible choice of origin
and basis functions. This methodology is made computationally tractable
thanks to the development of e�cient algorithms for the evaluation of large
numbers of Franck…Condon overlaps.55 A signi“cant reduction in the time
to solution has been achieved by a complementary algorithm which enables
the solution of vibronic Schrödinger equation using a “ne-grained parallel
version of the Lanczos diagonalization routine.47

Given the power of electron photodetachment spectroscopies, one can
anticipate signi“cant applications and methodological advances in the years
to come. One area of importance noted in this chapter is the “rst principles
determination of photodissociation cross sections in systems where conical
intersections play an essential role.
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Appendices

A. Time Reversal Adapted Basis

This appendix summarizes some results for time reversal adapted bases
taken principally from Ref. 36. Let �T denote the time reversal operator.45

Then for doublet states

�T � d,+
� = �T(� d,1/2

� + i � d,Š 1/2
� )/

�
2 = Š(� d,1/2

� Š i � d,Š 1/2
� )/

�
2 � � d,Š

� .

(A1a)

So

�T� d,Š
� = Š� d,+

� . (A1b)

From these relations, the fact that �T commutes with H and is antiunitary,
that is

� �T f | �Tg� = � f |g� � ; (A2)
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we readily derive36

� � d,+
� |H |� d,Š

� � = 0 , (A3a)

� � d,+
� |H |� d+

� � = � � d,Š
� |H |� d,Š

� � � , (A3b)

and

� � d,+
� |H |� d,Š

� � = Š� � d,Š
� |H |� d,+

� � � . (A3c)

Equation (A3a) gives the 0 in the (1,3) and (2,4) matrix elements in
Eq. (23). The (1,2) and (3,4) matrix elements of Eq. (23) are related by
Eq. (A3b) and the (1,4) and (3,2) matrix elements of Eq. (23) are related
by Eq. (A3c).

In the isopropoxy radical considered in Sec. 3, the spin-orbit interaction
is evaluated at the minimum energy point of conical intersection, a nuclear
con“guration with C s symmetry. The diabatic wave functions transform as
2A� and 2A�� . Using Eq. (23) and the fact that, assuming that the symmetry
plane is the xz plane, H rso

Y = 0 by symmetry [see Eq. (24)], only the pairs
(� d,+

2A �
, � d,Š

2A ��
) and (� d,Š

2A �
, � d,+

2A ��
) are coupled by Hso. This is consistent with

the observation that these pairs carry distinct double-valued irreducible
representations of the Cs double group.132 This group theoretical result is
readily deduced from the observation that spinors (�, � ) satisfy � xz

� �
�

�
=

� �
Š �

�
(Ref. 133).

B. Electron Scattering and Electronic Transition Moments

The evaluation of the electronic transition moment integral in Eq. (32) is
a complex problem in electron scattering whose evaluation is beyond the
scope of the present review. In this appendix we limit ourselves to a brief
discussion of the relevant issues. Since the measured spectrum is that of
the neutral molecule, it is reasonable to use the sudden approximation34 in
which the orbital for the outgoing electron, � c

f , is assumed to not alter the
molecular core, but is shaped by the molecular environment. Furthermore,
it is also important to observe that � c

f need not be orthogonal to the orbitals
in � d

� .134, 135

When nonadiabatic e�ects are negligible, it is possible to exploit the
Born…Oppenheimer separation of electronic and nuclear motion and deter-
mine � c

f as a parametric function of the internal coordinatesQ, which is
subsequently vibrationally averaged. It might even be possible to perform
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the scattering calculation required to determine the� c
f at a single represen-

tative geometry. The situation for stat es strongly coupledby conical inter-
sections is much more complicated since there is no representative geometry
in the region of strong coupling. Thus, considering the nonrelativistic case,
the wave function for a particular “nal state f is given by

|f (� c
f )� =

N state
�

� =1

� f
� (Q)[� d,Š 1/2

� (r N el

; Q)(� c
f (r N el +1 )� )

Š � d,+1 /2
� (r N el

; Q)(� c
f (r N el +1 )� )]. (B1)

Since we are using the sudden approximation, only the� c
f are to be deter-

mined. Note that there is a distinct orbital for each channel and that the
channel index refers to a vibronic level rather than an electronic state at a
“xed Q, as is usually the case when nonadiabatic e�ects can be neglected.
At a total energy E the multichannel wave function

� N el +1 ,E =
�

f

�
�
�
�f (� c

f )
�

(B2)

satis“es the projected Schrödinger equation134

� �

f

f (�� c
f )|(T nuc + H 0(r N el +1 , Q) Š E)|� N el +1 ,E

�
= 0 , (B3)

where the integration is over theN int nuclear coordinates andN el + 1 elec-
trons. Although qualitatively correct, even this discussion is over simpli“ed.
See Refs. 136 and 137. Solution of this problem is an active area of research.
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1. Introduction

Nuclear motion following photoexcitation of even small polyatomic
molecules is often subject to strong nonadiabatic coupling e�ects and ceases
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to be con“ned „ even approximately „ to a single potential energy surface
(PES). Rather, transitions between di�erent surfaces occur on the same
time scale as the molecular vibrations and need to be treated on the
same footing.1, 2 Strong nonadiabatic coupling gives rise to a wide range of
phenomena in spectroscopy, collision dynamics and elementary photophys-
ical and photochemical processes. In the past one to two decades, conical
intersections (CoIns) have been established as the key topography signalling
the presence of strong nonadiabatic couplings,3…13as is also testi“ed by the
various contributions in the present book.

Quite naturally, the “rst step in extending the description of the
dynamics beyond the adiabatic approximation consists in consideringtwo
strongly coupled electronic states. The ansatz for the molecular wavefunc-
tion then amounts to a sum of two products rather than a single one.
Indeed, for low excitation energies,when the density of electronic states
is moderate, primarily two states will approach energetically or become
degenerate, while the others tend to be further away, and to interact only
weakly or not at all with the states under consideration. On the other
hand, for higher excitation energies the density of states will increase and
several become close and be mutually coupled. The importance of more
than two states interacting strongly even increases when not only simul-
taneous interactions are considered, but also consecutive ones, a�ecting a
given dynamical process in the course of time.

It is the purpose of the present chapter to survey some of our theoretical
work on the strong nonadiabatic interaction of more than two electronic
states, be it simultaneous or consecutive, as just described. In the light of
the earlier “ndings for two-state cases, this will be typically associated with
multiple CoIns of the underlying PESs. These multiple intersections can be
triple intersections, i.e. the degeneracy of three adiabatic PESs at a point
(or set of points) in nuclear coordinate space. They may also consist in a set
of intersections which are arranged such that the nuclear motion undergoes
an ultrafast sequence of sub-ps transitions through major parts of, or the
whole, set. We may also encounter the situation of intersecting seams of
CoIns,14 where we recall that intersectionsdo not occur at isolated points
in nuclear coordinate space (dimensionalityN ) but rather in subspaces of
dimension N Š 2, called seams.

A natural scenario for three or more intersecting PESs are molecules
characterized by non-Abelian point groups with symmetry-induced spatial
degeneracies of electronic states.3, 15 Then, the interaction of a degen-
erate state with even a nondegenerate state gives rise to a 3-state
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coupling situation and three intersecting surfaces. With di�erent types of
vibrational modes (coupling and tuning4) consecutive intersections may
arise which turn out (in full dimensional coordinate space) to be cuts
through intersecting seams of degeneracies. When two degenerate states
interact strongly, the topography of the PESs will be correspondingly more
complex. However, also for Abelian point groups similar situations may
arise. For the simplicity of nomenclature, we will call all cases with more
than two interacting states •multistateŽ systems and also tacitly assume
that interactions or couplings are always meant to be strong ones.

The remainder of this chapter is organized as follows. In Sec. 2 we give
an overview over the theoretical methodology use to describe multistate
vibronic interactions. This comprises, in particular, the multimode vibronic
coupling (MMVC) approach, developed long ago in the Heidelberg group,4

which lends itself naturally to a treatment of multistate coupling situa-
tions. Its modi“cation to cover also general adiabatic PESs, the concept
of regularized diabatic states, has so far been applied mostly to two-state
problems.16, 17 Recent advances, however, deal with more than two coupled
PESs and are thus also addressed here. Further, computational aspects
addressed below include theab initio determination of coupling constants
and the solution of the nuclear dynamics by quantal methods, namely, inte-
gration of the time-dependent Schrödinger equation. In Sec. 3 we present
selected examples to demonstrate some technical aspects of the application,
but especially relevant phenomena and implications. Since the aforemen-
tioned scenario with degenerate electronic states has been exposed quite
comprehensively in a recent review paper,15 we focus here on systems
without spatial degeneracies (i.e. Abelian point groups), namely formalde-
hyde, pyrrole and ”uorinated benzene cations. Finally, Sec. 4 concludes.

2. Methodological Framework

2.1. The multimode vibronic coupling approach

To analyse vibronic coupling phenomena, i.e. those which go beyond the
well-known adiabatic or Born…Oppenheimer approximation,1, 2 it is often
advantageous to employ a diabatic electronic representation,18…21 as also
done here. Contrary to the usual adiabatic electronic basis, the o�-diagonal
matrix elements which lead to a coupling between di�erent electronic states
derive from the potential energy part, rather than from the nuclear kinetic
energy. The diabatic electronic functions are generally smooth functions of
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the nuclear coordinates, even at degeneracies of PESs where the adiabatic
electronic wave functions become discontinuous.18…21The electronic matrix
elements in the diabatic basis may therefore be expanded as a Taylor series
about a reference nuclear con“guration, and the series be suitably truncated
to best “t the ab initio computed electronic energies.

In typical applications we consider a photoexcitation or photoionization
process where the nuclear kinetic energyTN and potential energy oper-
ators V0 relate to the initial electronic state (usually the ground state),
described here in the harmonic approximation. Therefore, the kinetic energy
and potential energy operators of the electronic ground state take the
simple form

TN = Š
1
2

�

i

� � i
� 2

�Q 2
i
, (1)

V0 =
1
2

�

i

� � i Q2
i . (2)

The minimum energy con“guration Q = 0 of V0 in this expansion is also
chosen as the reference con“guration Q0, used in the construction of the
diabatic basis out of the adiabatic one (which means that the adiabatic
and diabatic states are identical at Q0 = 0). General expressions for the
total potential energy matrix W (Q) are derived by decomposing its matrix
elements W tot

�� (Q) into the above term V0(Q) describing the initial elec-
tronic state prior to the optical transition, and the changes W�� (Q) induced
by the latter. Here, � and � label the electronic states of the system. There-
fore, we have

W tot
�� (Q) = V0(Q)� �� + W�� (Q), (3)

W�� (Q) = E� +
�

i

� �
i Qi +

�

ij

g( � )
ij Qi Qj + · · · , (4)

W�� (Q) =
�

i

� ( �� )
i Qi + · · · (� �= � ), (5)

where, for example,

� ( � )
i =

� � V� (Q)
�Q i

�
�
�
�
Q =0

, (6)

g( � )
ii =

� 2� V� (Q)
2�Q 2

i

�
�
�
�
Q =0

, (7)
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� ( �� )
i =

�W �� (Q)
�Q i

�
�
�
�
Q =0

. (8)

The energiesE� which appear in the diagonal part are constants given
by W�� (0). The latter quantities have the meaning of vertical excitation or
ionization energies, referring to thecenter of the Franck…Condon (FC) zone,
Q = 0 (boldface denotes the vector of all coordinates). Because we take the
diabatic and adiabatic basis states to coincide at this geometry, theE� have
no counterpart in the o�-diagonal elements of Eq. (3). The quantities � ( � )

i

and � ( �� )
i are referred to as “rst-order intrastate and interstate electron-

vibrational coupling constants, respectively. The second-order intrastate
coupling constantsg(� )

ij are responsible for frequency changes and (fori �= j )
for the Duschinsky rotation22 of the normal modes in the excited state.
V� and V� are the adiabatic PESs and � V� = V� Š V0. Truncating the
series after the “rst-order terms de“nes the linear vibronic coupling model
(LVC), while including second-order terms leads to the „ as a short-hand
notation „ quadratic vibronic coupling model (QVC), and so forth. The
full vibronic coupling (VC) Hamiltonian is “nally obtained by adding the
nuclear kinetic energyTN to Eq. (3)

H = ( TN + V0(Q))1 + W (Q), (9)

where 1 denotes the N × N unit matrix, for N interacting states under
consideration. We emphasize that the diagonal form ofTN represents an
additional model assumption because strictly diabatic electronic states do
not exist in general,18, 23 but only approximately diabatic (quasi-diabatic)
states can be obtained. Corrections are nevertheless expected to be small
if the quasi-diabatic basis is constructed properly, and the pre“x •quasi• is
dropped in the following for notational simplicity.

In applying the LVC Hamiltonian to the subset of electronic states one
has to take into account important symmetry selection rules4 which impose
important restrictions on the modes appearing in the various summations
of Eqs. (4) and (5). These are relevant, in particular, for the linear coupling
terms, for which they read

� � � � i � � � � � A . (10)

Explicitly, a given vibrational mode with symmetry � i can couple electronic
states with symmetries � � and � � in “rst order only if the direct product
on the left-hand side of Eq. (10) comprises the totally symmetric irreducible
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representation � A of the point group in question. The generalization to the
second-order terms should be apparent, though it is less restrictive.

The above Hamiltonian lends itself immediately to the treatment of a
general number of interacting electronic states. For apparent reasons it has
been applied mostly to two intersecting PESs in early applications. Here we
focus on more recent work with three ormore strongly interacting states.
This also a�ects the determination of the various coupling constants, as is
described in Sec. 2.3. below.

2.2. The concept of regularized diabatic states

The MMVC scheme can be extended by adopting more general functional
forms of the diabatic potentials and coupling elements, which has also been
termed •diabatization by ansatzŽ in the literature. 24 Nevertheless, some-
times it is desirable to construct diabatic states directly „ at a given
point in nuclear coordinate space „ out of the adiabatic states, as is
discussed now.

Direct methods for diabatization have been divided into three groups,
depending on the type of information the diabatic states are built from
Ref. 25: derivative-based methods, property-based methods and energy-
based methods, in a decreasing order regarding the required computational
e�ort. Derivative-based methods18, 19 involve the calculation of the nonadi-
abatic derivative couplings and require very accurate electronic wavefunc-
tions, as is viable for very small polyatomics, but becomes very tedious in
the rest of the cases. Property-based methods26, 27 also require the calcula-
tion of the wavefunction to evaluate the matrix elements of some property,
for example, the dipole moment, which changes smoothly with the con“g-
uration space. Finally, the energy-based methods28 represent conceptually
the simplest approximation because they do not require any other informa-
tion than that contained in the adiabatic PESs Vi (Q) alone.

The concept of regularized diabatic statesbelongs to the third class of
methods and the main idea behind it is that the singular coupling terms
can be determined from the behaviour of the adiabatic PESs in the close
vicinity of the CoIns. In particular, it has been shown4, 16 that only the
leading terms in a Taylor series expansion of the PES around an intersection
are responsible for the singularity of the coupling terms and, therefore,
these leading terms can be used to de“ne an adiabatic-to-quasidiabatic
transformation angle. The other residual coupling terms are assumed to
be small and, therefore, neglected. This idea underlies the VC approach
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just explained in the previous section that allows the treatment of complex
systems using model Hamiltonians.

The method was initially proposed by Thiel and Köppel28 and tested
succesfully for aE × e Jahn…Teller situation. Later, it was generalized to
any symmetry-allowed CoIn16 and, subsequently, extended to treat general,
i.e. not symmetry-allowed, CoIns.17 Let us consider initially a two-state
problem, although it will be generalized to more states later on. Assuming
that diabatic states exist for our speci“c problem, the general diabatic
Hamiltonian can be written as:

H dia = ( TN + �( Q))1 + W (Q), (11)

with a tracelessmatrix W (Q). The transformation to the adiabatic repre-
sentation through the unitary transformation matrix S leads to

V =
�

V1 0
0 V2

�
= �( Q)1 + S• W (Q)S = �( Q)1 +

�
� V 0
0 Š� V

�
,

(12)

with � = ( V1 + V2)/ 2 and � V = ( V1 Š V2)/ 2.
Expanding the elements of the diabatic potential energy matrix W in

a Taylor series expansion (see previous section) around the point of degen-
eracy Q0, i.e.

W (Q) = W (1) (Q) + W (2) (Q) + · · · (13)

It has been shown16 that the singular part of the derivative coupling terms
can be removed by a unitary transformation through the adiabatic-to-
diabatic mixing angle � (1) , de“ned by the leading term W (1) of Eq. (13).
That is,

S• (1) W (1) (Q)S(1) =
�

� V (1) 0
0 Š� V (1)

�
with S(1) =

�
c � (1) Šs� (1)

s� (1) c � (1)

�
,

(14)

where c and s stand for cos and sin, respectively, and � V (1) represents the
half-di�erence of the eigenvalues of the “rst-order diabatic potential energy
matrix W (1) , analogous to � V given above.

By applying the “rst-order transformation matrix S(1) to the general
adiabatic potential energy matrix V of Eq. (12), we can thus remove
the singular derivative couplings associated with the latter and de“ne the
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regularized diabatic potential energy matrix, W reg, as

W reg = S(1) VS (1) • = � 1 +
� V

� V (1)
W (1) , (15)

which is our working equation.
Finally, the corresponding regularized diabatic Hamiltonian is obtained

by adding the (diagonal) contribution of the kinetic energy operator as

H reg = �TN 1 + W reg. (16)

H reg represents the VC Hamiltonian in the scheme of regularized diabatic
states.

For the case of two relevant vibrational modes, the “rst-order diabatic
matrix W (1) that enters in the Eq. (15) can be written as

W (1) =

�

�

�
ki Qi

�
� i Qi

�
� i Qi Š

�
ki Qi

�

� . (17)

From the equation above it follows that � V (1) = [(
	

ki Qi )2+(
	

� i Qi )2]1/2 .
Here and below we deal withnot symmetry-allowed CoInsthat occur at
some general point in a two-dimensional coordinate space. The coordinates
will be denoted asQ1 and Q2 and both participate in all matrix elements of
W (1) . There are two coupling constants for each mode,ki and � i (i = 1 , 2),
and we now indicate brie”y their determination from electronic structure
data for the PESs (a more detailed description can be found in Ref. 17).
This is accomplished by noting that the squared half-di�erence of the adia-
batic PESs in the vicinity of the CoIn can be described by the following
expression

(� V )2 = f 11Q2
1 + f 22Q2

2 + 2 f 12Q1Q2, (18)

and the •di�erence force constantsŽ f ij (i, j = 1 , 2) by determined by a
least-squares “t to the ab initio data. On the other hand, we can write
the di�erence of eigenvalues � V (1) of the “rst-order coupling matrix W (1)

as follows

(� V (1) )2 = ( k2
1 + � 2

1)Q2
1 + ( k2

2 + � 2
2)Q2

2 + 2( k1k2 + � 1� 2)Q1Q2. (19)

Comparing the two Eqs. (18) and (19) shows that the constantski and
� i (i = 1 , 2) needed to de“ne the “rst-order coupling matrix W (1) can be
obtained directly from the f ij (i, j = 1 , 2). Although this procedure is not
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unique, it only leaves open a constant orthogonal transformation which does
not a�ect the “nal results and can be chosen to ful“ll suitable constraints. 17

Let us now turn to the case of three or more intersecting adiabatic
surfaces and restrict attention again to two relevant degrees of freedom. In
principle one may think of using the adiabatic-to-diabatic transformation
of the N × N matrix of Eq. (4) as a •wholeŽ and apply it to the diagonal
matrix of ( N ) adiabatic PESs Vi . While this is technically straightforward
in principle, due to the model character of the LVC (or QVC) coupling
scheme this may not be able to correctly reproduce the complicated set of
interconnected CoIns that may exist in the electronic manifold. Therefore
one should address the various CoIns separately.

To be more speci“c, we focus on the casen = 3. There are a number
of important special cases, like the interaction of a doubly degenerate state
with a nondegenerate one, where a symmetry is present and one of the three
PESs is not a�ected in shape by the couplings.15 While all three component
states are interacting nonadiabatically, the shape of the PESs is like in a
two-state problem. Therefore, the diabatization procedure for two coupled
states discussed above and in earlier work may also be applied for such
three-state systems.

A somewhat more generalthree-state situation is encountered when no
symmetries are present, butthe di�erent CoIns are separated in space. Then
the above procedure for the two-statecase may be applied to each intersec-
tion separately and the transformation matrices simply be multiplied. For
example, let us consider the following adiabatic 3-state situation

V 3× 3 =

�

�
V1 0 0
0 V2 0
0 0 V3

�

� , (20)

where the system consecutively undergoes a nonadiabatic transition at a
CoIn between the potential surfacesV1 and V2 and at one between the PESs
V2 and V3. For each intersection, a diabatization is performed along the lines
described above. Let the resulting mixing angles be denoted by� 12 and � 23,
where the subscript refers to the pairof intersecting surfaces and the super-
script (1), denoting the “rst order in the expansion, has been dropped for
notational simplicity. The individual diabatic-to-adiabatic transformation
matrices

S12 =

�

�
c12 Šs12 0
s12 c12 0
0 0 1

�

� and S23 =

�

�
1 0 0
0 c23 Šs23

0 s23 c23

�

� , (21)
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(cij and sij stand for cos� ij and sin � ij respectively), and are then multi-
plied to give the whole transformation matrix:

S123 = S12 · S23 =

�

�
c12 Šs12 c23 s12 s23

s12 c12 c23 Šc12 s23

0 s23 c23

�

� . (22)

Finally the diabatic potential energy matrix is obtained as

W 3× 3 = S123 V 3× 3 S123
• (23)

in the usual way. The mixing angles could be expressed in terms of the
various potential energymatrix elements as above. However, contrary to the
two-state case, lengthy expressions result which do not o�er a simpli“cation
compared to the implicit equations above. Therefore, the above results are
the working equations to be used in corresponding calculations such as on
formaldehyde below.

2.3. Electronic structure calculations

In order to determine the various system parameters entering the Hamilto-
nian, Eq. (3), and provide a solid basis for the subsequent dynamical simu-
lations, ab initio electronic structure calculations are performed. These rely
generally on basis sets of double-zeta or triple zeta quality. Electron corre-
lation is included at the CCSD (EOM-CCSD for excitation or ionization
energies) or CASSCF/MRCI level of theory. Alternative approaches are
MP2 computations for the electronic ground state, used mostly in earlier
work, and the outer-valence Greens function (OVGF) formalism for ioniza-
tion potentials, employed here for 1,2,3-tri”uoro benzene. Since all these
schemes have been amply described inthe literature, we do not go into
more details here.

As a “rst step in the calculation, a ground state geometry optimization is
performed, followed by a frequency analysis. The former step also provides
the geometrical parameters needed for computing the vertical excitation
or ionization energies. The latter characterizes the (harmonic) PES V0 in
Eq. (2) and de“nes the normal coordinates for the subsequent treatment.

The determination of the various coupling constants can proceed by
directly evaluating the elements of Eq. (4) as matrix elements of derivatives
of the molecular Hamiltonian at the reference geometry (Q0 = 0) with the
electronic wavefunctions (see, for example, Ref. 29). By a suitable averaging
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over relevant nuclear con“gurations the accuracy of this procedure may be
considerably enhanced.24 Alternatively, as done in the present work, the
coupling constants may be deduced from the adiabatic PESs. In practice
several variants emerge which are compared here brie”y with respect to
computational ease and accuracy.

In the simplest case only •localŽ information is required, characterized
by the immediate vicinity of the expansion point Q = 0 in Eq. (4). For
the totally symmetric modes, the corresponding expressions have already
been given above as Eqs. (6) and (7). That is, the “rst-order (second-order)
coupling constant for mode i in state � is the corresponding derivative of
the corresponding PES along the coordinateQi .

For a non-totally symmetric mode u and two interacting states an alter-
native expression to the above Eq. (8) can be given as follows. The two-state
coupling matrix can be written as

W ��
e� (Qi ) =



E� � ��

i Qi

� ��
i Qi E�

�

, (24)

from which one gets the well-known hyperbolic shape of the square of the
di�erence �V �� of the PESsV� and V�

� V�� =
�

(E� Š E� )2 + 4( � ��
i Qi )2. (25)

From this one easily deduces4

� ( �� )
i =


1
8

� 2(V� Š V� )2

�Q 2
i

�
�
�
�
Q =0

. (26)

For more than two coupled states the adiabatic PES can normally not
be given in closed form and the above •localŽ approach using “rst and
second derivatives is no longer viable. Then an appropriate coupling matrix
is set up, like

W ���
e� (Qi ) =

�

�
�

E� 0 � ��
i Qi

0 E� � ��
i Qi

� ��
i Qi � ��

i Qi E�

�

�
� , (27)

and its eigenvalues are determined numerically for a suitable set of “nite
displacements. These are then “tted to the correspondingab initio data,
typically in a least-squares sense.



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch07

260 S. Faraji, S. G´ omez-Carrasco and H. K¨ oppel

This latter procedure amounts to a more general, reduced-
dimensionality approach to determine the coupling constants. In this
scheme the least-squares “t is applied toany vibrational mode, given a
suitable set of “nite displacements along the coordinate of that mode.
Apparently, the least squares-“t may be applied also to totally-symmetric
modes, and to non-totally symmetric modes coupling two states only.
Thus, for example, also higher-ordercoupling constants can be determined
together with the “rst-order (and second-order) constants. The advantage
of this procedure is that it allows to test the accuracy of the coupling
scheme in Eq. (4), by comparing its predictions with the ab initio data.
This is important especially when larger-amplitude displacements are of
relevance. In the earlier •localŽ approach, on the other hand, its applica-
bility is assumed to hold and not controlled.

It should be emphasized that the e�ort of this procedure increases only
linearly with the number of vibratio nal degrees of freedom [or possibly
quadratic, if inter-mode coupling constants are to be included in Eq. (4)].
The scaling behavior is thus the same as in the local approach, only the
prefactor di�ers. This is a huge saving over the general case, because for
the number of degrees of freedom of interest (10…30), full-dimensional elec-
tronic structure calculations would not be feasible owing to the exponen-
tial growth of the number of data points with the number of degrees of
freedom (although promising recent developments should be mentioned
here30).

The last, third scheme would consist in performing a least-squares “t
of the model PESs to a global set of electronic-structure data points.
Formally this is the most general and rigorous way to determine the
coupling constants, but at the expense of an enormous numerical e�ort
(see last paragraph). In practice, suitable subspaces could be selected,
thus making the ab inito calculations numerically tractable. Indeed, in
some cases appropriate linear combinations of normal mode displacements
have been selected to determine relative signs and higher-order coupling
constants.31…33 Normally, however, the reduced-dimensionality approach
utilizing “nite displacements along the coordinates of the individual vibra-
tional modes, is considered as the best compromise between e�ort and accu-
racy in applications of the MMVC approach. It underlies the studies on the
”uorobenzene cations and singlet-excited pyrrole reported below. Within
the concept of regularized diabatic states, on the other hand, general PESs
are of relevance, and suitable global or semi-global, data are to be provided,
typically for a smaller number of degrees of freedom than for the MMVC
approach.
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2.4. Quantum dynamical calculations

The dynamical calculations performed in this work and reported below
rely on fully quantal, time-dependent methods, namely wavepacket propa-
gation techniques. For the applications of the MMVC scheme the multicon-
“guration time-dependent Hartree (MCTDH) method is a highly powerful,
nearly ideally suited tool to integrate the time-dependent Schrödinger equa-
tion and is therefore used in this work. The MCTDH method34…40 uses a
time development of the wavefunction expanded in a basis of sets of varia-
tionally optimized time-dependent functions called single-particle functions
(SPFs). The MCTDH equations of motion are obtained from the Dirac…
Frenkel variational principle. By virtue of this optimization the length of
this expansion can be much smaller than in standard integration schemes
(so-called MCTDH contraction e�ect). The e�ciency is even enhanced by
two important additional features: each of the coordinates used in the inte-
gration scheme can comprise several physical coordinatesQi . Furthermore,
for vibronically coupled systems the wave function is written as a sum of
several wavefunctions, one for each electronic state

�( t) =
n s�

�

� � (t) |� � , (28)

where ns is the number of electronic states. The SPFs may then be opti-
mized separately for each electronic state, and therefore fewer coe�cients
are needed in the wavefunction expansion. Both choices are employed in
this work and, in combination, lead to an MCTDH contraction e�ect of
about 6 orders of magnitude in typical applications.

We emphasize that the form, Eq. (4), of the VC Hamiltonian represents
a sum of low-order products of theQi which is exactly the form that makes
the application of the MCTDH algorithm e�cient. „ In applications of
the regularization scheme, on the other hand, general expressions for the
potential energy operator are to be dealt with, but high e�ciency is not a
severe aspect because of the smaller number of degrees of freedom treated.

Given the time-dependent wavepacket (28) various time-dependent and
time-independent quantities can be computed directly or indirectly. Two
quantities easily extracted from �( t) are the electronic populations, P� (t),
and reduced densities	 � (Qi , t) for the electronic state � :

P� (t) = � � � (t) |� � (t) � , (29)

	 � (Qi , t) =
�

� �
� (t)� � (t)

�

l�=i

dQl . (30)
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From the de“nition of the Hamiltonian (4), the populations refer to
diabatic electronic states. Adiabatic populations have also been obtained,
originally for two-state cases, subsequently also for three-state situations.41

Of special interest is the spectral intensity distribution P(E) for an
optical transition from the ground state, charaterized by the potential
V0 of Eq. (3), to the interacting manifold. This can be computed within
Fermi•s golden rule, as the Fourier transform of the time autocorrelation
function C(t).

P(E) �
�

eiEt C(t) dt, (31)

C(t) = � �(0) |�( t) � = � 0|� • eŠ i H t � |0� . (32)

In Eq. (32), H is the vibronic Hamiltonian of Eqs. (9) or (16), |0� is the
vibrational ground state of the initial electronic state with PES V0, and

� † = ( 
 1, 
 2, . . . , 
 n s ) (33)

is the vector of individual transition matrix element 
 � between the initial
state and the “nal electronic states labeled by� . The autocorrelation func-
tion C(t) measures the overlap between the time-evolving wave-packet and
the initial one, generated by the optical transition. The scalar product
involving the vector � of transition matrix elements implies a summation
over various partial spectra, each being proportional to|
 � |2 (di�erent “nal
electronic states).

Working with real symmetric Hamiltonians and a real initial state
as done here, allows to reduce the propagation time by a factor of two
according to42, 43

C(t) = � �( t/ 2)� |�( t/ 2)� . (34)

Due to the “nite propagation time T of the wavepackets, the Fourier
transformation causes artifacts known as the Gibbs phenomenon.44 In order
to reduce this e�ect, the autocorrelation function is “rst multiplied by a
damping function cos2(�t/ 2T).37, 45 Furthermore, to simulate the experi-
mental line broadening, the autocorrelation functions will be damped by
an additional multiplication with a Gaussian function exp[ Š(t/
 d)2], where

 d is the damping parameter. This multiplication is equivalent to a convo-
lution of the spectrum with a Gaussian with a full width at half maximum
(FWHM) of 4(ln 2) 1/2 /
 d. The convolution thus simulates the resolution of
the spectrometer used in experiments, plus intrinsic line broadening e�ects.
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3. Illustrative Examples

In this section we present some examples treated by us in past and current
work along the lines described above. These serve to highlight method-
ological aspects as well as phenomena associated with multistate interac-
tions and multiple CoIns. While the work on ”uorinated benzene cations
has been detailed in several original publications, the results on the other
systems covered (formaldehyde and pyrrole) are partly preliminary, but
nevertheless included to arrive at a more complete picture of the important
features. As stated in the introduction, another class of systems treated in
the past are molecules with degenerate electronic states, interacting with
other (degenerate or nondegenerate) states. These 3- and 4-state coupling
cases have been covered rather comprehensively in a recent review paper.15

They are therefore not further treated here, where we address (with a single
exception) only Abelian molecular point groups without symmetry-induced
spatial degeneracies.

3.1. Formaldehyde

3.1.1. General; electronic structure calculations

Formaldehyde, H2CO, is the simplest carbonyl compound and is also one
of the polyatomic organic molecules relevant to atmospheric chemistry and
to the interstellar medium. 46 The presence of a� system and the lone
pairs on the oxygen give rise to bothn, � � and �, � � transitions, which are
characteristics of this kind of compounds47, 48 and are responsible for impor-
tant photochemical reactions. Many of the theoretical studies on formalde-
hyde49…60 have focused on the vertical excitations. Grein et al.54, 57, 61

provided also information on the perturbations of the 1A1(� , � � ) and
1B1(� , � � ) valence states with the surrounding Rydberg states. Recently,
high-level MRCI and multireference averaged quadratic coupled clusters
(MR-AQCC) calculations based on complete active space self consistent
“eld (CASSCF) wavefunctions have been presented by Lischkaet al.59, 60

along with full geometry optimizatio ns for several electronic states. They
have also analyzed the CoIn occurring between the 11B1(�, � � ) and 2
1A1(�, � � ) electronic states, coupled through the out-of-plane bending
motion. The electronic spectrum of formaldehyde has been also analyzed
experimentally.62…67Optical62, 64, 68…70 and electron impact techniques71…73

have been used to record the vacuum-ultraviolet (VUV) absorption region
from approximately 7 to 11 eV.
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Despite of the large number of studies on formaldehyde, there are
still several issues not well understood. For example, in the absorption
spectrum of this system, the electric dipole forbidden transition 1A2(n,
� � ) � X 1A1 is observed and well studied; however, the1A1(� , � � ) �
X 1A1 transition, that is allowed and should be one of the most intense
ones given its large oscillator strength, has not been yet experimentally
detected. Likewise, the experimental assignment of the 1B1(� , � � ) � X
1A1 electronic transition remains still uncertain.54…56, 59, 74, 75 The reason
for these di�culties is associated with the interaction between the valence
and Rydberg states mainly along the rCO stretching coordinate.57, 58

From the dynamical point of view, the photodissociation of formaldehyde
has been also extensively studied both theoretically 76…85 and experimen-
tally, 86…91 partly because of the important role that formaldehyde plays
in atmospheric chemistry.92 However, the dynamical studies have mainly
focused on the photodissociation involving the lowest-lying electronic states:
the ground (S0), the 1 1A2 (S1) and the 13A2 (T 1) electronic states.
There are virtually no studies on the dynamics of high-lying electronic
states.

In this work we present a coupled surface photodynamics study along
the rCO stretching coordinate and the HCO angle, involving “ve inter-
acting (singlet) electronic states in the 7…10 eV excitation energy range.93

The ground and excited electronic states of formaldedyde have been calcu-
lated using an equation-of-motion coupled cluster method with single
and double excitations (EOM-CCSD) as implemented in the MOLPRO
suite of programs.94 The triple zeta (VTZ) valence-type basis set of
Dunning95 has been used for the Oxygen, Hydrogen and Carbon atoms.
In order to have a balanced description of the valence and Rydberg states
of formaldehyde the aforementioned functions were supplemented by a
quadruply-augmented double-zeta basis set of di�use functions placed in
the center of masses of the molecule. Altogether, the basis set contains
a total of 124 contracted functions. In order to describe properly the
potential energy curves for long CO distances, additional state averaged
complete active space (SA-CASSCF) calculations followed by an internally
contracted multireference con“guration int eraction (icMRCI) calculations
were performed up to rCO = 20 a.u. For more details of the calculations,
see Ref. 93.

All calculations have been performed in C2v symmetry, varying the r CO

and the HCO angle valence coordinates. The C2 axis is aligned with the
z-axis and the x-axis taken perpendicular to the molecular plane. The
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valence electronic con“guration of the ground state can be described as:

(a1� (CO)) 2(a1� (CH)) 2(b2� (CH)) 2(a1�n (CO)) 2(b1� (CO)) 2(b2n(O)) 2.

For our purposes, the most important orbitals are the HOMO, HOMO-1
and HOMO-2, denoted in short asn, � and � orbitals, respectively. Rydberg
MO•s will be labeled in an atomic-like notation (nl ) as, ns, np, nd, as
usual.

Valence and Rydberg excited electronic states have been calculated up
to an energy threshold slightly above 10 eV.93 The nature of the wave-
function (such as valence or Rydberg) has been con“rmed by inspecting
the expectation value � x2� , where x is the out-of-plane direction. A large
number of Rydberg states interspersed among the valence states has been
obtained. This constitutes a substantial challenge for the accuracy of the
calculation because of theneed to treat a relatively large number of states
simultaneously. The comparison with previous calculations and experi-
mental data regarding the vertical excitation energies is quite good,93

although our results for the B2 states appear in general shifted towards
higher energies (� 0.10 eV for most of the states). From the analysis of the
oscillator strengths, it follows that the main contribution to the absorption
spectrum comes from the A1 and B2 electronic states. Therefore we con“ne
our attention to these states in the following subsections.

The 2D electronic structure calculations as a function of the rCO bond
distance and the HCO angle have been perfomed using the following grid

rCO = [1 .52Š 3.40] a.u. (220 points),

�HCO = [100 Š 140] deg. (21 points),

where the rest of the coordinates have been kept “xed at the equilibrium
values of the electronic ground state. Potential energy curves along the other
degrees of freedom, that is the HCH out-of-plane motion, symmetric and
antisymmetric CH stretching and the rocking motion were also calculated,
and are analyzed in Ref. 93.

3.1.2. Potential energy surfaces and diabatic Hamiltonian

Figure 1 displays several potential energy curves for the1A1 (the two panels
on the left) and 1B2 (the two panels on the right) symmetries, keeping the
rest of the coordinates “xed to their values at the equilibrium geometry
of the ground state. The calculated ground-state optimized equilibrium
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Fig. 1. 1D potential energy curves of formaldehyde. The two panels on the left corre-
spond to the adiabatic (top) and diabatic (bottom) curves of A 1 symmetry along the
CO bond length. The two panel on the right correspond to the B 2 symmetry along the
CO bond length (top) and HCO angle (bottom). For the B 2 symmetry, only adiabatics
curves are displayed.

geometry of formaldehyde is rCO = 2 .2766 a.u., rCH = 2 .0800 a.u. and
�HCO = 121.7o, in good agreement with the experimental values rCO =
2.2733 a.u., rCH = 2 .0806 a.u. and �HCO = 121.9o.96 The vertical dashed
line in Fig. 1 indicates the equilibrium geometry of the ground electronic
state, i.e. the FC point. For the B 2 symmetry, the adiabatic potential energy
curves are shown along the rCO stretching coordinate (top) and along the
HCO angle (bottom). All the B 2 electronic states have aRydberg character.
No avoided crossings are present amongthe electronic states, except for the
one between the 11B2 and the 2 1B2 states, which is located at a larger
distance and a higher energy than the corresponding minima.

In contrast to the B 2 states, the A1 states show a very complex shape due
to several avoided crossings, involving either Rydberg and valence states.
In particular, the 1A1 (� , � � ) valence state undergoes several avoided cross-
ings with all the Rydberg states. In order to account for nonadiabatic e�ects
on the dynamics of formaldehyde along the rCO coordinate, a 5× 5-states
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diabatic model has been used for the “ve1A1 electronic states shown in the
top left panel in Fig. 1. The diabatic Hamiltonian reads asa

H = TN + W , (35)

whereTN is the kinetic energy operator andW is the 5× 5 diabatic poten-
tial energy matrix given by

W 	 W 5× 5 =

�

�
�
�
�
�

W11 W12 W13 0 W15

W22 0 0 0
W33 0 0

W44 0
W55

�

�
�
�
�
�

. (36)

The diagonal elements ofW 5× 5 correspond to the diabatic surfaces and
they were estimated graphically connecting the electronic energy points
with the same character. The diabatic surfaces are displayed in the bottom
panel on the left side of Fig. 1, so that W11 = �, � � , W22 = n, 3py ,
W33 = n, 3dzy , W44 = n, 4py and W55 = n, 5py . In contrast to the adiabatic
potential energy curves, the diabatic ones are smooth functions of the CO
coordinate. In the simplest (1D) model, the Wij (i �= j ) coupling terms are
one half of the smallest energy di�erence at the avoided crossing region with
values W12 = 0.034 eV, W13 = 0.169 eV and W15 = 0.026 eV. Note that
the W44 = n, 4py electronic state is uncoupled from the rest of states in
this simpli“ed treatment. The �, � � valence electronic state has a minimum
located at � 2.95 a.u., in contrast to the A1 Rydberg states whose minima
are close to that of the ground state.

In order to describe more correctly the dynamical behaviour of a system,
2D PESs including the rCO bond coordinate and the HCO angle have been
calculated. When doing this, the avoided crossings displayed in Fig. 1 along
the rCO turn into CoIns.

Table 1 shows the energy and the location of the CoIns ocurring
between the 1A1 electronic states. The regularization method explained
in Sec. 2.2 has been applied for the diabatization of the CoIns. The inter-
action involving the 31A1, 41A1 and 51A1 electronic states (see energy
range from 9.0…9.75eV in the top-left panel of Fig. 1) has been treated in
two steps: (1) the 41A1/5 1A1 CoIn has been diabatized “rst, yielding two

a Note that, contrary to the other equations of this chapter, the matrix W includes here
the ground state potential energy V0(Q ).
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Table 1. Energy and geometry location of the CoIns
between the 1A 1 electronic states.

CoIn Energy/eV r CO /a.u. HCO angle/deg.

2 1A 1/3 1A 1 8.91 2.49 128.4
3 1A 1/ 1A 4,5

1 9.46 2.34 117.0
4 1A 1/5 1A 1 9.63 2.33 121.7
5 1A 1/6 1A 1 10.56 2.31 104.0

diabatic states, namely, the state with n, 4py character and another diabatic
state with a �, � � /n, 3dyz mixed character. The latter will be denoted as
1A4,5

1 . (2) After that, the 3 1A1/ 1A4,5
1 interaction has been subsequently

treated.
In order to exemplify the procedure of regularization, we present in

Fig. 2 the results obtained for the case of the 41A1/5 1A1 CoIn (or V4/ V5 as
denoted in the “gure). The axes represent the displacement coordinates:
� y = y Š y0, for y = r CO and � x = ( x Š x0) × r (0)

CH for x = �HCO,
with r (0)

CH being the value of the CH bond length in the equilibrium. x0

and y0 are the corresponding values at the CoIn given in Table 1. The
intersection is located at the crossingof the vertical and horizontal lines
displayed in each panel. The top panels show the adiabatic PESsV4 and
V5 [see Eq. (15)], which provide all the information needed to build the
diabatic states. The left-middle panel shows the half-di�erence of the adia-
batic surfaces, � V , in solid lines along with the half-di�erence of the eigen-
values � V (1) of the “rst-order diabatic matrix, plotted in dashed lines.
� V (1) is obtained by a least-squares “tting of (� V )2 in the vicinity of the
CoIn. � V and � V (1) enter in the numerator and denominator of Eq. (15),
respectively. Likewise, the coupling constants that enter in the diagonal
and o�-diagonal elements of W (1) are also deduced from the diagonal-
ization of the matrix of force constants f ij , obtained from the “tting of
(� V )2 (Eq. 18).17 Finally, the right-middle panel displays the o�-diagonal
term (W (1)

45 *(� V /� V (1) )) of the total regularized diabatic matrix given by
Eq. (15), and both panels of the bottom represent the regularized diabatic
surfaces,W44 and W55. The same procedure has been followed for the other
CoIns. Note that since the ellipse in Fig. 2 does not match the half-di�erence
of the adiabatic surfaces in the bottom-right quadrant, the corresponding
regularized diabatic surfacesW44 and W55 show a slight bump in that
region. Second-order terms could be added in the “tting to avoid these
structures.
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Fig. 2. Adiabatic (V 4 and V 5) and the corresponding diabatic (W 44 and W 55 ) two-
dimensional potential energy surfaces as a function of the displacement coordinates,
� HCO angle and � r CO bond length. The coupling is displayed in the middle-right
panel and the half of the adiabatic (�V) and the “rst order (�V (1) ) energy di�erences
are shown in the middle-left panel using solid and dashed lines, respectively. Distances
and (scaled) angles are given in a.u. and rad*a.u., respectively. Energies are in eV. For
more information, see text.
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3.1.3. VUV absorption spectrum

Dynamics calculations for the rCO stretching coordinate and for the HCO
angle have been performed on the A1 and B2 PESs using a wave packet
method implemented in the MCTDH Heidelberg package of programs.34…40

Initially, the ground state wavefunction (for the r CO or the HCO angle) is
generated by an energy relaxation method of an initial guess wavefunction
on the ground electronic state of formaldehyde,1A1. The photodynamics
of the system is then studied placing the ground state wave function on
the excited PESs and following its evolution. Regarding the set of prim-
itive basis functions, a fast Fourier transform representation was used
for describing both coordinates and, after a study of convergence, 1024
equally-spaced grid points within the range [1.89…9.44] a.u. and [100…140]
deg. were included for the rCO stretching and HCO angle, respectively.
A complex absorbing potential (CAP) of the form ŠiA =  (x Š x0)�

was used for the �, � � electronic state along the x = r CO coordinate,
where  is the strength parameter, � is the order of the CAP and x0

is the place where the CAP starts acting. The parameters were opti-
mized to  = 3.32 a.u, x0 = 8.94 a.u. and � = 3. The propagation time
was 300fs.

The electronic absorption spectrum of formaldehyde has been obtained
by Eq. (31) and the result is presented in Fig. 3 (lower panel). For compar-
ison, the experimental result from Ref. 70 is included in the upper panel
of the “gure. The calculated total spectrum can be divided clearly into
three regions: at low energies, we “nd the transition to the 11B2(n, 3s)
Rydberg state, whose calculated excitation energy is slightly larger than
the experimental one (7.20 vs. 7.09 eV). The structure of this band is found
to be associated to a vibrational excitation in the HCO angle, although
the experimental vibrational spacing is smaller than the calculated one.
The calculated peak is less intensethan the experimental one since the
calculation understimates the oscillator strength for the correspoding tran-
sition. The next region located between 145 to 160 nm corresponds also to
transitions to Rydbergs states: the peak at higher wavenumbers (� 154 nm)
corresponds to a transition to the 21B2(n, 3pz) Rydberg state and is shown
in the bottom panel. At � 152 nm we “nd the vibrational progression in
the HCO angle, belonging to the transition to the 21A1(n, 3py ) electronic
state. The relative energetic separation between both states, 21B2 and
21A1, is smaller than the experimental one since, as commented above,
most of the 1B2 state appears shifted to higher energies. The third region
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Fig. 3. Experimental and calculated absorption spectrum of formaldehyde. The exper-
imental spectrum is taken from Fig. 1 of Ref. 70.

is the most striking part of the spectrum, since it corresponds to the region
of strong interaction. The most noticeable feature is the intensity redistri-
bution of the �, � � state due to the interaction with the •surroundingŽ
Rydberg states, showing a vibronic structure that becomes denser and
irregular at higher energies. The two peaks at 139.55 and 137.20 nm in
the experimental spectrum are also found theoretically. They are associ-
ated experimentally to 3d transitions.70 At higher energies we “nd a rather
intense peak that theoretically corresponds to the 41A1(n, 4py ) transition,
in good agreement with the experimental assignment although the oscil-
lator strength estimated experimentally is larger than the calculated one.
Similarly, the peak assigned theoretically as a transition to the 61A1(n, 5py )
electronic state is also in good agreement with the experimental
assignment.
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Fig. 4. Relative diabatic populations along the propagation time for the “ve A 1 poten-
tial energy curves. The initial wave packet is placed in the �, � � state. The inset displays
a detail at short propagation times. For the line codings, see Fig. 1.

3.1.4. Time-dependent electronic populations

A deeper insight into the nonadiabatic e�ects on the dynamics of the
system can be obtained by analyzing time-dependent quantities such as
the electronic populations, shown in Fig. 4 up to a propagation time of
300fs. Figure 4 displays the probability of the wave packet to be located in
any of the “ve 1A1 diabatic electronic states after excitation to the �, � �

state. The inset shows a detail at short propagation times.
The dynamics of the system can be described as follows: the system,

after initial photoexcitation, undergoes a �, � � 
 n, 3dyz nonadiabatic tran-
sition of the order of 5fs (see inset of Fig. 4). The transfer is very fast owing
to the proximity of the crossing to the FC-point. Approximately 40% of the
wave packet is transferred initially between these two states. The part of
the wave packet transferred to the n, 3dyz state evolves on this state and
subsequently reaches again the interaction region, transfering some popu-
lation back to the �, � � electronic state. At � 30fs the system reaches the
second interaction region between the�, � � and n, 3py states, populating
slightly the latter owing to the smaller W12 coupling constant compared to
W13. After that, the remaining part of the system keeps evolving on the
�, � � state, bouncing back at the outer turning point and reaching again
the intersection �, � � / n, 3dyz . In general, the dynamics can be mainly seen
as the population transfer among the �, � � and n, 3dyz states, with the
corresponding •transfer• periods of� 100fs and � 10fs on the �, � � and on
the n, 3dyz states, respectively. Then, 3py state remains slightly populated
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Fig. 5. Diabatic wavepackets on the di�erent diabatic A 1 electronic states as a function
of the propagation time (in fs) after excitation from the ground electronic state to the
�, � � state. For the line codings, see Fig. 1.

along the propagation. On the other hand, the population transfer to the
highest state is practically not visible under these conditions. Finally, the
dynamics of the system can be also visualized in Fig. 5 where the diabatic
nuclear densities are depicted along with the corresponding potential energy
curves for di�erent propagation times. This con“rms the characterization
of the system dynamics based above on the electronic populations.

3.2. Pyrrole

Heteroaromatic systems, such as phenol, indole, pyrrole and their deriva-
tives,97…107are often considered as simpli“ed models for the investigation of
the photophysical and photochemical properties of important biomolecules,
such as DNA bases or aromatic amino acids. Previous experimental
observations and theoretical calculations have revealed that the near-UV
photolysis of these heteroaromatic molecules essentially involves ultrafast
radiationless decay processes governed by nonadiabatic transitions at
CoIns. Short excited-state lifetimes may provide a mechanism to protect
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the building blocks of life against photochemical damage, by providing a
pathway for rapid internal conversion to the ground state.108

Since pyrrole and its derivatives play a prominent role in the synthesis of
biologically active compounds, it has been under intense experimental and
theoretical studies towards the understanding of its photochemical prop-
erties,109 largely focusing on its UV absorption spectrum and its photo-
dynamics. The near-UV photolysis of pyrrole essentially involves the four
lowest excited singlet states, which are of1�� � , 1�� � , 1�� � character and
1�� � , in order of increasing vertical excitation energy.102 A summary of
more recent ab initio studies, and a comparison with the most similar
present states is shown in Table 2. The “rst and the second excited singlet
states correspond to excitations from the valence� orbitals of pyrrole to
the � � /Rydberg-type 3s orbital. These electronic transitions possess very
small oscillator strengths.100 The third and the fourth excited singlet states,
which correspond to valence excitations from� to � � orbitals, are the UV
absorbing states and are responsible for the intense band around 6 eV in
the absorption spectrum. The 1�� � states are bound as a function of the
NH stretching coordinate and the 1�� � states are repulsive and therefore

Table 2. Comparison of the present results with previous Rydberg and valence state
calculations reported in the more recent literature. f refers to the oscillator strengths
(F means dipole forbidden).

S0 S1 S2 S3 S4

Symmetry A 1 A 2 A 1 B 2 B 1

Roos et al.a S0 �� � (3s) �� � �� � �� � (3py )
Evert (CASPT2) 5.22 5.82 5.87 5.87

f F 0.036 0.209 0.026

Symmetry A 1 A 2 B 1 B 2 A 1

Vallet et al.b S0 �� � �� � �� � �� �

Evert (CASSCF/ 4.45 5.3

MRCI)

Symmetry A 1 A 2 B 1 B 2 A 1

Barbatti et al.c S0 �� � �� � � � 3Px �� �

Evert (MRCI) 5.09 5.86 5.94 6.39

Symmetry A 1 A 2 B 1 A 1 B 2

Present work S0 �� � �� � �� � �� �

Evert (MRCI) 5.34 6.30 6.53 6.78
f F 8.7× 10Š 6 0.002 0.228

aRef. 99, b Ref. 105, cRef. 106



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch07

Multistate Vibronic Dynamics and Multiple Conical Intersections 275

can predissociate the1�� � and 1n� � states. These1�� � states are optically
forbidden and thus not spectroscopically detectable.110, 111

Theoretical studies done so far on pyrrole,99, 100, 105, 106, 112…115 mainly
focused on model PESs of reduced dimensionality constructed on the basis
of accurate ab initio electronic structure calculations. The model includes
the NH stretching coordinate plus one or two additional coupling modes
for the separate treatments of the two (1�� � Š S0) CoIns. Time-dependent
quantum wave-packet propagation has been used to explore the ultrafast
internal conversion and photodissociation dynamics of pyrrole which works
essentially “ne under the reduced dimensionality model. The latter model
reveals that for both CoIns the nonadiabatic dynamics is governed by the
strongest coupling mode to a good approximation, and the branching ratio
for di�erent photodissociation channels depends on the initial excitation of
the strong coupling mode.113, 114

We have analyzed the multistate multimode dynamics of pyrrole by
applying the MMVC model. 116 The quantum dynamical calculations are
done using the MCTDH method which allows us to consider four electronic
states (1�� � , 1�� � , 1�� � and 1�� � ) and up to 12 vibrational degrees of
freedom. The goal is to shed more light on its low quantum yield ”uores-
cence after UV absorption as well as its photodynamics.

3.2.1. Vibronic coupling Hamiltonian for pyrrole

In the present work, we are dealing with the four lowest excited
singlet states of pyrrole which play a central role in its photoinduced
dynamics.97, 99…102, 105, 112 Their C2v symmetry assignments and energies
are given in Table 2 (present work). The 24 vibrational modes of pyrrole
consist of 17 planar and 7 out-of-plane modes according to the following
symmetry species

� vib = 9 A1 + 3 A2 + 4 B1 + 8 B2. (37)

The NH stretching coordinate rNH (Q24) of A1 symmetry is the reaction
coordinate for the hydrogen abstraction reaction. The selection of the rele-
vant modes of the reduced dimensionality models can be performed with
the help of symmetry selection rules for the linear (� and � ) contributions
in applying the VC Hamiltonian, Eqs. (4) and (5), one has the following
general symmetry selection rule for the linear (� and � ) contributions:

� � � � � � � i . (38)

The most important modes which have been used in the subsequent treat-
ment of the VC in pyrrole are collected in Table 3. In order to set up
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Table 3. Frequencies and coupling constants entering the Hamilto-
nian (39) for pyrrole. All quantities are in eV.

Freq. A 2(�� � ) B 1(�� � ) A 1(�� � ) B 2(�� � )

A 1 � 9 0.1129 0.0723 � 0.1027 � 0.0408 0.0254
� 10 0.1292 � 0.0441 � 0.1696 � 0.0334 � 0.0030
� 12 0.1366 0.1992 � 0.0343 � 0.0665 0.1377
� 13 0.1468 � 0.0466 0.0239 � 0.2124 � 0.0336
� 16 0.1795 0.1710 � 0.1299 0.1571 0.1883
� 24 0.4844 0.1811 0.2194 � 0.0091 0.0379

B 2 � 8 0.1106 0.0860 0.0636
� 14 0.1490 0.1815 . . .
� 17 0.1841 0.2118 0.0364

A 2 � 2 0.0759 0.0 0.0181
� 7 0.1050 0.0 0.0227

the working Hamiltonian, further simpli“cations are used. These regard in
particular the values of the couplings and/or the energetic location of the
minimum of the intersection seams between the various electronic states.
(Apparently, when the minimum of a seam of intersections is too high in
energy with respect to our energy range of 5…7 eV, the intersection will
not play a signi“cant role.) The interactions of the �� � states with the
lowest �� � state are suppressed because the ab initio data reveal negligible
couplings between the corresponding electronic states, either by virtue of
small coupling constants or high-energy minima of the corresponding CoIn
seams. The 4× 4 vibronic Hamiltonian matrix for the description of the
four lowest S1ŠS4 singlet excited states of pyrrole then reads as follows:

H = ( TN + V0) 1 + W , (39)

W =

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

E1 + � (1) Q
+ g(1) Q2

�

j � B 2

� (1 ,2)
j Qj 0 0

�

j � B 2

� (1 ,2)
j Qj

E2 + � (2) Q
+ g(2) Q2 0

�

j � A 2

� (2 ,4)
j Qj

0 0
E3 + � (3) Q

+ g(3) Q2

�

j � B 2

� (3 ,4)
j Qj

0
�

j � A 2

� (2 ,4)
j Qj

�

j � B 2

� (3 ,4)
j Qj

E4 + � (4) Q
+ g(4) Q2

�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

.
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Here

� ( � ) Q =
�

i � � i

� ( � )
i Qi and g(� ) Q2 =

�

i � � i

g( � )
ii Q2

i (40)

with � i being the irreducible representation to which the modei belongs.
The vertical excitation potentials E� refer to the excited electronic states
(� = S1, S2, S3, S4) and all the Qi represent dimensionless normal coordi-
nates of the electronic ground state of neutral pyrrole. The other quanti-
ties entering Eq. (39) are de“ned in Eqs. (4) and (5). As was emphasized
before, the nonadiabatic dynamics described by the above VC Hamiltonian
is essentially controlled by the energies of the minima of the various diabatic
surfaces as well as of the various CoIn seams.4, 117 One should note that the
determination of the seam minima in the presence of quadratic couplings
represents a nontrivial extension ofthe LVC model, because this equation
becomes nonlinear.118

3.2.2. Electronic structure calculations and coupling constants

The various coupling parameters entering the VC Hamiltonian, Eq. (39),
are obtained by performing ab initio electronic structure calculations
to provide a solid basis for the dynamical calculations. The previous
ab initio quantum theoretical investigations97, 99, 100, 102, 114, 119…121 have
demonstrated the underlying di�culties in calculating vertical excited
states of pyrrole. One is strong valence-Rydberg mixing. Calculations based
only on the valence basis are obviously inadequate and this is a major reason
for the failure of early semiempirical studies and earlyab initio studies.
Second, the roles of electron correlations are crucial. Accurate and reliable
results are obtained only by sophisticated electron-correlation methods for
ground and excited states. Third, dynamic polarization of the � electrons is
strong for some electronic excitations. However, there are still many incon-
sistencies among the results of these recent high-level theoretical studies
with large basis sets.

The ab initio calculations for the potential energy curves are done
in collaboration with Hans Lischka and colleagues.116 The ground state
geometry optimization and vibrational frequency analysis of pyrrole was
performed by using the density functional theory with the B3LYP func-
tional and the 6-311 + G(d)

�
basis set. The complete active space (CAS)

used for vertical excitation calculations consisted of “ve orbitals and four
electrons. The reference con“gurations for the MRCI were constructed
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within the CAS(4,5) by allowing single and double excitations from the two
� orbitals into the two � � orbitals and the � � orbital (MR-CISD). The state
averaging is performed over “ve states (SA-5): ground state, two�� � states
and two �� � states (see above). The coupling constants were extracted by
a least squares “tting procedure, considering various displacements along a
given normal mode coordinate, as described in Sec. 2.3 above.

The ab initio calculations reveal that not all vibrational modes of pyrrole
play a signi“cant role in the VC mechanism within the QVC scheme because
of small coupling constants. Table 3 collects the linear coupling constants
as well as the harmonic frequencies of the most important vibrational
modes. As revealed there, we are dealing with 11 nonseparable degrees
of freedom, which still represents a formidable numerical problem. The
coupling constants of Table 3 imply a rich variety of CoIns between the
PESs of the S1ŠS4 states; several of them are low in energy (see Table 4)
and thus accessible to the nuclear motion following photoexcitation. It has
been pointed out118, 122 that quadratic couplings often play a crucial role in
the energetic lowering of several seams of CoIn. Thus, in the present study
we have also computed the quadratic coupling terms for totally symmetric
modes using the least-squares “tting mentioned above (Sec. 2.3.).

3.2.3. Potential energy surfaces and conical intersections

The sets of coupling constants and the Hamiltonian, Eq. (39), de“ne the
high dimensional PESs of the lowest four electronic states of pyrrole. Repre-
sentative cuts through the various PESs of pyrrole are presented in Fig. 6.
The curves represent the potential energies along a straight line from the
origin Q = 0 to the minimum energy of intersection between theS1 and

Table 4. Summary of important electronic energies, for the interacting
states of pyrrole using ab initio vertical excitation energies. The diagonal
values represent the minima of the diabatic potential energies, o�-diag-
onal entries are minima of the corresponding intersection seams. The
numbers on the left side display the results for the quadratic vibronic
coupling scheme including all the totally symmetric modes, while those
on the right side display the results when only those modes are considered
which are included in the dynamical calculations.

0

B
B
B
B
@

S1 S2 S3 S4

S1 4.99 6.03 6.40 9.24
S2 5.99 6.25 6.55
S3 6.19 6.54
S4 6.53

1

C
C
C
C
A

0

B
B
B
B
@

S1 S2 S3 S4

S1(A 2) 5.01 6.04 6.49 9.28
S2(B 1) 6.01 6.29 6.58
S3(A 1) 6.25 6.57
S4(B 2) 6.56

1

C
C
C
C
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Fig. 6. Representative cut through the PESs of pyrrole. The e�ective coordinate
connects the center of the Franck…Condon zone to the minimum of the intersection
seam between the S1 and S2 states.

S2 electronic states. The valueof the e�ective coordinate Qeff denotes
the distance from the origin Q = 0 (center of FC zone) along this line.
Figure 6 shows a whole set of interstate curve crossings which intercon-
nect all four lowest excited states. These all represent a point on a seam
of CoIns and are expected to give rise to a rich vibronic dynamics which
will be explored in the following subsection. The curve crossings other than
the S1ŠS2 crossing do not occur at their minimal energy in the “gure since
the same •cutŽ (e�ective coordinate) is used in the drawing for all elec-
tronic states. There are substantial vibronic interactions within the S1ŠS4

electronic manifold.
Although the multidimensional PESs for the totally symmetric modes

are harmonic oscillators, we emphasize that (pronounced) anharmonicity
of the adiabatic PESs comes into play as soon as non-totally symmetric
modes are included.4 The minima of the diabatic PESs can be determined
by retaining only the totally symmetric modes. Table 4 contains a full
comparison of the minimum energy curve crossings for all pairs of electronic
states within the QVC scheme. The diagonal entries refer to the diabatic
minima of the various PESs and the o�-diagonal values are minima of the
corresponding intersection seams. The numbers may be compared with the
analogous data from the right panel considering only the modes which are
included in the dynamical calculations. There are various low-energy curve
crossings within the S1ŠS4 excited state manifolds except the minimum
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energy intersection betweenS1 and S4 which is high in energy. Comparisons
of the resulting potential energy curves of the QVC coupling model with
the ab initio data for many modes (not shown) illustrate how well the
quadratic coupling approach reproduces theab initio data. However this is
not always the case and the deviations of the model potential energy curves
and ab initio data points are clearly visible for some modes. Thus, the QVC
scheme, is not able to reproduce allab initio data very well. This points
to the importance of higher-order coupling terms. Further improvements of
the present potential energy curves are being undertaken116 but are beyond
the scope of the present chapter.

3.2.4. Time-dependent electronic populations

We now turn to the time-dependent (diabatic) electronic populations
resulting from our theoretical approach. Figure 7 represents the electronic
populations for a state-speci“c preparation of the initial wave-packet in the
highest-energy1B2(�� � ) state. Almost all four states become populated to
a moderate extent, owing to the high energy of the wave-packet and the
rather low energies of the CoIns seams discussed above. After the initial
decay, the1B2(�� � ) state becomes less likely populated than the1A1(�� � )
state owing to its higher energy. One can clearly see the fast population
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Fig. 7. Electronic population dynamics of pyrrole for state-speci“c preparation of the
initial wave-packet in the S4 valence excited state.
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transfer between these two states occurring on a time scale of around 30fs.
Despite of the fact that the minimum of the intersection seam between
the 1A1(�� � ) and 1B1(�� � ) states is lower than the 1B2(�� � )Š1B1(�� � )
seam minimum (see Table 4), the population transfer to the 1B1(�� � )
state is more e�cient from 1B2(�� � ) due to the zero coupling between the
1A1(�� � ) and 1B1(�� � ) states (see Table 3). In fact, the 1B1(�� � ) state
is weakly populated on a time scale of less than 10fs, but its population
is immediately transferred to the 1A2(�� � ) state. This can be rationalized
by the corresponding S1ŠS2 low-energy intersection seam (see Table 4)
and the strong coupling between these two states (see Table 3). Additional
calculations with the initial wavepacket located in the 1B1(�� � ) state (not
shown) indeed feature a two-state population dynamics for joint ultrafast
motion in the two lowest excited electronic states 1B1(�� � )Š1A2(�� � ).
One can conclude that the population transfer from the bright valence
state 1B2(�� � ) to the dark Rydberg states (�� � ) is incomplete (� 20%).
However, the population of the 1A2(�� � ) state shows a gradual increase
for longer propagation time. The deactivation of photoexcited pyrrole and
other related compounds through ultrafast internal conversion from the�� �

states to the S0 ground state proposed by Sobolewskiet al.101, 110…112 is not
treated in our current investigation w ithin the QVC scheme. However, our
current coupling scheme provides a mechanism for populating the initial
states used by these authors in their calculations. The present results thus
help to explain the lack of detectable ”uorescence in pyrrole; one requires to
go beyond the QVC coupling approach for these complex molecular systems
to fully interpret the experimental data.

3.3. Fluorinated benzene cations

Apart from systematic studies and individual examples, it is of consider-
able interest to have available a set of related molecules which can serve
as a means to vary one or several system parameters and, thus, establish
their impact on the vibronic interactions in general and on the nonadi-
abatic coupling e�ects in particula r. The benzene and benzenoid radical
cations are prototype organic species of fundamental importance, and repre-
sent important showcases in this respect. Their electronic structure, spec-
troscopy, and dynamics have received great attention in the literature over
the past, including nonadiabatic interactions in their elementary photo-
physical and photochemical processes. For example, the parent benzene
radical cation Bz+ ,31, 32, 123…130 the sym-tri”uoro and hexa”uoro derivatives



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch07

282 S. Faraji, S. G´ omez-Carrasco and H. K¨ oppel

as well as their chlorinated counterparts or the deuterated isotopomers
possess degenerate electronic states, and the multimode dynamical Jahn…
Teller e�ect has been studied intensely over the past, both experimentally
and theoretically.118, 131…145 The ”uorobenzene derivatives are of systematic
interest for at least two di�erent rea sons. (1) The reduction of symmetry by
incomplete ”uorination leads to a disappearance of the Jahn…Teller e�ect
present in the parent cation. (2) A speci“c, more chemical e�ect of ”uo-
rination consists in the energetic increase of the lowest� -type electronic
states of the radical cations. Even in the parent cation Bz+ , the interactions
between distinctly di�erent states play a role 31, 32, 125 and have been made
responsible for the absence of detectable emission in Bz+146, 147 : the internal
conversion processes which are caused by nonadiabatic vibronic interactions
are so fast that ”uorescence cannot compete.31, 32 Similar observations have
been made for several derivatives,131 such as mono- and di-”uorobenzene
cations. This motivated us to analyze not only the multimode dynamical
Jahn…Teller and pseudo Jahn…Teller e�ect in the unsubstituted species, but
also the changes that occur upon ”uorination and accompanying reduction
in symmetry.118, 122, 148 All four di”uoro- and the 1 , 2, 3-tri”uoro derivatives
are selected to that end.

3.3.1. Vibronic coupling Hamiltonian for the
ßuorobenzene cations

We are focusing on the “ve lowest electronic states of the ”uorobenzene
cations (component states in case of the parent cation, Bz+ ). These states
lie, for all six cations, in the ionization energy range from 9 to 14 eV and
give rise to the low energy band systems of the experimental photoelectron
spectra (PE).149 Important features of these states, such as the vertical
ionization potentials, the nature of some of the orbitals out of which ioniza-
tion takes place, and, in particular, their correlation among the various
species considered, are depicted in Fig. 8. The labeling of the species follows
an obvious notation, Bz+ , F-Bz+ , 1, 2, 1,3, 1,4 and 1, 2, 3 where the charge
state (+1) of the di- and tri”uoro isomers has been supressed for notational
simplicity.

By using the QVC model (augmented by purely quadratic couplings
only for totally symmetric modes), the symmetry-selection rule, Eq. (10),
can be directly applied to deduce the vibronic Hamiltonian matrices for
the description of the “ve lowest �X Š �D doublet states of these ”uoroben-
zene cations. We shall not write down all “ve matrices here, but rather
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Fig. 8. Correlation between the lowest ionization potentials of the benzene, mono-,
di- and tri”uoro derivatives according to the adjusted IPs. The Hartree…Fock canonical
orbitals are included for the E1g and the E1g -derived states (and also for the A 2u state,
see text for details). Since these orbitals, and the corresponding ones for the A 2u -derived
states are � orbitals, these states are also referred to as � -type states. For the analogous
reason, the E2g and E2g -derived states are also termed � -type states.

provide the basic features regarding their QVC Hamiltonian. The general
form of the QVC potential energy matrix, W ”uoro , for the above-mentioned
”uorobenzene cations is depicted below:

H = ( TN + V0 )1 + W fluoro , (41)

W ”uoro =

0

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
@

E X + � ( X ) Q
+ g( X ) Q 2 � ( XA ) Q 0 0 0

� ( XA ) Q
E A + � ( A) Q

+ g( A) Q 2 0 � ( AC ) Q 0

0 0
E B + � ( B ) Q

+ g( B ) Q 2 � ( BC ) Q � ( BD ) Q

0 � ( AC ) Q � ( BC ) Q
E C + � ( C ) Q

+ g( C ) Q 2 � ( CD ) Q

0 0 � ( BD ) Q � ( CD ) Q
E D + � ( D ) Q

+ g( D ) Q 2

1

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
A

,

where the quantities � ( � ) Q and g(� ) Q2 are given by Eq. (40), and� ( �� ) by:

� ( �� ) Q =
�

i � � i

� ( �� )
i Qi . (42)
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Some of the o�-diagonal entries are put to zero, because the subsequent
electronic structure calculations reveal only negligible interactions between
the corresponding electronic states. The details about the construction of
the Hamiltonian matrices, as well as their explicit form, can be found in
Refs. 118 as well as 122 and 148 for the mono- and di-”uorobenzene cations,
respectively.

3.3.2. Electronic structure calculations and coupling constants

In order to determine the various coupling parameters entering the Hamil-
tonian Eq. (41), ab initio electronic structure calculations have been carried
out with the TZ2P one-particle basis set. This basis consists of the triple
zeta set of Dunning150 augmented by polarization functions as given in
Ref. 151 and 152. The coupled-clusters singles and doubles (CCSD) method
has been employed for ground state geometry optimization and vibrational
frequency analysis in ACES electronic structure package.153 The ground
state structural parameters thus obtained agree very well with available
literature data. 154…157 Ionization potentials and ionic state energies have
been determined by means of the EOMIP-CCSD method158, 159 as imple-
mented in the development version of the ACES program system.153

We brie”y discuss the key quantities, the vertical ionization potentials
(IPs) and coupling constants, and come back to Fig. 8. To be precise, the
IPs displayed there do not represent the pure ab initio data but adjusted
values, obtained in order to better reproduce the band centres of the
various PE spectral bands.148 We do not give more details here but only
emphasize that the di�erence to the ab initio data is typically 0.2…0.3 eV
only, and that the adjusted IPs are used in all subsequent calculations
reported below. The underlying molecular orbitals, included for the lowest
IPs for all species in the “gure, show a characteristic behavior. Whereas
for benzene one can see the familiar components of the degenerate HOMO
of E1g symmetry, for all the ”uoro deriva tives this degeneracy is neces-
sarily lifted, although the key features remain similar for all cases studied.
For example, the nodal characters of the two lowest electronic states of
”uoro derivatives are seen to re”ect clearly the well-known shape of the two
components of the doubly degenerate HOMO (symmetryE1g) of benzene.
The nodal properties of the B1 HOMO of F-Bz+ are shared, for example,
by the A2, B1, B3g and B1 orbitals of 1, 2-, 1, 3-, 1, 4-di”uorobenzene
and 1, 2, 3-tri”uorobenzene cations as indicated in Fig. 8. The energetic
ordering of the components of the same symmetry changes, which can be
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attributed to the di�erent number (and strength) of the C-F antibonding
interactions.122, 148

More important proves to be the systematic increase of the� state with
increasing ”uorination. This holds in absolute energy as well as in relation
to the second� -type IP, which corresponds to the state ofA2u symmetry
in the benzene radical cation and the higher one ofB1 symmetry in the
”uoro derivatives ( B1u symmetry for the 1, 4-di”uoro isomer). This ener-
getic increase is known in the literature as per”uoro-e�ect,160 and seen
here to lead to an interchange of the energetic ordering of theE2g and
A2u derived ionization processes. This will be seen below to play a crucial
role for the nonadiabatic interactions in the cations and their change upon
”uorination. This will be discussed further below in relation to their ”uo-
rescence dynamics (see Sec. 3.3.6.).

An overview of important vibrational and VC constants is presented
in Ref. 161. Out of the many coupling constants computed,118, 122, 148 only
a few “rst-order couplings which are large and correspond to vibrational
modes that can be correlated between the various isomers, were retained.
These comprise mode 1, denoting the totally symmetric C-C stretching
mode of Bz+ and the modes 6a…8a and 6b…8b, deriving from the doubly
degenerateE2g modes 6…8 of Bz+ . The similarity of the vibrational frequen-
cies and also coupling constants throughout the series is to be noted.161

3.3.3. Potential energy surfaces and conical intersections

The sets of coupling constants together with the Hamiltonian, Eq. (41),
de“ne the high-dimensional PESs of the lowest “ve electronic states of the
various cations treated. Typically 6…8 totally symmetric modes and 8…10
non-totally symmetric modes are found to have non-negligible coupling
constants in the C2v systems; in the case of higher symmetry these numbers
decrease, e.g. to 3 relevant totally symmetric modes for the 1, 4-di”uoro
isomer. The multidimensional PESs thus de“ned imply a rich variety of
di�erent CoIns in the various cations. To better visualize the situation, we
present in Fig. 9 representative cuts through the PESs of the benzene cation
(upper panel) as well as the 1,2-di”uorobenzene derivative (lower panel).
A linear combination of the normal coordinates of the Jahn…Teller active
modes � 6Š� 8 is chosen for the benzene cation, and of totally symmetric
modes for the 1,2-di”uoro benzene cation. Both are de“ned to minimize
the energy of the CoIn between the �A and �C states of the di”uoro deriva-
tive, and between the �X and �B states of the parent cation. For the
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Fig. 9. Representative cuts through the potential energy surfaces of Bz + (upper panel)
and its 1,2-di”uoro derivative, 2F-Bz + (lower panel). The upper panel shows the results
for the linear vibronic coupling model, while in the lower one the quadratic coupling
terms are also included. In both panels the e�ective coordinate connects the centre of
the Franck…Condon zone to the minimum of the intersection seam between the �A and �C
states of 2F-Bz + , and between the �X and �B states of the parent cation.

parent cation one identi“es a low-energy inter-state curve crossing which is
mediated by the multimode Jahn…Teller e�ect in the two degenerate elec-
tronic states.31, 32 The latter is re”ected by the symmetric crossing between
the two lowest (2E1g) potential energy curves in upper panel of Fig. 9
which actually represents a cut through the multidimensional Jahn…Teller
split PESs in this state. These are the well-known Mexican hat3 PESs of
the E � e Jahn…Teller e�ect. They are recovered also from the2E2g state
curves in the “gure.

For Bz+ , the two component states are degenerate by symmetry, and
the slopes of the PESs are necessarily oppositely equal at the originQ = 0.
Figure 9 illustrates two main trends in the series of molecules. First, by the
asymmetric substitution the degeneracy is lifted and the slopes in question
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are no longer equal in modulus and opposite in sign atQ = 0 (see lower
panel of Fig. 9). Thus, the Jahn…Teller e�ect in the parent cation •disap-
pears• in the ”uoro derivatives; nevertheless, the deviations from the high-
symmetry case Bz+ are seen to be minor. The shapes of their lowest two
PESs still resemble those of the parent cation, regarding the opposite slopes,
the rather small energetic splitting at the origin Q = 0, and the presence
of a low-energy CoIn of relevance to the nuclear motion (in the �A state).
Therefore this has also been termeda replica of the Jahn…Teller intersec-
tion in Bz + .162 This topological, or more •physicalŽ e�ect is complemented
by the second, more •chemicalŽ e�ect, caused by the energetic increase of
the second� -type IP by ”uorination. We note that the adiabatic ordering
of these states (i.e. at their respective minima) is identical to their vertical
ordering discussed in relation to Fig. 8. This trend, already mentioned in
relation to Fig. 8 above, is specially related to the substituents (F atoms)
and manifests itself in a growing separation of the �X Š �A and the �B Š �CŠ �D
sets of states. While the e�ect is rather moderate for F-Bz+ and in Fig. 9,
it increases upon increasing ”uorination and thus leads to a higher energy
of the corresponding intersection, see Table 5. These two trends, caused
by the substitution in general and ”uorination in particular, will provide
useful guidelines in the discussion of the dynamical results in Secs. 3.3.4 and
3.3.5. Finally we point out again that the results for the inter-set crossings
depend crucially on the inclusion of the quadratic coupling constants for the
totally symmetric modes. The latter lower them energetically, thus making
them accessible to the nuclear motion. They are included in the results of
the present subsection and also in all dynamical calculations on the ”uoro
derivatives reported below.

3.3.4. Photoelectron spectra

Figure 10 shows the calculated PE spectrum of 1, 2-di”uorobenzene
compared to the experimental recording of Ref. 149. This is representa-
tive of similar results for the mono- and di”uoro derivatives published
earlier,118, 122, 148 and may also be compared to Fig. 9. The theoretical
spectra are presented for two di�erent resolutions: the upper traces corre-
spond to a Lorentzian line width FWHM (full width at half maximum) =
66.6 meV for a better comparison with experiment, while for the lower ones
we have used a higher resolution (FWHM = 13.3 meV) to reveal more
vibronic structure in the spectral envelopes. Also, the latter spectra have
been decomposed into�X and �A bands for clarity.
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Table 5. Summary of important electronic energies, for the interacting states of the
”uorobenzene radical cations including the quadratic coupling terms and considering
only the modes which are included in the dynamical calculations. The diagonal values
represent the minima of the diabatic potential energies, o�-diagonal entries are minima
of the corresponding intersection seams.

Benzene mono-”uorobenzene
0

B
B
B
B
B
B
@

�X �X �B �B �C
�X 9.27 9.27 11.58 11.58 . . .
�X 9.27 9.27 11.58 11.58 . . .
�B 11.42 11.42 12.27
�B 11.42 11.42 12.27
�C 12.25

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

�X �A �B �C �D
�X 9.22 9.69 > 16 12.84 > 14
�A 9.69 > 15 12.29 > 14
�B 12.22 12.24 12.45
�C 11.91 12.58
�D 12.43

1

C
C
C
C
C
C
A

1, 2-di”uorobenzene 1 , 3-di”uorobenzene
0

B
B
B
B
B
B
@

�X �A �B �C �D
�X 9.15 9.61 > 16 > 13 > 13
�A 9.61 > 16 12.70 > 13
�B 12.12 12.28 12.60
�C 12.16 12.76
�D 12.57

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

�X �A �B �C �D
�X 9.35 9.70 > 16 > 14 > 13
�A 9.69 > 16 13.67 > 13
�B 12.32 12.67 12.89
�C 12.64 13.04
�D 12.88

1

C
C
C
C
C
C
A

1, 4-di”uorobenzene 1 , 2, 3-”uorobenzene
0

B
B
B
B
B
B
@

�X �A �B �C �D
�X 9.11 9.92 > 16 > 14 > 16
�A 9.88 > 16 13.09 > 16
�B 12.17 12.39 14.61
�C 12.31 13.46
�D 13.43

1

C
C
C
C
C
C
A

0

B
B
B
B
B
B
@

�X �A �B �C �D
�X 9.48 9.62 > 16 > 16 > 16
�A 9.53 > 16 15.10 > 16
�B 12.81 13.17 13.30
�C 13.17 13.40
�D 13.30

1

C
C
C
C
C
C
A

The PE spectra are seen to consist of two distinct groups of bands, repre-
senting the �X Š �A and �B Š �CŠ �D electronic states. The nonadiabatic coupling
e�ects manifest themselves as irregularities in the spectral structures of
Fig. 10. Their vibronic structure is revealed more clearly by the lower
drawing which corresponds to a higher resolution. This gives an impres-
sion of the highly complex, irregular and dense underlying line structure;
it is not fully resolved even here, because the resolution is still too limited
except for the low-energy spectral regimes.

The �X Š �A group of bands is indeed rather regular for low vibronic ener-
gies ( �X -state), but becomes increasingly irregular in the energy region of the
�A-state, that is, for energies above the �X Š �A seam of conical intersections.
Their energetic minima exhibit signi“cant changes between the systems
considered. According to Table 5, the numbers are 9.61, 9.70, 9.92 and
9.62 eV for the 1, 2-, 1, 3-, 1, 4-di”uorobenzene and 1, 2, 3-tri”uorobenzene
cations. They may be compared to the �X -state energetic minima of 9.15,
9.35, 9.11 and 9.48 eV, in the same series. Thus, in the 1, 4-di”uorobenzene
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Fig. 10. Comparison of theoretical (lower panel) and experimental (upper panel) 149

photoelectron spectra of 1 , 2-di”uorobenzene. The linewidths of the theoretical spectra
are FWHM = 66 .6 meV (upper curve) and 13.3 meV (lower curve). In the higher-
resolution theoretical spectrum, the �X � �A electronic bands are drawn separately.

cation there is a particularly large •adiabaticŽ �X -state energy range,
whereas in the 1, 2, 3-tri”uorobenzene cation it is particularly small. This
follows from the near-degeneracy of the�X - and �A-states and renders this
system in the 1, 2, 3-tri”uorobenzene cation a particularly close replica163

of the JT e�ect in the parent system Bz+ . For the other isomers, like
that considered in the present “gure, a somewhat intermediate situation
prevails. „ The lowest-energy range in the higher group of �B Š �CŠ �D-
bands is also characterized by a rather well-resolved and regular structure.
Here the energies are again slightly below that of the conical intersection
(12.28 eV according to Table 5). The complexity rapidly increases for higher
energy, soon exceeding that of the CoIn. Under low-to-moderate resolution a
di�use spectral pro“le results, because the highly irregular and very dense
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individual spectral lines cannot be resolved any more. This is a typical
consequence of CoIns between the various PESs4 and generalized here to
multistate coupling situations.

3.3.5. Time-dependent electronic populations

In order to get further insight into the multistate dynamics in these systems,
the time-dependent (diabatic) electronic populations have been systemati-
cally computed, for all the ”uoro-derivatives in question, and for all possible
initial electronic states.118, 122, 148 To avoid an excessive number of draw-
ings, we con“ne ourselves here to the results of the wavepacket located
initially in the �B (emissive state) electronic state. This is motivated by the
relevance of this state to the ”uorescence dynamics, see next subsection.
The results are presented in Fig. 11. As for the parent cation Bz+ ,32 we see
a rich population dynamics proceeding on thefs time scale. Generally all
“ve states become populated to a signi“cant or moderate extent owing to
the relatively high initial energy of the wave packet. The �D state always
becomes least likely populated as expected from its high energy. Its decrease
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Fig. 11. Electronic population dynamics of ”uorobenzene isomers for initial preparation
of each cation in the emissive electronic state ( �B state).
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in the series 1, 2-, 1, 3- and 1, 4-di”uorobenzene cations can be rationalized
by density of states arguments and the increase of the diabatic minimum
of this state in the same series (see Table 5). The diabatic minima for the
�B and �C states also help to understand their di�erent populations, espe-
cially if a coherent superposition of the electronic states is chosen as initial
wavepacket.148, 161

Of further interest is the transfer of population from the �B Š �CŠ �D to
the �X Š �A group of states. As pointed out above, these two sets of states are
far apart energetically in the center of the FC zone, but nevertheless inter-
connected through oneCoIn (between the �AŠ �C states) which is low (mono,
1, 2- and 1, 4-isomers), or moderately or very high (1, 3- and 1, 2, 3-isomers)
in energy. This energetic trend, seen in Table 5, is again re”ected in the
population curves of Fig. 11. There the combined �X / �A population after
� 500fs propagation time amounts to only � 1% for 1, 3-di”uorobenzene,
but to � 60%, � 5% and � 27% for the mono, 1, 2- and 1, 4-di”uorobenzene
cations, respectively. The results for the 1, 2, 3-tri”uorobenzene cation
reveal no population transfer to the �X Š �A set.163 The minimum energies of
the intersection seams are 13.67 eV, 12.29, 12.70, 13.09 eV and 15.10 eV in
the same series. Thus the di�erence between the 1, 3- and 1, 2, 3-isomers,
on one hand, and the mono and 1, 4- isomers, on the other hand, is well
re”ected by these energetic data (while the situation with the 1, 2-isomer
is somewhat less clear). The average populations stay fairly constant after
� 100fs in the case of 1, 2- and 1, 3-isomers, but showa gradual decrease
( �B / �C) and increase (�X / �A) for the mono and 1, 4-di”uorobenzene cations.
The reason for this di�erence remains unclear at present, as is the case
for the di�erent oscillatory or ”uctuating time dependences of the various
populations. Apparently, the underlying complex and multidimensional
dynamics still awaits a more detailed analysis and understanding. Some of
this was explored recently for the parent cation, Bz+ .41 The general trends
of the electronic populations, and their relations to the respective ener-
getic quantities, remain the same also for other choices of the initial wave-
packet,161 and also for the purelyab initio vertical IPs reported in Ref. 148.

3.3.6. Relation to the ßuorescence yield

The behavior of the time-dependent electronic populations has important
consequences for the ”uorescence of these radical cations. The parent cation
Bz+ , as well as the mono”uoro-derivative, are non-emitting species, with
an upper limit for the ”uorescence quantum yield of 10Š 4Š10Š 5.131, 146, 147
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Given typical radiative lifetimes of 10Š 8 sec, these low quantum yields imply
a subpicosecond timescale for the radiationless deactivation of the electron-
ically excited radical cations. Increasing ”uorination, however, changes the
situation, and for at least threefold ”uorination of the parent cation there
is clear emission.123, 131…139 The di”uorobenzene cations represent a tran-
sitional regime, and only one of them, the 1, 3-isomer, has been found to
emit weakly.131

For the parent system Bz+ itself, a detailed mechanism could be estab-
lished31, 32 in terms of the multimode dynamical Jahn…Teller e�ect in the �X
and �B electronic states, which leads to a low-energy CoIn between the
corresponding PESs (see Fig. 9). Also it has been conjectured164 that the
stabilization of the e2g(� ) orbital by ”uorination leads to an increase of
the corresponding ionization potential and a corresponding increase of the
(minimum energy of) CoIn, thus weakening the vibronic interactions and
rendering the excited states long lived to make emission eventually (i.e., for
a su�cient degree of ”uorination) observable.

This earlier conjecture is fully con“rmed, regarding the general trends
upon ”uorination, by the present mechanism and results.122, 148 The radi-
ationless deactivation in the Bz+ is not a direct one (from the state
where dipole-allowed transitions are possible, the�C state, to the ground
state) but involves the �B state as an intermediate.31, 148 Already for
the mono”uoro derivative, the two IPs deriving from the � orbital of
benzene (the �C and �D states of the mono”uoro benzene cation) are
su�ciently high in energy so that th eir energetic ordering with the
� -type IP is interchanged.118, 141, 144, 149 For the three di”uoro isomers
and 1, 2, 3-tri”uorobenzene, the shifts in energy are more pronounced (see
Fig. 8). Correspondingly, already for the mono”uoro derivative the �B …�X
internal conversion, competing with the strongly dipole-allowed transition,
is substantially slower than in the parent cation.118, 144 In the di”uoro
isomers and the 1, 2, 3-tri”uorobenzene cation this decay is further slowed
down owing to the higher-energy vertical IPs and CoIns as discussed above.
Although we cannot make quantitative predictions, the present electronic
populations allow to draw important conclusions on the di�erent emission
properties of these 6 systems. As seen from Fig. 11 and stated above,
the internal conversion to the �X + �A states is indeed slowest, and inef-
“cient also on an absolute scale, for the 1, 3- and 1, 2, 3-isomers. We “nd
it intriguing that emission has indeed been observed for these species, but
not for the others. For the F-Bz+ and 1, 4-isomer, on the other hand the
�X + �A populations keep increasing after 500fs and may be expected to
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dominate after several ps. This behavior is expected to suppress ”uores-
cence, in accord with the experimental results. Only for the 1, 2-isomer the
situation is somewhat less clear. However, other modes, not included in the
present treatment, may further enhance the �X + �A populations and thus
be consistent with the absence of ”uorescence in the 1, 2-isomer.

Additional evidence comes from the consideration of the dipole transi-
tion matrix elements. It is well known that the transition from the � -type
state of the benzene cation to the ground state is dipole forbidden.31, 147 For
the ”uoro derivatives the molecular symmetry is reduced and the selection
rules are relaxed.148 One “nds that there is always one component of the
� -type ( �C + �D) states that has a “nite dipole matrix element for transi-
tions to one component of the lower� -type ( �X + �A) states (at least for
the C2v molecular point group). Nevertheless, EOM-CCSD/TZ2P calcula-
tions clearly show that the corresponding transition dipole matrix elements
are smaller by 2…3 orders of magnitude than those for the�B Š( �X + �A)
transition, corresponding to the dipole-allowed transition in the case of
Bz+ .148 Thus, the � -type electronic state is the •emitting• state also for
the ”uorobenzene cations. Its combined �X + �A oscillator strength is almost
the same for all “ve systems. Comparing again the various populations of
Fig. 11 we “nd that the �B state of 1, 3-di”uorobenzene indeed remains
more populated after 300…500fs (probability � 0.6) than the �B state of
1, 2-, 1, 4-di”uorobenzene and F-Bz+ (probability � 0.15, � 0.25 and� 0.08,
respectively). For the 1, 2, 3-isomer, the �B state stays populated even more
than for the 1, 3-di”uorobenzene cation (probability 0.9…0.95).163 Similar
results are obtained for broadband excitation of the �B Š �CŠ �D electronic
states.161 This con“rms that the 1 , 2, 3-tri”uorobenzene cation is an emis-
sive species, and also underlines the similarity of the 1, 3-isomer with the
systems with three or more ”uorine atoms (in agreement with the observa-
tions.131) It demonstrates that the internal conversion mechanism consid-
ered here, namely multiple CoIns involving one of the� -type electronic
states of benzene and its ”uoro derivatives, is of key importance to the
”uorescence dynamics in this family of compounds.

4. Concluding Remarks

In this chapter we have emphasized the importance of more than two
strongly coupled electronic states, with multiply intersecting PES. The
calculations relied on the MMVC scheme, supplemented by suitable
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extensions such as the concept of regularized diabatic states. A similar
account for Jahn…Teller systems with degenerate electronic states and
their mutual interactions (also with nondegenerate ones) has been given
recently.15 Therefore we focused here on Abelian point groups with only
nondegenerate electronic states. Among the most important “ndings for
the systems covered, formaldehyde, pyrrole and ”uorinated benzene radical
cations, we summarize as follows.

In formaldehyde, the strong interactions of the � Š � � valence excited
state with nearby Rydberg states lead to irregularities in the VUV absorp-
tion spectrum and the disappearance of clear signatures of this state in
the intensity distribution. However, the time-dependent population of this
state stays remarkably large following photoexcitation: while the system
undergoes a femtosecond transition to nearby Rydberg states, the popu-
lation is •transferred backŽ to the initial state after a somewhat longer
time. In pyrrole, the (partly preliminary) calculations reveal a mechanism
for populating the S1 � Š � � excited state which is considered important for
its photochemistry, but not optically bright due to dipole selection rules.
Rather, the strongly dipole-allowed transition to the higher-energy � Š � �

state is followed by a sub-ps sequence ofS4ŠS1 transitions with a corre-
sponding, though incomplete, transfer of population. In the mono-, di- and
tri”uoro benzene cations, the multistate interactions are further character-
ized by a systematic energetic increase of one set (� -type) of states which
leads to a corresponding increase ofthe CoIn between the di�erent sets.
This gradually weakens the multistate interactions for increasing ”uorina-
tion and turns out essential for understanding the emission properties of
the whole family of compounds.

Beyond the individual examples treated, the above phenomena are
considered important features of multistate interactions. Further devel-
opments could consist in considering their e�ects also for photochemical
processes. While in its full generality the quantal treatment of the problem
will face considerable di�culties, rel evant simpler cases may consist in the
photochemical rearrangement taking place only in the lowest of the inter-
acting electronic states. This may be a promising line of future work.
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122. S. Faraji and H. K öppel, J. Chem. Phys. 129, 074310 (2008).
123. T. Miller and V.E. Bondybey, in Molecular Ions: Spectroscopy, Structure

and Chemistry (North-Holland Publ. Company, Amsterdam, 1983), p. 201.
124. J. Eiding, R. Schneider, W. Domcke, H. K öppel and W. von Niessen,Chem.
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1. Introduction

Many photochemical processes of interest occur in an environment, e.g. in
a solvent, cluster, or in biological environments like proteins. Since conical
intersection (CoIn) topologies play a ubiquitous role in such processes, the
question naturally arises as to what is the role of environmental e�ects „
do these tend to catalyze or impede the nonadiabatic transfer processes at
conical intersections? On the ultrafast time scale that is characteristic of
processes at CoIn•s, the environment is usually neither static nor rapidly
”uctuating (Markovian limit). Instead, photoexcitation of the subsystem,
or chromophore, entails a nonequilibrium response of the environment that
is interleaved with the subsystem evolution, thus generating a dynam-
ical evolution in the high-dimensional system-plus-environment space. This
situation corresponds to a markedly non-Markovian case. Furthermore,
since the topology and dynamics associated with conical intersections are
of considerable complexity already for isolated polyatomic species, it is not
clear a priori how to systematically construct a •reduced dynamicsŽ to
include environmental e�ects.
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Some guidance is provided by existing theories of system-environment
interactions. For example, solvent-induced energy gap ”uctuations can be
dominant and their e�ect can be formulated in terms of a corresponding
macro-variable, here an energy gap coordinate.1…4This is the case, in partic-
ular, if chromophore-solvent interactions are electrostatic and translate to a
Marcus-type collective coordinate.3…6Further, the high-dimensional nature
of the environment is expected to leadto dissipation and decoherence. Given
that quantum coherence plays a prominent role in the ultrafast dynamical
processes at conical intersections, a rapid quenching of coherence by the
environment could substantially modify the transfer e�ciency.

Various examples illustrate that environmental e�ects can indeed be
very pronounced. In the Green Fluorescent Protein (GFP) chromophore,
the S1-S0 transfer rate increases dramatically in a solvent.7, 8 Likewise, in
the Photoactive Yellow Protein (PYP) chromophore, the S1-S0 dynamics
is known to depend in a highly sensitive fashion on the environment•s elec-
trostatic e�ects and hydrogen bonding properties.9…11 In both cases, the
conical intersections in question involve charge transfer, and one would
therefore expect that the polar/polarizable solvent (or protein) environ-
ment couples strongly to the chromophore•s excited-state evolution.12 In
other cases, though, experiments carried out in situations where the elec-
trostatic coupling could be dominant, seem to suggest that intramolec-
ular factors are decisive. For example, retinal and related photoswitches
in solution are remarkably insensitive to the solvent•s dielectric proper-
ties.13, 14 In addition, viscosity does not necessarily play an important
role even in cases where large aromatic groups are displaced, as in the
retinal analog described in Ref. 14. Furthermore, coherent vibrational
dynamics has been observed experimentally for these systems, suggesting
that environment-induced decoherence15, 16 sets in with a considerable
time delay. The interpretation of many of these observations is currently
still open.

Very similar issues arise for polyatomic species where a limited number
of modes can often be identi“ed as •systemŽ modes that couple strongly
to the electronic subsystem, while the remaining modes constitute an
intramolecular bath.17…20Likewise, in spatially extended systems like semi-
conducting polymers21…23 or carbon nanotubes,24, 25 a subset of modes
can be identi“ed that dominate the vibronic coupling (typically high-
frequency carbon-carbon stretch modes) while other modes (in particular,
low frequency torsional or breathing modes) act as a residual bath that can,
however, signi“cantly in”uence the dynamics.26, 27
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Over the past decade, various theoretical approaches and simulation
techniques have been developed and applied that are able to account for
envionmental e�ects at CoIn•s. Broadly, two types of approaches can be
distinguished. First, system-bath models, often used in conjunction with
vibronic coupling model Hamiltonians.28, 29 These models have the advan-
tage that bath-induced e�ects like relaxation and decoherence can be
systematically identi“ed and expressed in terms of relevant parameters of
a system-bath model. However, these models often rely on the validity of
typical approximations like the Markovian limit (i.e. fast ”uctuations). The
second type of approach relates to anexplicit treatment of the system-
environment supermolecular system. Several realizations of this approach
exist, ranging from multidimensional vibronic coupling models in conjunc-
tion with accurate quantum dynamical calculations,19, 20, 30 to quantum
mechanics…molecular mechanics (QM/MM) calculations combined with
mixed quantum-classical dynamics simulations.8…10, 14Many of the relevant
methods are based on hybrid approaches, both for the electronic structure
side and for the dynamics side. Regarding non-adiabatic dynamics simu-
lation techniques, methods range from explicit multidimensional quantum
dynamics to on-the-”y techniques that are either trajectory-based9, 10 or
rely on time-evolving Gaussian wavepackets.7, 8, 31, 32

The picture that emerges from many of the experimental and theoret-
ical studies is that (i) speci“c interactions between the chromophore and
the local environment (“rst solvent shell, or nearest-neighbor layer in a
chromophore-protein system) can play a dominant role, (ii) the dynam-
ical nonequilibrium evolution of the environment cannot be neglected, (iii)
conventional system-bath theories using the Markovian approximation are
not generally appropriate, (iv) collective environmental modes, i.e. gener-
alized solvent coordinates, could be useful in describing the environment•s
dynamical e�ects.

In this chapter, we focus on anexplicit but reduced-dimensionalrepre-
sentation of the environment. Our starting point is a multimode vibronic
coupling model17 which describes the coupling of a high-dimensional or
in“nite-dimensional bath to the electronic subsystem, assuming an inter-
action which is linear in the bath coordinates. Similarly to the spin-boson
model,2, 33 this system-bath model is of considerable generality. The model
employed here is tailored to the conical intersection topology and includes
both diagonal and o�-diagonal couplings of the bath modes to the elec-
tronic subsystem, i.e. bath-induced ”uctuations a�ect both the energy gap
and the electronic coupling. Furthermore, since the environment•s modes
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do not generally conform to the symmetry of the subsystem (chromophore),
they may couple simultaneously diagonally and o�-diagonally, giving rise
to correlated ”uctuations. 34 Using this model, we seek to extract a set
of e�ective environmental modes which are generated by suitable coordi-
nate transformations.35, 36 The modes in question are collective coordinates
which are chosen in such a way that they describe (i) the e�ects of the
system-environment interaction on short time scales, and (ii) the e�ect of
the environment on the conical intersection topology, which is found to
be closely connected to (i),37 and further provide (iii) a systematic proce-
dure by which chains of e�ective environmental modes are generated26, 38, 39

which unravel the dynamics as a function of time. The e�ective modes in
question can be interpreted as generalized Brownian oscillator modes, and
the e�ective-mode chains are related to Mori chains known from statistical
mechanics.40…42 In keeping with this picture, the irreversible nature of the
environment is maintained by adding a Markovian closure to a truncated
chain representation.43, 44

Following the analysis of Refs. 35…37, three e�ective modes can be
de“ned which completely capture the short-time dynamics at a two-state
conical intersection, and by extension, nel(nel + 1) / 2 such modes can be
de“ned for nel electronic states. A truncated Hamiltonian containing only
these modes correctly reproduces the moments of the exact propagator
up to the third order. 36 In the transformed Hamiltonian, the remaining
modes are coupled bilinearly to the e�ective modes and among each other.
If further transformations are introduced so as to cast the couplings within
the residual subspace into a band-diagonal form, a Mori-type chain is
obtained. Truncation of this chain at the nth order conserves the moments
of the propagator up to the (2n + 3)rd order. 46, 47

Building upon this analysis, it can be shown that starting from a given
environmental spectral density, a hierarchy of approximate spectral densi-
ties can be constructed which are expressed in terms of chains comprising a
limited number of e�ective modes.43…45 The remaining modes are approxi-
mated in terms of the Markovian closure referred to above. This family of
spectral densities are coarse-grained realizations of the true spectral density,
which guarantee an accurate representation of the overall system-plus-bath
dynamics up to increasing times. This development, which has recently
been demonstrated for the simpler case of a spin-boson type system,43, 44

is addressed below in the more general case of a conical intersection.34, 45

The system-bath dynamics at each level of approximation is treated
by an explicit dynamics in the system subspace augmented by the
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e�ective environmental modes, in conjunction with a Markovian master
equation2, 6, 49, 50 acting on the last member of the e�ective-mode chain.
The e�ective-mode decompositionde facto leads to a modi“ed system-bath
partitioning. The picture developed here therefore interpolates between an
explicit representation of the environment and a reduced-dynamics type
description. The non-Markovian aspect of the dynamics is emphasized and
cast in terms of a set of e�ective environmental modes. Importantly, the
Mori-chain procedure generates a unique series of approximations which
successively unravel the non-Markovian dynamics.

In Sec. 2, the multimode system-bath Hamiltonian is introduced that
is the basis of the following discussion. Section 3 details the e�ective-mode
transformations that are the key ingredient in obtaining hierarchical repre-
sentations of the system-bath Hamiltonian, and Sec. 4 addresses several
realizations of such system-bath models. In Sec. 5, we construct a series
of approximate spectral densities which reproduce the e�ects of the envi-
ronment over increasing time intervals. Finally, Sec. 6 summarizes and
concludes.

2. Multimode System-Bath Hamiltonian

In the following, we consider a model Hamiltonian describing multimode
processes at a conical intersection.17 A system-bath perspective is adopted,
where the •systemŽ part contains the electronic subsystem, along with a
certain number of nuclear modes which couple strongly to the electronic
subsystem. The •bathŽ part is composed of a „ potentially very large „
number of nuclear modes which also couple to the electronic system. For
certain geometries of the combined system and bath coordinates, a degen-
eracy arises which corresponds to a CoIn point (in two dimensions) and
more generally to an (N Š 2)-dimensional intersection space (inN dimen-
sions).17, 51…54 In general, we will assume that the system part by itself
features a conical intersection. However, the analysis also includes situa-
tions where a conical intersection is generated by the interaction with the
environment, along with the limiting case where all nuclear modes are part
of the bath subspace.

For convenience, we focus below on the speci“c case of an electronic
two-level system, but generalizations to more than two states are straight-
forward. An application to a three-level system will be addressed in Sec. 3.4
and Sec. 4.5.
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2.1. System-bath Hamiltonian

In accordance with the above, we consider a system-bath type Hamiltonian,

�H = �HS + �HSB + �HB (1)

with the system part35…37, 55

�HS = �V� +
N S�

i =1

� S,i

2
(�p2

S,i + �x2
S,i )�1 + �VS( �x S ), (2)

where �V� = Š� � � z gives the electronic splitting, with �� z = |1��1 | Š | 2��2 |
the operator representation of the Pauli matrix, and �pi = ( � /i ) �/�x i . We
use mass and frequency weighted coordinates throughout. The potential
part �VS represents anharmonicities in the subsystem Hamiltonian as well
as the coupling of the system modes to the electronic subsystem and is of
the form,

�VS( �x S) = �v1(�xS,1, . . . , �xS,N S ) �1 + �vz (�xS,1, . . . , �xS,N S ) �� z

+ �vx (�xS,1, . . . , �xS,N S ) �� x , (3)

where �� x = |1��2 | + |2��1 |. This form of the potential, in conjunction with
the diagonal form of the kinetic energy, corresponds to a (quasi-)diabatic
representation.17, 53, 54, 56

A particular instance is given by a linearized form at the CoIn, i.e. the
linear vibronic coupling (LVC) model, 17, 53, 54, 56

�VS( �x S ) =
N S�

i =1

�VS,i (�xS,i ) (4)

with

�VS,i (�xS,i ) = � (+)
S,i �xS,i �1 + � (Š )

S,i �xS,i �� z + � S,i �xS,i �� x , (5)

or equivalently,

�VS,i (�xS,i ) = � (1)
S,i �xS,i �� 11 + � (2)

S,i �xS,i �� 22 + � S,i �xS,i (�� 12 + �� 21), (6)

where �� nm = |n��m | and � (± )
S,i = 1 / 2(� (1)

S,i ± � (2)
S,i ). By a linear expansion

around the conical intersection, the LVC model accounts for the removable
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part of the nonadiabatic coupling.57…60 This model can be augmented so
as to yield a correct, global representation of the adiabatic surfaces away
from the conical intersection geometry, by the construction of so-called
regularized diabatic states.58, 61, 62

In Eqs. (5) and (6), the i th nuclear mode can couple both to �� z

(diagonally) and to �� x (o�-diagonally). If the system is characterized
by symmetry „ i.e. in the case of symmetry-allowed conical intersec-
tions57…60„ the modes which couple diagonally (totally symmetric, tuning
modes) are distinct from those which couple o�-diagonally (non-totally
symmetric, coupling modes). The basic, two-dimensional conical intersec-
tion topology is represented by the combination of one coupling mode and
one tuning mode.

Further, the bath Hamiltonian �HB of Eq. (1) represents the zeroth-order
Hamiltonian for NB environmental modes,

�HB =
N B�

i =1

� B,i

2
(�p2

B,i + �x2
B,i )�1. (7)

The system-bath interaction �HSB corresponds to the electronic-nuclear
interaction involving all bath modes, which is of the same form as the
linear vibronic coupling potential of Eq. (5),

�HSB =
N B�

i =1

�
� (+)

B,i �xB,i �1 + � (Š )
B,i �xB,i �� z + � B,i �xB,i �� x

�
. (8)

Here, it is assumed that there is no direct vibration-vibration coupling
among the NS system modes and theNB bath modes, but the coupling
acts entirely via the electronic subsystem. The interaction Hamiltonian
therefore corresponds to a generalized spin-boson model.2, 33, 63 However,
the interaction is more complex than that in the standard spin-boson case,
since several subsystem operators are involved in Eq. (8) while the conven-
tional spin-boson Hamiltonian only includes a system-bath interaction term
proportional to �� z . In the case of an electronicnel-level system, the most
general form of �HSB involves nel(nel + 1) / 2 coupling terms.35, 36

The “rst term on the r.h.s. of Eq. (8), involving the � (+)
B,i parameters, is

formally included even though it is not a system-bath coupling in a strict
sense. Its e�ect is a mode-speci“c shift of the bath oscillators, independent
of the electronic state. This term could therefore alternatively be included
in �HB .
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2.2. Spectral densities

If the frequency distribution of the bath modes is dense, it is natural to
characterize the in”uence of the bath on the subsystem in terms of a spectral
density, or its discretized representation.2, 63 In the case where the bath
modes couple only to one of the subsystem operators, for instance�HSB =� N B

i =1 � (Š )
B,i �xB,i �� z , the de“nition of the spectral density corresponds to the

form known for the spin-boson Hamiltonian,

J (� ) = �
N B�

i =1

� (Š )2
B,i � (� Š � B,i ). (9)

This spectral density characterizesa bath that induces energy gap ”uctua-
tions in the subsystem.

For the more general form of the system-bath coupling Eq. (8) where the
bath modes couple both diagonally (� �� z ) and o�-diagonally ( � �� x ), spec-
tral densities are de“ned component-wise. Furthermore, if the bath modes
couple simultaneously to several subsystem operators, we will refer to a
correlated bath.34 The subsystem variables then do not experience inde-
pendent ”uctuations, and this is re”ected in the de“nition of the spectral
densities which involve cross-correlation contributions. For example, the
spectral density component,

Jzx (� ) = �
N B�

i =1

� (Š )
B,i � B,i � (� Š � B,i ), (10)

contains non-zero contributions from modes which couple simultaneously
to �� z and �� x .

There are various procedures to systematically construct the relevant
spectral densities in the general case. One of these procedures expresses
the bath-induced relaxation properties of the subsystem in the Heisenberg
picture.64 The spectral densities can then be de“ned as follows in terms
of the bath-induced portion of the Heisenberg evolution, described by the
operator �L B ,43, 64

Jij (� ) = lim
� � 0+

Im �L B,ij (z)

�
�
�
�
z=� +i�

, (11)

where �L B,ij (z) determines the dissipative evolution of the subsystem
Heisenberg operators in a Fourier/Laplace transformed representation.
Equation (11) corresponds to the de“nition of the spectral density as the
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imaginary part of the dynamic susceptibility. 1, 64 For a two-level system
characterized by operators �� = { �� x , �� y , �� z } , we have for the Heisenberg
evolution of the subsystem operators,

(z Š �L B ) �� (z) = �L S �� (z) + i �� 0. (12)

A detailed description of the steps leading to Eqs. (11) and (12) is given in
Appendix A and Ref. 34. The resulting spectral density matrix, following
from the Hamiltonian Eqs. (1)…(8), is given as

J (� ) =

�

�
�
�

Jxx (� ) Jxy (� ) Jxz (� )

Jyx (� ) Jyy (� ) Jyz (� )

Jzx (� ) Jzy (� ) Jzz (� )

	





�

= �
N B�

n =1

�

�
�
�
�

� (Š )2
n i� (Š )

n � (+)
n Š � (Š )

n � n

Š i� (Š )
n � (+)

n (� (Š )2
n + � 2

n ) i� n � (+)
n

Š � (Š )
n � n Š i� n � (+)

n � 2
n

	







�

� (� Š � B,n ). (13)

As anticipated, cross-correlation contributions arise which provide a
second-order coupling between the subsystem operators. Note that some
of the cross-correlation contributions are imaginary; these involve the
{ � (+)

n } couplings of Eq. (8) which are not genuine system-bath couplings
as discussed above.

One of the key questions that we attempt to answer is the following:
Given the spectral density (or spectral density matrix) of the environ-
ment, can one extract the relevant frequency components that determine
the dynamical behavior of the subsystem as a function of time? In partic-
ular, we seek to determine those components that determine the short-time
behavior which is of particular importance for the dynamics at conical inter-
sections. Anticipating the results described in Sec. 5, it can be shown that
a given spectral density can be approximated by a sequence of simpler
spectral densities, which successivelyresolve the system-bath dynamics
in time. Thus, a coarse-graining is introduced in the frequency domain,
building upon the observation that the evolution on the shortest time scale
will be determined by few collective modes. Even at the simplest level
of approximation, which would reduce a highly structured, multipeaked
spectral density to an analytical form constructed from few e�ective-mode
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frequencies, the short-time dynamics can be shown to be describedexactly.
Overall, a rigorous procedure can be formulated, within the restrictions of
the LVC model, by which a high-dimensional environment can be reduced
to an e�ective environment composed offew collective modes that are active
on ultrafast time scales.

In order to construct the approximat e spectral densities in question,
we employ an e�ective-mode representation of the environment as detailed
in the following (Secs. 3 and 4). This will in turn be used to derive a
hierarchy of modes, and an associatedhierarchy of approximate spectral
densities (Sec. 5), which are based upon lower-dimensional approximants
to the initial NB -dimensional representation of the bath in Eq. (1).

3. E�ective Modes at a Conical Intersection

The LVC model that is employed for the system-bath coupling of Eq. (8)
allows one to introduce coordinate transformations by which a set of e�ec-
tive, or collective modes are extractedthat act as generalized reaction coor-
dinates for the dynamics. As shown in Refs. 35…37,ne� = nel(nel + 1) / 2
such coordinates can be de“ned for an electronicnel-state system, in such
a way that the short-time dynamics is completely described in terms of
these e�ective coordinates. Thus, three e�ective modes are introduced for
an electronic two-level system, six e�ective modes for a three-level system
etc., for an arbitrary number of phonon modes that couple to the elec-
tronic subsystem according to the LVC model. In order to capture the
dynamics on longer time scales, chains of such e�ective modes can be intro-
duced.26, 39, 46 These transformations, which are summarized below, will be
shown to yield a unique perspective on the environmental e�ects at a conical
intersection.

The e�ective-mode transformation is conceptually related to early work
by Toyozawa and Inoue65 on the identi“cation of •interaction modesŽ in
Jahn…Teller systems, and further, to work by O•Brien and others66…69on the
construction of •cluster modesŽ. Our recent results reported in Refs. 35…37
represent a generalization beyond the Jahn…Teller case, to generic conical
intersection situations described by the LVC Hamiltonian Eq. (8) which
requires consideration ofthree e�ective modes.

For convenience, the following discussion focuses on the case of an elec-
tronic two-level system. The generalization to more than two states is
straightforward and is addressed in more detail in Sec. 3.4.
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3.1. De“nition of e�ective-mode subspace

Following the analysis of Refs. 35…37, we note that the bath modes
produce cumulative e�ects by their coupling to the electronic subsystem.
For an electronic two-level system, the interaction Hamiltonian Eq. (8)
can be formally re-written in terms of a set of three collective bath modes
( �X B, + , �X B, Š , �X B, � ),

�HSB = �X B, + �1 + �X B, Š �� z + �X B, � �� x , (14)

de“ned as

�X B, + =
N B�

i =1

� (+)
B,i �xB,i , �X B, Š =

N B�

i =1

� (Š )
B,i �xB,i , �X B, � =

N B�

i =1

� B,i �xB,i ,

(15)

which re”ect the collective shift ( �X B, + ), tuning ( �X B, Š ), and coupling
( �X B, � ) e�ects induced by the bath. These modes entirely de“ne the envi-
ronment•s coupling to the electronic subsystem. The modes (�X B, Š , �X B, � )
span the projection of the branching plane51, 52, 70 onto the environment
subspace, i.e. they de“ne the directions within the environment subspace
along which the degeneracy at theconical intersection is lifted.

However, the modes of Eq. (15) are not of immediate use since they are
not generally orthogonal on the space de“ned by the original coordinates
{ �x B,i } . When orthogonalizing the modes of Eq. (15),35…37one obtains a set
of coordinates (�X B, 1, �X B, 2, �X B, 3) in terms of which the dynamical problem
can be reformulated. With these new, orthogonal modes, the most general
form of the interaction Hamiltonian reads as follows,

�HSB =
n eff =3�

i =1

�
K (+)

B,i
�X B,i �1 + K (Š )

B,i
�X B,i �� z + � B,i �X B,i �� x

�
. (16)

This expression is formally the same as the one of the original system-
bath coupling, Eq. (8), except that the system-bath interaction is entirely
absorbed by the three e�ective modes. Depending on the orthogonalization
procedure, di�erent couplings can result, as discussed further in Sec. 3.3.

The introduction of the set of e�ective modes ( �X B, 1, �X B, 2, �X B, 3) is the
“rst step in de“ning an overall orthogonal transformation which leaves
the subsystem coordinates{ �x S} una�ected while transforming the bath
coordinates,

( �X B ± i �P B ) = T ( �x B ± i �pB ). (17)
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As a result, one obtains the bath Hamiltonian in the following form,

�HB =
N B�

i =1

� B,i

2
( �P2

B,i + �X 2
B,i )�1 +

N B�

i,j =1 ,j>i

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1,

(18)

where bilinear coupling terms now appear in the bath subspace. The
new frequencies �B,i and couplings di j result from the coordinate
transformation introduced above, such that � B,i =

� N B
j =1 � B,j t2

ji and

dij =
� N B

k=1 � B,k tki tkj , where t ji are the elements of the transformation
matrix T .

The transformed bath Hamiltonian �HB of Eq. (18) and the transformed
interaction part �HSB of Eq. (16) de“ne the new system-bath Hamiltonian.
The subsystem part, comprising the electronic subspace and possibly a
subset of strongly coupled vibrational modes, has remained unchanged.

3.2. Hierarchical structure of the bath

In the new coordinates, the bath Hamiltonian takes a hierarchical form: The
three e�ective modes ( �X B, 1, �X B, 2, �X B, 3) couple directly to the electronic
subsystem, while the remaining (residual) (NB Š 3) bath modes couple in
turn to the e�ective modes. This chain of interactions is illustrated in Fig. 1.
The new bath Hamiltonian �HB of Eq. (18) can thus be split as follows:

�HB = �H e�
B + �H e� -res

B + �H res
B , (19)

Fig. 1. Schematic illustration of the e�ective-mode construction (here, for an electronic
two-level system), by which a subset of e�ective bath modes carry all vibronic coupling
e�ects.
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with the e�ective (e�) 3-mode bath portion

�H e�
B =

3�

i =1

� B,i

2
( �P2

B,i + �X 2
B,i )�1 +

3�

i,j =1

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1, (20)

the e�ective-residual (e�-res) mode interaction

�H e� -res
B =

3�

i =1

N B�

j =4

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1, (21)

and a de“nition analogous to Eq. (20) for the residual (res) Hamiltonian
�H res

B comprising the (NB Š 3) residual bath modes.
From this hierarchical structure, various approximation schemes emerge,

which are discussed in detail in Sec. 4. As shown in Refs. 35…37 and 55,
even the simplest level of approximation, by which all terms except for �H e�

B

are disregarded,

�H � = �HS + �HSB + �H e�
B (22)

can be meaningful, since the e�ective modes entirely determine the short-
time dynamical behavior. For example, it has been shown for a model of
the butatriene cation comprising two strongly coupled system modes and
20 more weakly coupled intramolecular bath modes, that the dynamics over
the “rst tens of femtoseconds can be described accurately by truncating
the intramolecular bath at the level of the “rst three modes.35, 55 However,
coherent artifacts are expected to appear beyond the shortest time scale,
since the multimode nature of the bath has been disregarded.

3.3. Alternative sets of e�ective modes

The de“nition of the e�ective modes is not unique. The coordinate set
( �X B, 1, �X B, 2, �X B, 3) is a member of amanifold of coordinate triples which
are interrelated by orthogonal transformations within the e�ective-mode
subspace.37 Two choices are of particular relevance: (i) First, a de“nition
of the new coordinates which eliminates the bilinear couplings{ dij } within
the e�ective-mode subspace, and creates a diagonal form of the kinetic
and potential energy in �H e�

B .36 (ii) Second, a de“nition leading to topology-
adaptedvectors, two of which span the branching plane.37 These two choices
will now be brie”y discussed.
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By the “rst choice, 35, 36 the bilinear couplings of Eq. (20) are elimi-
nated for the primary e�ective modes, i.e. dij = 0 , i, j = 1 , . . . , ne� . This
form leads to mathematical simplicity in the e�ective-mode subspace, such
that the truncated e�ect ive-mode Hamiltonian H � of Eq. (22), does not
exhibit any bilinear coupling terms since �H e�

B =
� 3

i =1 � B,i / 2( �P2
B,i + �X 2

B,i )�1.
As in the original Hamiltonian, no di rect couplings occur between the
e�ective bath modes, and all interactions are absorbed into the vibronic
coupling.

The second choice is motivated by topological considerations and
constrains two of the e�ective modes to lie in the branching plane.37, 46

Starting from the vectors ( �X B, + , �X B, Š , �X B, � ) of Eqs. (14) and (15), the
orthogonalization procedure is carried out in such a way that the vectors
( �X B, Š , �X B, � ) which lie in the branching plane are orthogonalized “rst,
so as to yield the e�ective modes (�X B, 1, �X B, 2). Following this, the third
mode �X B, 3 is constructed which lies in the intersection space. The diabatic
branching plane modes generated fromthe LVC model are closely related to
the gradient di�erence (g) and nonadiabatic coupling (h) vectors, and the
�X B, 3 vector is in turn related to the average gradient (s) vector;51, 52, 71, 72

see Ref. 37 for a detailed discussion of this point. This topology-adapted
construction has the advantage that the e�ect of the environment on the
local CoIn topology can be immediately expressed in terms of the e�ective
modes. In fact, the (g, h, s) vectors can be decomposed into system vs.
environment contributions where the latter are calculated directly from the
( �X B, 1, �X B, 2, �X B, 3) modes.

The two prescriptions described above for generating the
( �X B, 1, �X B, 2, �X B, 3) e�ective modes are not compatible, i.e. the topological
construction entails the presence of bilinear coupling terms. Independently
of this choice „ and other possible choices that could be motivated by
physical considerations „ the essence of the e�ective-mode construction
remains una�ected: that is, all possible orthogonal e�ective-mode combi-
nations guarantee that the short-time dynamics is accurately captured by
the primary e�ective modes, in the absence of the residual modes.This is
the case since the truncated HamiltonianH � of Eq. (22) reproduces the
“rst few moments (or cumulants) of the Hamiltonian exactly. 36 Section 4.4
gives further details on this aspect.

Finally, a comment is in order regarding the expansion point used for the
e�ective-mode construction. The conventional choice made in the applica-
tions shown here, as well as those discussed in Refs. 27, 35, 37, 46 and 55,
is the use of the Franck…Condon (FC) geometry as reference geometry.
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This is consistent with the goal of describing the short-time dynamics
accurately, and is expected to give a good representation of the dynamics at
the conical intersection if the spatial separation between the FC and CoIn
geometries is small. If this is not the case, but an initial condition for the
dynamics can be de“ned close to the intersection (possibly extrapolated
from the real dynamics taking one from the FC geometry to the CoIn),
an appropriate expansion point could be a location on the CoIn seam of
the subsystem. Unless the system and bath are represented by an LVC
model, one then has to account for the fact that the intersection seam is
curved,73, 74 such that the composition of the branching plane vectors varies
as a function of the seam location. Following, e.g. Ref. 73, optimized loca-
tions on the seam can be identi“ed, usually corresponding to extrema along
the seam.

3.4. Generalization to more than two electronic states

A generalization of the e�ective-mode construction to three or more elec-
tronic states is straightforward, using a set ofne� = nel(nel + 1) / 2 e�ective
modes as mentioned above. In Refs. 27 and 38, we have thus employed
e�ective mode transformations for a three-state LVC model, representing
the ultrafast dissociation of an exciton state at a semiconductor polymer
interface. Besides the exciton (XT) state, this model involves an interfacial
charge transfer (CT) state and an intermediate (IS) state. While further
comments on the model and dynamics are deferred to Sec. 4.5, we cite
here the general form of the transformed Hamiltonian which generalizes the
system-bath interaction Eq. (16) and otherwise exhibits the same structure
as before,

�H = �HS + �HSB + �HB , (23)

�HSB =
n el =3�

n,m>n

n eff =6�

i =1

K nm
i

�X B,i (|n��m | + |m��n |) , (24)

�HB =
N B�

i =1

� B,i

2
( �P2

B,i + �X 2
B,i )�1 +

N B�

i,j =1 ,j>i

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1.

(25)

In this case, the system Hamiltonian �HS is restricted to the electronic
subsystem while all vibrational modes are included in the bath part, using
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Fig. 2. For the three-state LVC model of Refs. 27 and 38, involving a photogenerated
excitonic (XT) state, an interfacial charge transfer (CT) state, and an intermediate state
(IS), two di�erent branching plane projections of the coupled diabatic PESs are shown:
(a) XT, CT, and IS PESs projected onto the XT-CT branching plane and (b) XT and
IS PESs projected onto the XT-IS branching plane. In (b), the width of the initial
wavepacket (localized at the FC point) and the trajectory of the wavepacket center are
also indicated. The two branching space projections are associated with two di�erent
sets of e�ective modes, with respective ( �X B, 1 , �X B, 2 ) vectors spanning either of the two
branching planes. Reprinted with permission from Ref. 38.

the LVC model. In Refs. 27 and 38, the e�ective-mode construction was
chosen such that two of the six e�ective modes correspond to topology-
adapted modes that span the branching plane of a two-state intersection
between a selected pair of electronic states. Figure 2 illustrates two alter-
native choices involving di�erent p airs of electronic states, i.e. XT/CT
or XT/IS; these two choices are not compatible with each other due to
the orthogonality constraint. Other construction schemes could be envis-
aged, e.g. one could choose modes that are adapted to the “ve-dimensional
branching space of the three-state intersection75, 76 that occurs in the
model (even though this intersection might not be directly involved in the
dynamics). Further applications to three and more electronic states can be
found in Ref. 77.

4. E�ective-Plus-Residual Bath Models

The e�ective vs. residual bath partitioning is the key piece in the treatment
of the electron-vibration coupling. Beyond this, various representations can
be chosen for the residual bath subspace, which play an important role in
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practice in view of reducing the dimensionality of the system-bath problem.
Three possible realizations are now outlined. These realizations correspond
to di�erent orthogonal transformations, resulting in di�erent intra-chain
couplings.

4.1. Model 1: Secondary bath coupled to primary
e�ective modes

In this case, the bilinear coupling matrix { dij } is diagonalized in the
subspace of the residual bath modes{ 4, . . . , NB } such that only couplings
{ dij } , between the primary e�ective modes �X B,i , i = 1 , . . . , 3, and the
secondary bath modes�X B,i , i = 4 , . . . , NB , occur, i.e.

�HB =
N B�

i =1

� B,i

2
( �P2

B,i + �X 2
B,i )�1 +

3�

i =1

N B�

j =4

di j ( �PB,i �PB,j + �X B,i �X B,j )�1

� ( �X B + i �P B )T d ( �X B Š i �P B ), (26)

where the diagonal elements of thed matrix correspond to the transformed
frequencies. The corresponding coupling pattern is illustrated in Fig. 3.

Within this model, the secondary modes act as an unstructured bath
with respect to the primary e�ective modes. In the simplest case, their
in”uence can be approximated in terms of the Markovian limit, such that

Fig. 3. Schematic illustration of the coupling pattern of Model 1: couplings within the
e�ective-mode sub-block as well as diagonal terms (transformed frequencies � B,i ) are
indicated by bullets, while couplings between the e�ective-mode vs. residual-mode blocks
are indicated by open squares.
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the { dij } conform to the spectral density

Ji (� ) = �
N B Š 3�

j =1

d2
i j � (� Š � j ) = �� (27)

with the friction coe�cient � . The primary bath modes { �X B,i } then play
the role of Brownian oscillator modes.1

This level of approximation can be appropriate if the coupling between
the electronic subspace and the primary e�ective modes is stronger than
the e�ective-residual bath coupling. This can be the case for typical CoIn
situations, see our studies of Ref. 55.

4.2. Model 2: Mori-type chain

In this scheme, the bilinear coupling matrix is cast into a band-diagonal
form46, 78

�HB = �H e�
B + �H e� -res

B +
n�

l=1

�H ( l)
B, res (28)

with the e�ective-re sidual space coupling

�H e� -res
B =

3�

i =1

i +3�

j =4

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1 (29)

and the residual bath Hamiltonian

�H (l)
B, res =

3l+3�

i =3 l+1

� B,i

2
( �P2

B,i + �X 2
B,i )�1

+
3l+3�

i =3 l+1

i +3�

j =i +1

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
�1; (30)

see the schematic representation of Fig. 4. We have referred to this variant
as a hierarchical electron-phonon (HEP) model.46 This representation is
closely related to a Mori chain representation.40…42A very similar approach
was suggested in Ref. 47 where a block-diagonal form of the coupling matrix
is constructed.

As more (triples of) modes are added in the chain construction, the
dynamics is reproduced accurately over increasing intervals of time. The
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Fig. 4. Schematic illustration of the coupling pattern in Model 2, involving a band-
diagonal structure of the d matrix. Couplings within each l th sub-block corresponding to
e�ective-mode triples ( �X B, 1+ l , �X B, 2+ l , �X B, 3+ l ) are indicated by bullets, while couplings
between the sub-blocks are indicated by open squares.

underlying analysis in terms of Hamiltonian moments is brie”y addressed
below (Sec. 4.4). This model is most appropriate in cases where the bilinear
couplings within the chain are non-negligible as compared with the vibronic
coupling of �HSB .

4.3. Model 3: Mori-type chain with Markovian closure

This variant uses the Mori-type construction of Model 2 but the hierarchy
of modes is now terminated at a chosen orderM , with a dissipative closure
acting on the end of the chain (Fig. 5).34, 43…45 The bath Hamiltonian

Fig. 5. Schematic illustration of the coupling pattern in Model 3. Here, the hierarchy of
Model 2 is terminated at a chosen order M (here, M = 2 for illustration). The remaining
modes couple to the M th sub-block, and a Markovian approximation is subsequently
introduced for these modes.
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takes the form

�HB = �H e�
B + �H e� -res

B +
M�

l=1

�H ( l)
B, res + �H (M )

B, diss , (31)

where �H (M )
diss corresponds to a residual bath composed of modes{ M +

1, . . . , NB } which are all coupled to the M th mode of the chain,

�H (M )
diss =

N B�

i =M +1

� B,i

2
( �P2

B,i + �X 2
B,i )�1 +

N B�

i =M +1

dM i ( �PB,M �PB,i + �X B,M �X B,i )�1

(32)

The Brownian oscillator model of Sec. 4.1 represents a special case of this
construction with M = 1. Again, the distribution of residual bath modes
may be approximated in terms of an Ohmic spectral density, in which
case the picture of a Mori-type chain with Markovian truncation at the
M th order arises. In practice, the �H (M )

diss portion can be treated either by
Markovian master equations, or else by an explicit representation of the
Ohmic bath (see the example presented below).43, 44

As demonstrated in Ref. 79, the model in fact provides arigorous
description of non-Markovian dynamics, since the residual bath can be
shown to converge towards a Markovian form under very general condi-
tions. Model 3 is the cornerstone of the description in terms of approximate
spectral densities, to be detailed in Sec. 5 below.

4.4. Dynamical evolution and moment conservation rules

The key advantage of the transformations addressed above is that the e�ec-
tive modes unravel the multimode dynamics as a function of time. On the
shortest time scale, the dynamics is entirely captured by the primary modes.
As time proceeds, the excitation propagates into the residual bath. The
hierarchical representations of Model 2 and Model 3 construct a sequential
picture of this process, very similarly to Mori theory.40…42 This scenario
leads to truncation schemes which de“ne reduced-dimensional representa-
tions that are exact over certain time scales.

A formal analysis can be carried out in terms of moment or cumulant
expansions of the propagator, showing that the moments (cumulants) are
exactly reproduced up to a certain order by employing a truncated Hamil-
tonian comprising a limited number of e�ective modes. In Refs. 36, 46



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch08

322 I. Burghardt et al.

and 47, such an analysis has been carried out for the representation of the
propagator in the initial wavefunction state, yielding the autocorrelation
function C(t, t 0) = � 	 (t0) | �U(t, t 0) | 	 (t0)� = � 	 (t0) | 	 (t) � . An analogous
moment analysis can be performed for the reduced propagator, where the
bath has been integrated out.80 The result of the analysis of Refs. 46 and
47 for Model 2 (Mori chain) is that truncation of the chain at a given
order n „ i.e. (3 + 3 n) modes for a two-state system, or (ne� + ne� × n)
modes for nel states with ne� = nel(nel + 1) / 2 „ exactly reproduces the
“rst (2 n + 3)th order moments (cumulants) of the total Hamiltonian. A
prerequisite of the above analysis is the initial condition of the bath, which
is taken to correspond to the ground state at zero temperature.

As mentioned above, the primary e�ective modes conserve the “rst
three moments, which can already account for an accurate dynamics over
a time scale which determines the passage from the Franck…Condon point
through a conical intersection region. As demonstrated by the example
presented in the next section (Fig. 6), a low-order truncation often gives
rather good results over reasonably long time scales. However, counter-
examples can be given; for example, our recent study of Refs. 26 and 46
demonstrates a case where the primary e�ective modes do not give a quali-
tatively correct picture of the dynami cs. The coupling strength between the
di�erent orders of the hierarchy, in conjunction with the relevant dynam-
ical mechanisms, eventually determine the quality of the approximation.
Furthermore, the initial condition and the choice of the expansion point for

Fig. 6. Evolution of the XT state population as a function of time, for comparative
calculations according to Model 2, involving truncation at successive orders M = 1
(6 modes), M = 2 (12 modes), and M = 3 (18 modes), along with the 28-mode
full-dimensional reference calculation. Reproduced from Ref. 27. Copyright 2008 by the
American Physical Society.
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the e�ective-mode development play an important role, see the discussion
in Sec. 3.3.

4.5. Example: Ultrafast photophysics of semiconductor
polymer junctions

We have recently employed Models 2 and 3 to describe the ultrafast exciton
decay at semiconductor polymer interfaces.26, 27, 38, 46 As brie”y explained
in Sec. 3.4, the subsystem is purely electronic in this case, and all vibrational
modes were included as bath modes in an LVC description. Typically, the
model comprises a 20…30 mode phonon distribution, composed of a high-
frequency branch corresponding to carbon-carbon stretch modes and a low-
frequency branch corresponding to ring-torsional modes. Both two- and
three-state models were constructed, based upona semiempirical lattice
model of the polymer system.23 The system does not exhibit any particular
symmetry, such that all coupling parameters are non-zero.

A transformed version of the three-state Hamiltonian corresponding to
Model 1 has been addressed in Sec. 3.4, and we focus here on Models 2
and 3. The three-state Hamiltonian corresponding to Model 2 reads as
follows in matrix form:

�H
(n )
B ( �X B, 1, . . . , �X B, 6n +6 ) = �H e� ( �X B, 1, . . . , �X B, 6)

+
n�

l=1

�H
( l)
res( �X B, 6l+1 , . . . , �X B, 6l+6 ), (33)

with the following e�ective Hamiltonian part, which comprises the e�ective-
mode portion of the Hamiltonian of Eqs. (23)…(25),

�H e� =
6�

i =1

� B,i

2
( �P2

B,i + �X 2
B,i )1

+
6�

i =1

�

�
�
�
�

(K B,i + DB,i ) �X B,i � (12)
B,i

�X B,i � (13)
B,i

�X B,i

� (12)
B,i

�X B,i (K B,i Š DB,i ) �X B,i � (23)
B,i

�X B,i

� (13)
B,i

�X B,i � (23)
B,i

�X B,i K (3)
B,i

�X B,i

	







�

+
6�

i =1

6�

j =i +1

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
1 + C , (34)
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where C is a constant matrix and six e� ective modes were constructed
according to a topology-adapted representation (see Sec. 3.3).27, 38 Each
l th-order residual term also comprises six modes,

�H
(l)
res =

6l+6�

i =6 l+1

� B,i

2
( �P2

B,i + �X 2
B,i )1

+
6l+6�

i =6 l+1

i Š 1�

j =i Š 6

dij

�
�PB,i �PB,j + �X B,i �X B,j

�
1. (35)

As explained in Sec. 3.4, the dynamical process of interest corresponds
to the transition from a photogenerated excitonic (XT) state to an inter-
facial charge transfer (CT) state, possibly involving indirect transitions
XT � IS � CT via an intermediate state (IS). 27, 38 These states exhibit
multiple intersections, as illustrated in Fig. 2 which depicts the projec-
tion of the multidimensional potential surfaces on the XT-CT vs. XT-IS
branching plane.

An analysis based upon the HEP hierarchy of models 2 and 3 shows that
the primary e�ective modes ( �X B, 1, �X B, 2, �X B, 3), or ( �X B, 1, . . . , �X B, 6) in the
case of a three-state model, are exclusively of high-frequency type since
the relevant carbon-carbon stretch modes dominate the electron-phonon
coupling. However, low-frequency torsional modes appear at the second
order of the hierarchy and turn out to have an important e�ect on the
dynamics. Indeed, the resonant interplay between the two types of modes is
an important ingredient in mediating the XT state decay. 26, 44, 46 Figure 6
illustrates the convergence of the HEP hierarchy with increasing orders.
Quantum dynamical calculations were carried out using the multicon“gu-
ration time-depedent Hartree (MCTDH) method. 20, 81…84

5. Hierarchical Approximations of the Spectral Density

In light of the above transformation schemes, we now return to the charac-
terization of the environment in terms of spectral densities, as introduced in
Sec. 2.2. Using the series of approximate bath realizations that are gener-
ated from Model 3 of the preceding section, i.e. a truncated Mori-chain
representation with Markovian closure, we identify the spectral density that
each of these realizations is associated with. The family of bath spectral
densities that are thus generated de“ne coarse-grained representations of
the bath, which lead to an accurate system-bath dynamics over increasing
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times as the order of the Mori chain is increased. In the following, we
explicitly formulate these spectral densities in terms of continued-fraction
expressions. The derivation is analogous to our recent study of Refs. 43 and
44, but includes a generalization to the set of spectral densities de“ned in
Sec. 2.2. A detailed description is given in Ref. 34.

The overall picture that emerges from the present discussion is the
following: using the transformation techniques described in the previous
section, a set of relevant e�ective modes are extracted that accurately de“ne
the system-bath dynamics over increasing time scales. In the frequency
domain, the successive reduced-dimensional models de“ne a family of
approximate environmental spectral densities. These spectral densities are
constructed from a limited number of e�ective environmental modes in
conjunction with a Markovian closure acting on the last member of the
e�ective-mode chain. These reduced-dimensional dynamical problems can
be treated non-perturbatively, using an explicit dynamical treatment for
the subsystem plus e�ective mode space, along with a Markovian approxi-
mation for the remaining space.

5.1. Spectral densities in the transformed representation

As a result of the transformation from the original Hamiltonian Eqs. (1)…
(8) to the e�ective-mode Hamiltonian Eqs. (16)…(18), the spectral densities
introduced in Sec. 2.2 have to be re-written in terms of the transformed
quantities. At each order generated by the e�ective-mode development
including Markovian closure (Model 3), the Heisenberg evolution of
the subsystem operators can be described by anM th-order reduced-
dimensional approximant,

(z Š �L (M )
B ) �� (z) = �L S �� (z) + i �� 0 (36)

and an associated e�ectiveM th-order spectral density,

J (M )
e� (� ) = lim

� � 0+
Im �L (M )

B (z)

�
�
�
�
z=� +i�

. (37)

Equations (36) and (37) yield Eqs. (11) and (12) if the full dimensionality
is taken into account. As shown in Appendix B, the reducedM th order
quantities can be expressed using continued-fraction techniques. For clarity,
we consider “rst the special case of a tuning-mode bath (i.e. a bath inducing
energy gap ”uctuations) and then turn to the multivariate problem de“ned
by the full system-bath Hamiltonian Eq. (16).
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5.2. Tuning mode bath

In the case of a tuning mode bath, the system-bath interaction is charac-
terized by a single spectral density, which corresponds to Eq. (9) in the
pre-transformed representation. A single e�ective mode appears at each
order of the Mori chain construction, such that the chain takes a tridiag-
onal form.

5.2.1. Spectral densities

As shown in Refs. 43 and 44 and summarized in Appendix B, a series of
M th-order approximate spectral densities can be de“ned in terms of the
following continued-fraction expression,

�L (M )
B (z) = �L (M )

B, + (z) + �L (M )
B, Š (z)

with

�L (M )
B, ± (z) =

Š � (Š )2
e�

� 1 � z Š � (M )
±

= Š
� (Š )2

e�

� 1 � z Š
d2

1,2

� 2 � z Š · · ·
d2

M Š 2,M Š 1

� M Š 1 � z Š
d2

M Š 1,M

� M � z + i2�z

, (38)

where � (Š )
e� denotes the coupling of the “rst e�ective mode to the electronic

subsystem, and �(M )
± subsumes the relaxation of the e�ective mode under

the e�ect of the coupling to the chain of residual bath modes, with a Marko-
vian closure at the M th order. According to Eq. (37), the spectral density
J (M )

e� (� ) is related to the imaginary part of �L (M )
B (z),

J (M )
e� (� ) = J (M )

e� ,+ (� ) + J (M )
e� ,Š (� )

= lim
� � 0+

{ Im �L (M )
B, + (� + i
 ) + Im �L (M )

B, Š (� + i
 )} . (39)

At the “rst order of the hierarchy, M = 1, we obtain the explicit expres-
sion85

J (1)
e� ,± (� ) =

2���� (Š )2
e�

(� 1 � � )2 + (2 �� )2 , (40)
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which corresponds to a result “rst obtained by Garg et al.64 (however,
mass-weighted coordinates were used in Refs. 43, 44 and 64, which modi“es
the form of the spectral density). This level of approximation represents a
simple Brownian oscillator model, with a central environmental mode and
a Markovian damping exerted by the remaining modes.

An analytical expression can also be found at the second order,85

J (2)
e� ,± (� )

=
2�� (Š )2

e� d2
12��

{ (� 1 � � )[� 2 � � (1 Š i2� )] Š d2
12}{(� 1 � � )[� 2 � � (1 + i2� )] Š d2

12}
,

(41)

while the third and higher orders are most conveniently generated numeri-
cally from the expressions of Eqs. (38) and (39).

The spectral densities of Eqs. (40) and (41) provide the lowest-order
approximants for a tuning mode bath exhibiting a spectral density of
arbitrary complexity. All parameters are determined from the initial spectral
density, here Eq. (9), using the transformations described in Sec. 4. In the
following section, these lowest-order approximations will be demonstrated
for a typical example.

5.2.2. Example: S2-S1 CoIn in pyrazine coupled to a tuning
mode bath

We illustrate the spectral density construction for a tuning mode bath that
is coupled to a 4-mode subsystem model of theS2-S1 conical intersection in
pyrazine, described according to thesecond-order vibronic coupling Hamil-
tonian of Raab et al.19 In the present model,45 a linear vibronic coupling
approximation is thus only made for the bath part. A continuous refer-
ence spectral density is constructed by a Lorentzian convolution proce-
dure45 from an NB = 20 tuning mode distribution obtained by Krempl
et al.18 as a weighted random ensemble, see Fig. 7, panel (a). Following
the continued-fraction construction described above, a series of approxi-
mate spectral densitiesJ (M )

e� (� ) are then generated, the lowest orders of
which are shown in Fig. 7, panel (b). TheM th order spectral densities are
re-discretized, here again forNB = 20 bath modes.

Wavepacket calculations at T = 0 K were carried out for the combined
4-mode subsystem plus 20-mode bath,45 using the MCTDH method.81…84

The explicit representation of all bath modes is not a necessity (and, in fact,
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Fig. 7. Couplings { � ( Š )
i } associated with the 20-mode intramolecular bath described in

Sec. 5.2.2. Panel (a) shows the coupling parameters used by Krempl et al. 18 for a 20-mode
tuning mode distribution adapted to the S2-S1 CoIn in pyrazine (squares), along with the
continuous reference spectral density which was obtained from these data by the “tting
procedure described in Ref. 45. Panel (b) illustrates the discrete couplings associated

with the spectral densities J ( M )
e� (� ), M = 1 , . . . , 3 which were constructed by the proce-

dure described in Sec. 5.2.1. As detailed in Ref. 45, mass-weighted coordinates rather
than mass-and-frequency weighted coordinates were employed. Note that the lowest-
order approximants J ( M )

e� , M = 1 , 2, are not centered on the reference spectral density,
even though their construction ensures that they reproduce the short-time dynamics.
(In this sense, the J ( M )

e� •s cannot simply be understood as coarse-grained versions of
the actual spectral density.) From M = 3 onwards, the approximants coincide more
closely with the center of the reference spectral density and tend to converge. (Adapted
from Ref. 45.)

the general method is designed so as to treat only the e�ective modes explic-
itly); however, an explicit wavepacket dynamics for all modes is convenient
to demonstrate the convergence of the procedure for a zero-temperature
system. In Refs. 43 and 44, we have shown that explicit calculations for
high-dimensional system-plus-bath wavefunctions are in excellent agree-
ment with reduced density matrix calculations.
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Fig. 8. (a) Time dependence of the S2 state (diabatic) population for successive 4+20-

mode models based on the bath spectral densities J ( M )
e� , M = 1 , 2, 3, as well as the

reference spectral density illustrated in Fig. 7. The 4-mode system dynamics is also
shown for comparison (slowly decaying trace). (b) Time dependence of the wavepacket
autocorrelation function (absolute value), |C(t)| = |� � (0) | � (t )�| . At the level of the
M = 3 approximation, the dynamics is indistinguishable from the reference dynamics,
even though the corresponding spectral density is not fully converged yet in the frequency
domain, see Fig. 7. (Adapted from Ref. 45.)

Initial conditions for the wavepacket calculations correspond to the
Franck…Condon geometry, and the e�ective-mode expansion is de“ned
with respect to this reference geometry. Figure 8 shows the time-
dependent diabatic S2 populations and autocorrelation functions |C(t) | =
|� 	 (0) | 	 (t) �| generated from the successive spectral density approximants
J (M )

e� (� ), M = 1 , . . . , 3. All orders agree over the shortest time scale (� 5 fs),
and the ordersM = 2 , 3 are found to be very close over the complete obser-
vation interval. The M = 3 result is virtually indistinguishable from the
result obtained for the reference spectral density and can be considered
converged.
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To summarize, the general procedure that is proposed is as follows:
Starting from an arbitrary spectral density, successive approximations
J (M )

e� are obtained in continued-fraction form according to Eqs. (37) and
(38). TheseM th-order models provide approximate representations of the
non-Markovian system-environment dynamics, and become accurate over
increasing time intervals asM increases. For complicated, structured envi-
ronments, this implies that the subsystem explores the details of the spectral
density as time evolves.

Importantly, the use of the Markovian closure of Model 3, which under-
lies the present spectral density construction, implies that no artifacts
appear due to the truncation of the chain. The excitation thus cannot
•propagate backŽ along the chain, and irreversible dynamics results.

5.3. General correlated bath

In the case of a correlated bath, a full set of auto-correlation and cross-
correlation spectral densities are required. As before, we focus on an elec-
tronic two-level system, whose spectral density matrix in the most general
form is given in Eq. (13). As detailed in Appendix C, the M th order spectral
density components are obtained according to Eq. (37) as the imaginary
part of the operator

�L (M )
B =

�

�
�
�
�

L (M )
xx L (M )

xy L (M )
xz

L (M )
yx L (M )

yy L (M )
yz

L (M )
zx L (M )

zy L (M )
zz

	







�

� �L (M )
B, + + �L (M )

B, Š (42)

with components

�L (M )
B, ± (z)

=
n eff�

n =1

Š2

z � � 1n � � (M )
1n, ±

�

�
�
�
�

K (Š )2
n iK (Š )

n K (+)
n ŠK (Š )

n � n

Š iK (Š )
n K (+)

n (K (Š )2
n + � 2

n ) i � n K (+)
n

ŠK (Š )
n � n Š i � n K (+)

n � 2
n

	







�

� �L R(M )
B, ± + i �L I (M )

B, ± , (43)

where the �L I (M )
B part accounts for imaginary cross-correlation contributions

that are associated with the { K (+)
n } parameters, analogously to Eq. (A9).
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The corresponding spectral density matrix J (M )
e� (� ) is given according to

Eq. (37), evaluated for �L R(M )
B and �L I (M )

B , respectively.
Comparison of Eq. (43) with the matrix expression Eq. (A9) obtained

from the pre-transformed Hamiltonian leads to the conclusion that all
terms appearing in the �L (M )

B matrix are formally identical to the pre-
transformed version. This follows from the formal similarity of the pre- vs.
post-transformed interaction Hamiltonians Eqs. (8) and (16). Di�erently
from Eq. (A9), though, the summation of Eq. (43) involves only the “rst-
order e�ective modes. All e�ects of t he many-particle residual bath are
absorbed into the terms{ � (M )

± } which correspond to a generalized version
of the continued fraction representation of Eq. (38). Further details are
provided in Appendix C.

The usefulness of the present procedure follows precisely from the
fact that all approximations are shifted into the { � (M )

± } part while the
system-bath coupling pattern only necessitates information about the low-
dimensional e�ective-mode subspace. Equations (42) and (43) together with
the de“nition of the spectral density Eq. (37) thus give a complete charac-
terization of the M th order approximation to an arbitrary spectral density
at a two-state CoIn. Cross-correlation contributions arise naturally, since
the e�ective modes couple to several subsystem variables by construction.

Again, generalizations to more than two electronic states can be
obtained along the same lines. For example, our recent calculations on semi-
conducting polymer systems26, 27, 38, 46 as brie”y summarized in Sec. 4.5,
could be analyzed in terms of the spectral densities derived from Eqs. (42)
and (43) and their analog for three electronic states. Work in this direction
is currently in progress.

6. Discussion and Conclusions

Environmental e�ects on the dynamics at conical intersections often fall into
a short-time regime where inertial, coherent e�ects dominate and the many-
particle dissipative dynamics has not yet set in. This generally precludes the
use of standard system-bath approaches and necessitates an explicit dynam-
ical treatment of the combined subsystem-plus-environment supermolec-
ular system. The powerful QM/MM based simulation techniques that have
been developed over recent years for the explicit simulation of photochem-
ical processes in chromophore…solvent and chromophore…protein complexes
have made great strides in this direction.8…10, 14 Even so, the need for
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complementary reduced-dimensional models and dynamical interpretations
persists. In the present chapter, we have attempted to provide such a
complementary perspective.

Starting from an LVC model representing the system…environment inter-
action, the present approach identi“es a set ofnel(nel + 1) / 2 e�ective
modes which describe the collective environmental e�ects on the short-time
non-adiabatic dynamics.35, 36 Importantly, these modes describe the e�ects
exerted by the environment both on the CoIn topology and dynamics.
Beyond the identi“cation of the set of modes that predominate on the
shortest time scale, further transformations are introduced by which chains
of residual modes are created that successively unravel the dynamics as a
function of time. As shown above, this construction has proven useful, e.g.
in the analysis of photoinduced dynamics in extended systems like semi-
conducting polymers.26, 27 For this type of systems, where distinct high-
frequency vs. low-frequency phonon branches exist, one can further envisage
alternative transformations by which e�ective modes are assigned to each
phonon branch separately.86, 87

As detailed in Sec. 3.3, the e�ective modes constructed here can be
related to the characteristic topological vectors spanning the branching
space, i.e. the gradient di�erence and non-adiabatic coupling vectors, as
well as the average gradient vector.51, 52 This relation re”ects that the CoIn
topology is determined at the leading order by the linear (LVC) contri-
butions. By contrast, e�ects which appear at the quadratic and higher
orders of the Hamiltonian are not accounted for within the environmental
subspace. These e�ects include, for example, the notion of gateway modes
which couple the branching plane and seam space,88 and the identi“ca-
tion of photoactive modes introduced in Ref. 48. In the latter case, a
scheme is suggested by which modes which are relevant for the dynamics
are selected according to their second-order contributions to the energy
gap at the Franck…Condon geometry. This information is not contained in
our construction for the environmental subspace, but could be used in a
complementary way to provide a rationale for the system-bath partitioning
employed in the present model.

Despite the limitations of the LVC model, our approach should capture
the dominant environmental in”uences in many system-bath type situa-
tions. As the photophysics of more complex systems like semiconducting
polymers and other nanostructured materials is addressed, model Hamil-
tonians comprising the linear vibronic coupling contributions are a natural
choice, which is acceptable as long as large-amplitude motions do not play
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an important role. Regarding the identi“cation of relevant environmental
modes, the e�ective-mode approach brings the clear advantage that no
selection needs to be made among the environmental modes in the “rst
place „ i.e. all bath modes are introduced democratically in the trans-
formation scheme, and a reduction is carried out only at the level of the
transformed, collective modes.

Based upon the construction of chains of e�ective modes, a systematic
approximation procedure for the environment can be formulated in terms of
a series of coarse-grained spectral densities.43, 44 These spectral densities are
generated from successive orders of a truncated chain model with Markovian
closure. Analytical expressions can be given in terms of Mori-type continued
fractions. Assuming that an „ a priori arbitrarily complic ated „ reference
spectral density can be obtained independently, e.g. from experiments or
classical molecular dynamics simulations, one can thus (i) extract those
features of the spectral density that determine the interaction with the
subsystem on successive time scales, and (ii) carry out re duced-dimensional
simulations which are in exact agreement with the complete system-bath
dynamics up to a certain time. Typically, quantum dynamical simulations
will be carried out for the subsystem degrees of freedom augmented by the
environment•s e�ective modes, whilethe remaining modes are treated by a
master equation.44

While the above analysis in terms of spectral densities has been carried
out before for a spin-boson system,43, 44 we have here extended our previous
treatment so as to account for multiple system-environment coupling mech-
anisms available at a CoIn.34 This entails the possibility of cross-correlated
”uctuations, due to the simultaneous coupling of environmental modes to
several subsystem variables (e.g. �� z and �� x ). This complexity of the system-
environment coupling is a re”ection of the fact that the environmental
modes can be involved in the same vibronic coupling pathways that are open
to the intramolecular modes as well. Furthermore, the environmental modes
are not generally subject to the symmetry constraints of the intramolecular
modes, such that symmetry-breaking interactions and the cross-correlation
e�ects which were just mentioned are frequent occurrences.

Even though the e�ective-mode construction can be applied to various
types of quantum subsystems involving linear interactions with a multimode
environment, the approach is especially tailored to the ultrafast dynamics
at conical intersections. Thus, the Mori-chain type expansions described
here are expected to converge rapidly. In view of the markedly non-
Markovian character of the dynamics, the dissipative many-body e�ects
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of the environment act with a delay. For the same reason, one may conjec-
ture that environment-induced decoherence e�ects are less pronounced than
usually expected,15, 16 similarly to our observations for other types of nona-
diabatic dynamics.44

In many relevant cases, diagonal interactions which give rise to energy
gap ”uctuations dominate. The tuning-mode model that was addressed in
Sec. 5.2 is adapted to this case. Solute…solvent interactions can often be
mapped upon such a model as well, such that the picture of a solvent
coordinate3, 4, 12 can be accommodated within the present class of models,
even if the actual microscopic interactions cannot be described at the level
of a harmonic oscillator bath.

We expect the e�ective-mode models described here to be versatile
tools that can predict general trends and can be used in conjunction with
microscopic information provided from other sources, i.e. spectral densi-
ties, energy gap correlation functions, and possibly cross-correlation func-
tions. Further, model parametrizations could be provided by QM/MM type
simulations, and the model-based dynamics could be employed to analyze
the wealth of microscopic information provided by such simulations. Such
complementary strategies would bridge the gap between system-bath theory
approaches and explicit multidimensional simulations for ultrafast photo-
chemical processes in various types of environments.

Note Added in Proof

Since submission of this chapter,a recent application of the e�ective-
mode approach to elementary processes in organic photovoltaics has been
published [H. Tamura, I. Burghardt, and N. Tsukada, J. Phys. Chem. C,
115, 10205 (2011)]. Further, the time-domain convergence of the e�ective-
mode chain representation has been analyzed in a Langevin equation
setting [R. Martinazzo, K. H. Hughes, and I. Burghardt, Phys. Rev. E,
84, 030102(R) (2011)].
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Appendices

A. Spectral Densities at a Conical Intersection

Following Ref. 34, we describe here the derivation of the spectral density
matrix Eq. (13). Starting from the original, pre-transformation Hamiltonian
Eq. (1), we seek to obtain coupled equations for the subsystem operators
�� = { �� x , �� y , �� z } in the Heisenberg representation, in the following form,
cf. Eq. (12),

(z Š �L B ) �� (z) = �L S �� (z) + i �� 0, (A1)

where the Fourier…Laplace transformed operators are referred to,

�� n (z) = L{ �� n (t) } =
� �

0
dt �� n (t)exp( izt ) (A2)

with z = � + i
 , Im z > 0. In Eq. (A1), �� 0 = �� (t = 0) is the initial
condition and �L S represents the evolution within the subsystem space (i.e.
in the simplest case, evolution under the pure electronic subsystem oper-
ators), while �L B represents the evolution induced by the interaction with
the bath. Note that Eq. (A1) has been obtained by integrating out the
bath.

We now derive an explicit expression for�L B and the associated spectral
density that was given in Eq. (13) of the main text,

J (� ) = Š lim
� � 0+

Im (z Š �L B (z))
�
�
�
z=� +i�

= lim
� � 0+

Im �L B (z)
�
�
�
�
z=� +i�

. (A3)

Our starting point is the operator equation of motion in the Heisenberg

picture, ��O = i [ �H, �O ] for the subsystem operators{ �� x , �� y , �� z } and the
bath operators �xn = 1 / 21/2 (�an +�a•

n ). For convenience, we use an interaction
picture with respect to the subsystem Hamiltonian,

��� I
n = i [ �HSB (t) , �� I

n ]; �HSB (t) = exp( i �HSt) �HSB exp(Š i �HSt) , (A4)

while the bath oscillators are expressed in the usual Heisenberg representa-
tion. Using the Hamiltonian of Eq. (1) and the Fourier/Laplace-transform
Eq. (A2), the equations of motion for the subsystem operators read as
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follows,34

Š iz �� I
x (z) Š �� I

x, 0 = Š21/2
�

n

� (Š )
n (�an (z) + �a•

n (z)) � �� I
y (z),

Š iz �� I
y (z) Š �� I

y, 0

= 2 1/2
�

n

�
� (Š )

n (�an (z) + �a•
n (z)) � �� I

x (z) Š � n (�an (z) + �a•
n (z)) � �� I

z (z)
�

,

Š iz �� I
z (z) Š �� I

z,0 = 2 1/2
�

n

� n (�an (z) + �a•
n (z)) � �� I

y (z), (A5)

where the � symbol denotes the frequency-domain convolution and the
equations of motion were obtained using the commutation relations
[�� i , �� j ] = 2 i

�
k 
 ijk �� k for the Pauli matrices, with the Levi…Civita symbol


 ijk .
The equations for the bath oscillators are in turn given as

Šiz �an (z) Š �an, 0 = Ši� n �an (z) Š
i

21/2

�
� (+)

n + � (Š )
n �� z (z) + � n �� x (z)

�
,

Š iz �a•
n (z) Š �a•

n, 0 = i� n �an (z) +
i

21/2

�
� (+)

n + � (Š )
n �� z (z) + � n �� x (z)

�
, (A6)

where �an, 0 = �an (t = 0) and �a•
n, 0 = �a•

n (t = 0). From the last two relations,
we obtain

�an (z) + �a•
n (z) =

1
21/2

2� n

z2 Š � 2
n

(� (+)
n + � (Š )

n �� z (z) + � n �� x (z)) + �sn (z) (A7)

with the initial value (source) term �sn (z),

�sn (z) =
�an, 0

z Š � n
+

�a•
n, 0

z + � n
. (A8)

The strategy to be followed in view of obtaining Eq. (A1) is to eliminate
the bath oscillators by inserting Eq. (A7) into Eq. (A5). As detailed in
Ref. 34, the convolution form on the r.h.s. of Eq. (A5) will be approxi-
mated by assuming �� I

n (z Š z�) � �� I
n, 0� (z Š z� ) for the subsystem operators

in the interaction frame. (Equivalently, it is assumed that these interac-
tion frame operators are constant in the time domain, �� I

n (t) � �� I
n, 0.) This

amounts to a weak-coupling approximation, which is justi“ed since the spec-
tral densities in question can be obtained within a second-order approxima-
tion with respect to the system-bath coupling.89 With this approximation,
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the product forms of subsystem operators can then be simpli“ed using the
relations �� z �� y = Ši �� x , �� x �� y = i �� z , and �� z �� x = i �� y .

These steps eventually lead to the second-order equation Eq. (A1) for
the subsystem operators, with the following matrix form for �L B (z):

�L B (z) =
N B�

n =1

Š2� n

(z2 Š � 2
n )

�

�
�
�
�

� (Š )2
n i� (Š )

n � (+)
n Š � (Š )

n � n

Š i� (Š )
n � (+)

n (� (Š )2
n + � 2

n ) i� n � (+)
n

Š � (Š )
n � n Š i� n � (+)

n � 2
n

	







�

+ �SB

� �L R
B + i �L I

B + �SB , (A9)

where the components�L R
B and �L I

B are identi“ed according to the real vs.
imaginary-valued entries in the parameter matrix, and �SB denotes an initial
value term related to the source term of Eq. (A8).

The next and “nal step is the derivation of the spectral densities Eq. (13)
from Eq. (A9), To this end, we take the limit of a continuous distribution
of bath modes,

N�

n =1

2� n

(z2 Š � 2
n )

Š�
� �

Š�
d� B

2� B

(z2 Š � 2
B )

. (A10)

Using z = � + i
 , the integral can be written as follows for small 
 ,
� �

Š�
d� B

2� B

(z2 Š � 2
B )

� � 0+Š� P
�

d� B
2� B

(� 2 Š � 2
B )

Š �i � (� Š � B ), (A11)

where the Cauchy principal-value integral modi“es the frequency and the
imaginary part gives rise to dissipation. Taking the imaginary parts of the
components of �L B according to Eq. (11) (where �L R

B and �L I
B of Eq. (A9)

are taken separately) results in the spectral densities of Eq. (13).

B. Hierarchy of Spectral Densities for a Tuning-Mode Bath

Similarly to Appendix A, we consider the concerted evolution of the elec-
tronic subsystem variables and bath oscillators, using a Fourier/Laplace
transform representation. The electronic subsystem variables are expressed
in the interaction representation with respect to the subsystem Hamilto-
nian (denoted �� I ), while the bath oscillators are expressed in the usual
Heisenberg representation. Furthermore, we now refer to the e�ective-mode,
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chain-type representation of the bath oscillators, following the development
of Sec. 3. In order to simplify the discussion, we focus here upon a tuning
mode bath, such that only the coupling terms { � (Š )

n } are non-zero.
Di�erently from Appendix A, we now replace the bosonic creation and

annihilation operators by their classical c-number analogs,85

� n =
1

21/2
(xn + ipn ),

� �
n =

1
21/2

(xn Š ipn ), (B1)

noting that � n is the eigenvalue of the annihilation operator when acting on
the corresponding coherent state, �an |� n � = � n |� n � , and likewise,� � n |�a•

n =
� � n |� �

n . This strategy has the advantage of avoiding the introduction of
inverse operators in the continued-fraction treatment that will be detailed
below. Even though inverse operators can be de“ned despite the singular char-
acter of the boson operators in question,90 the classical treatment is more
straightforward. Further, the quantum-classical level of treatment adopted
here is analogous to our previous developments of Refs. 43 and 44. We empha-
size that the classical approximation for the bath degrees of freedom only
concerns the construction of the spectral densities, and does not impose any
approximation regarding the dynamical treatment of the bath.

For the quantum subsystem, we employ the operators �� I
± = 1 / 2(�� I

x ±
i �� I

y ) which are found to evolve independently under the coupling to the
bath. Using again the Fourier/Laplace transform of Eq. (A2), we obtain
the following quantum-classical Heisenberg evolution for the subsystem
operators,85

Š iz �� I
± (z) Š �� I

± ,0 = ± i21/2 � (Š )
e� (� 1(z) + � �

1(z)) � �� I
± (z),

Š iz �� I
z (z) Š �� I

z,0 = 0 , (B2)

where �� I
± ,0 = �� I

± (t = 0) and we used [�� I
z , �� I

± ] = ± 2�� I
± . In the following, we

will disregard the second equation of Eqs. (B2) since �� I
z is not coupled to

the bath.
The equations for the bath variables read as follows:85

Š iz� 1(z) = Ši � 1� 1(z) Š
i

21/2
� (Š )

e� �� I
z (z) Š id1,2� 2(z),

Š iz� 2(z) = Ši � 2� 2(z) Š id1,2� 1(z) Š id2,3� 3(z),
...

...
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Š iz� M (z) = Ši � M � M (z) Š idM Š 1,M � M Š 1(z) Š i
N�

n =M +1

dM,n � n (z),

Š iz� M +1 (z) = Ši � M +1 � M +1 (z) Š idM,M +1 � M (z),
...

...

Š iz� N B (z) = Ši � N � N (z) Š idM,N � M (z), (B3)

and a corresponding set of equations are obtained for the� �
n quantities,

using �� n = Ši� n � n and �� �
n = i� n � �

n from Hamilton•s equations. Further,
� n (t = 0) = 0 was assumed as the initial condition. The structure of the
above equations corresponds to the transformed Hamiltonian of Model 3
of Sec. 4.3 where the bath modes{ � 1, . . . , � M } form a chain structure
while the modes{ � M +1 , . . . , � N } are all coupled to � M , and a Markovian
approximation will be employed for these modes.

From the “rst equation of Eq. (B3), an expression for � 1(z) is obtained,
which is to be inserted into Eq. (B2),

� 1(z) =
2Š 1/2 � (Š )

e� �� I
z (z)

z Š � 1 Š d1,2
� 2 (z)
� 1 (z)

. (B4)

An analogous equation for� �
1(z) is obtained, see Eq. (B6) below.

Focusing on the �� I
± subsystem operators, we now combine Eq. (B4)

with the “rst equation of Eq. (B2), and re-write the latter by analogy with
Eq. (A1) and Eq. (12),

(z Š �L B (z)) �� I
± (z) = i �� I

± ,0, (B5)

where

�L B (z) = Š
� (Š )

e�

21/2
(� 1(z) + � �

1(z))

= Š� (Š )2
e�

�

� 1

z Š � 1 Š d1,2
� 2 (z)
� 1 (z)

+
1

z + � 1 + d1,2
� �

2 (z)
� �

1 (z)

	

�

� �L B, + (z) + �L B, Š (z). (B6)

To obtain Eqs. (B5) and (B6), we again used a weak-coupling approxi-
mation by which the convolution form Eq. (B2) is replaced by a local-
in-frequency product yielding �� I

z (z)�� ± (z) = ± �� I
± (z) (see Appendix A for

further comments on this approximation).
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To continue, an equation for � 2(z)/� 1(z) is required, to be inserted into
Eq. (B6). This equation is obtained from the third equation of Eq. (B3),
and similarly for the following orders. A continued fraction pattern thus
develops.43, 44

When the M th member is reached, the hierarchy terminates as follows:

� M (z)
� M Š 1(z)

=
dM Š 1,M

z Š � M Š
� N B

n =M +1
d2

M,n

zŠ � n

, (B7)

where we used� n (z) = dM,n � M (z)/ (zŠ � n ) from the last N Š M equations
of Eq. (B3).

In the limit where the last N Š M modes conform to an Ohmic bath,
we can replace

N B�

n =M +1

d2
M,n

z Š � n
Š� Š i2�z, (B8)

where � is the friction coe�cient from a Langevin treatment. Analogous
expressions can again be obtained for the� �

n variables.
With a Markovian closure at the M th order, we thus obtain �L (M )

B as a
continued fraction of order M ,85

�L (M )
B (z) = �L (M )

B, + (z) + �L (M )
B, Š (z)

with

�L (M )
B, ± (z) = Š

� (Š )2
e�

� 1 � z Š
d2

1,2

� 2 � z Š · · ·
d2

M Š 2,M Š 1

� M Š 1 � z Š
d2

M Š 1,M

� M � z + i2�z

� Š
� (Š )2

e� |
|� 1 � z

Š
d2

1,2|

� 2 � z
Š . . .

d2
M Š 2,M Š 1|

� M Š 1 � z
Š

d2
M Š 1,M |

� M � z + i2�z
;

(B9)

see Eq. (38) of the main text. In the last part of Eq. (B9), the continued-
fraction notation of Pringsheim91 was used.

By this procedure, a family of M th order spectral densities is gener-
ated, based on subsets of e�ective modes. In accordance with the moment
conservation rules of Refs. 36, 46 and 47, successiveM th order truncation
schemes allow for an accurate description of the system-bath dynamics over
increasing time intervals.
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C. Hierarchy of Spectral Densities for a General Bath

We now consider a generalization of the derivation of Appendix B, which
is applicable to the case where several e�ective modes appear at each level
of the chain structure.34 We thus obtain coupled matrix equations for the
subsystem operators�� I = { �� I

x , �� I
y , �� I

z } , which will again be of the form
Eq. (A1), but now involving a hierarchy of M th order approximations to
the bath propagator,

(z Š �L (M )
B ) �� (z) = �L S �� (z) + i �� 0. (C1)

Our starting point is a generalization of Eqs. (B2) and (B3) of Appendix
B, for the subsystem operators in the interaction representation,

z �� I (z) Š i �� I
0 = C (� 1(z) + � �

1(z))T � �� I (z), (C2)

and the hierarchy of e�ective modes

z� 1(z) = � 1� 1(z) + d11� 1(z) + C �� I (z) + d12� 2(z), (C3)

z� 2(z) = � 2� 2(z) + d22� 2(z) + d12� 1(z) + d23� 3(z), (C4)
... =

...

z� M (z) = � M � M (z) + dMM � M (z) + dM Š 1M � M Š 1(z) Š 2i � z� M (z).

(C5)

Here, the electron-phonon coupling matrixC subsumes the couplings of the
transformed interaction Hamiltonian Eq. (16), and � 1 denotes the set of
primary e�ective modes, � 2 denotes the set of secondary e�ective modes,
etc. The matricesdnm are ne� × ne� (here, 3× 3) sub-blocks of the bilinear
coupling matrix. Note that the dnn matrices are purely o�-diagonal since
they complement the diagonal � n matrices. Finally, a Markovian closure
is introduced at the order M , as explained in Appendix B.

As before, the aim is to obtain equations of the form Eq. (C1) and
Eq. (12) by inserting a solution for � 1(z) from Eq. (C3) into Eq. (C2) for
�� I (z). As compared with Appendix B, the coupling to the residual bath
now induces a more complicated dynamics for the primary e�ective modes
contained in � 1(z). As a result, Eq. (C3) yields component-wise

� 1n (z) =
2

z Š � 1n Š � 1n

�
K (+)

n + K (Š )
n �� I

z (z) + � 1n �� I
x (z)

�
, (C6)
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with n = 1 , . . . , ne� , and the � 1n term re”ects the coupling among the
e�ective modes and the coupling to the residual bath,

� 1n =
(d11� 1(z))n + ( d12� 2(z))n

� 1n (z)
. (C7)

The expression Eq. (C7) can be developed further by inserting the formal
solution for � 2(z) from Eq. (C4),

� 2n (z) =
(d12� 1(z))n

z Š � 2n Š
(d22� 2(z))n + ( d23� 3(z))n

� 2n (z)

. (C8)

A continued fraction pattern thus again emerges, similarly to the analysis of
Appendix B. A closure is obtained at the M th order according to Eq. (C5).
For example, for M = 2, Eq. (C8) is replaced with

� 2n (z) =
(d12� 1(z))n

z Š � 2n Š
(d22� 2(z))n Š 2iz (�� 2(z))n

� 2n (z)

. (C9)

With these ingredients, we “nally obtain a form that is equivalent to
Eq. (C1),

(z Š �L (M )
B (z)) �� I (z) = i �� 0, (C10)

with the post-transformed M th order �L (M )
B matrix,

�L (M )
B = �L (M )

B, + + �L (M )
B, Š , (C11)

where the �L (M )
B, ± parts again refer to the � vs. � � components as in Eq. (B6)

and can be identi“ed as follows,34

�L (M )
B, ± (z)

=
n eff�

n =1

Š2

z � � 1n � � (M )
1n, ±

�

�
�
�
�

K (Š )2
n iK (Š )

n K (+)
n ŠK (Š )

n � n

Š iK (Š )
n K (+)

n (K (Š )2
n + � 2

n ) i � n K (+)
n

ŠK (Š )
n � n Š i � n K (+)

n � 2
n

	







�

� �L R(M )
B, ± + i �L I (M )

B, ± . (C12)
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Here, the �L I (M )
B part accounts for imaginary cross-correlation contributions

that are associated with the { K (+)
n } parameters, analogously to Eq. (A9).

The associatedM th order spectral densities are again given as follows,

J (M )
e� ,ij (� ) = lim

� � 0+
Š Im (z Š �L (M )

B,ij (z))
�
�
�
z=� +i�

= lim
� � 0+

Im �L (M )
B,ij (z)

�
�
�
�
z=� +i�

,

(C13)

evaluated for �L R(M )
B and �L I (M )

B , respectively.
Overall, the analysis of Appendix B carries over to the multivariate,

correlated case which necessitates introducing a matrix of spectral density
components. Importantly, the formal structure of the pre- vs. post-
transformed evolution operators and spectral densities remains essentially
the same, as is clear from the comparison between Eq. (A9) and Eq. (C12).
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39. E. Gindensperger, H. Köppel and L.S. Cederbaum, J. Chem. Phys. 126,
034106 (2007).

40. H. Mori, Prog. Theor. Phys. 34, 399 (1965).
41. M. Dupuis, Prog. Theor. Phys. 37, 502 (1967).
42. P. Grigolini and G.P. Parravicini, Phys. Rev. B 25, 5180 (1982).
43. K.H. Hughes, C.D. Christ and I. Burghardt, J. Chem. Phys. 131, 024109

(2009).
44. K.H. Hughes, C.D. Christ and I. Burghardt, J. Chem. Phys. 131, 124108

(2009).
45. R. Martinazzo, K.H. Hughes, F. Martelli and I. Burghardt, Chem. Phys.,

377, 21 (2010).
46. H. Tamura, E.R. Bittner and I. Burghardt, J. Chem. Phys. 127, 034706

(2007).
47. E. Gindensperger and L.S. Cederbaum,J. Chem. Phys. 127, 124107 (2007).
48. B. Lasorne, F. Sicilia, M.J. Bearpark, M.A. Robb, G.A. Worth and L. Blan-

cafort, J. Chem. Phys. 128, 124307 (2008).
49. A.O. Caldeira and A.J. Leggett, Phys. Rev. A 31, 1059 (1985).
50. H. Breuer and F. Petruccione, The Theory of Open Quantum Systems

(Oxford University Press, Oxford, 2002).
51. D.R. Yarkony, Rev. Mod. Phys. 68, 985 (1996).
52. D.R. Yarkony, Acc. Chem. Res. 31, 511 (1998).
53. G.A. Worth and L.S. Cederbaum, Ann. Rev. Phys. Chem. 55, 127 (2004).
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1. Introduction

Interesting problems involving conical intersections1Š 4 run the gamut
from small molecules in isolation to chromophores in condensed phases
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and protein environments. Classical molecular dynamics methods utilizing
empirical force “elds5Š 14 have been widely implemented as an important
tool for studying condensed phase systems and biologically relevant macro-
molecules. However, currently available force “elds fall short of being appli-
cable to many of the problems involving nonadiabatic phenomena. Most
force “elds cannot describe polarization e�ects, charge transfer, and bond
rearrangement. Although there has been exciting progress such as the devel-
opment and implementation of polarizable force “elds15Š 22 and empirical
valence bond16,23Š 26 schemes that can describe limited bond rearrange-
ment, an attractive alternative is to solve the electronic Schrödinger equa-
tion directly and simultaneously with the nuclear dynamics, i.e. to use
an •ab initio force “eldŽ. Ab initio molecular dynamics (AIMD) methods,
including both Born…Oppenheimer27 and Car…Parrinello schemes,28Š 30 do
exactly this. Although most AIMD methods have been utilized in the
context of ground electronic states, there is an increasing interest in
applying them to problems involving conical intersections and nonadiabatic
surface-crossing.31Š 37 The treatment of excited electronic states is more
tractable in the context of an AIMD s cheme compared to empirical force
“elds and analytical potential-energy surfaces (PESs) because bonds are
free to rearrange and nonadiabatic coupling matrix elements can be calcu-
lated as needed from the electronic wavefunctions. However, once multiple
electronic states are involved, one must also confront the quantum mechan-
ical e�ects in the nuclear dynamics associated with surface-crossing, i.e.
nonadiabaticity or Born…Oppenheimer breakdown. There are a variety of
methods which have been advanced for this purpose, from the most classical
alternative of trajectory surface hopping38,39 to semiclassically motivated
techniques likeab initio multiple spawning40Š 44 (AIMS) and other methods
based on Gaussian wavepackets.19,35,45Š 48 In this chapter, we focus on the
AIMS method but we also compare it to some other methods. We “rst
provide a description of AIMS and some recent improvements, and then we
brie”y discuss some recent applications.

2. Ab Initio Multiple Spawning

2.1. Overview

Ab initio multiple spawning (AIMS) 33 was developed primarily to address
nonadiabatic e�ects within the context of AIMD where the electronic and
nuclear Schrödinger equations are solved simultaneously. A major di�culty
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in interfacing quantum mechanical dynamics with •on-the-”yŽ solution of
the electronic Schrödinger equation is the seeming contradiction between
the global nature of quantum dynamics and the locality of quantum chem-
istry. Traditional quantum chemistry begins with the Born…Oppenheimer
approximation and solves the electronic wavefunctions at a single con“gu-
ration of the nuclei. Thus, one can easily obtain PESs and their gradients
at a single point. However, quantum dynamics requires knowledge of the
PESs over a wider set of con“gurations at each time step. In principle, the
PESs are required for all possible geometries, although the situation is often
much less severe in practice. Note that there is no such di�culty when using
AIMD with classical mechanics because trajectories are perfectly localized
in phase space and one only requires the calculation of the gradient of the
PES at a single molecular geometry in each time step.

The AIMS method introduces a quasi-localization through the choice
of a nuclear basis set which is local in phase space „ namely coherent
states or Gaussian wavepackets.49Š 51 While integrals of the basis func-
tions over con“guration space are still required, one can expect that these
will be well approximated by low-order Taylor expansions or sparse grid
quadratures, provided that the basis functions are well localized. Further-
more, the coherent states are by some measures the most •classical-likeŽ
quantum objects and thus the time evolution of the phase space centers
can be chosen to follow Hamilton•s equations. In this case, it is natural to
denote the nuclear basis functions as •trajectory basis functionsŽ (TBFs)
since they are closely related to classical trajectories. Another ingredient in
the AIMS method is the •spawningŽ which refers to the adaptive expansion
of the basis set. The number of basis functions used to describe the time-
evolving nuclear wavefunction may need to change as a consequence of the
requirements of the dynamics and AIMS allows for this through spawning.
In principle, one could identify the needed basis functions at the beginning
of a simulation, but in practice it is di�cult to predict what basis functions
will be neededa priori . By spawning, i.e. adaptively increasing the basis set
during the simulation, we circumvent the need for foreknowledge of what
regions of phase space will be covered during the dynamical evolution.

2.2. Full multiple spawning dynamics — wavefunction
ansatz

The dynamical method underlying AIMS is referred to as •full multiple
spawningŽ or FMS. As discussed above, the FMS method has been designed
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for use in the AIMD context, where ab initio electronic structure theory is
solved simultaneously with the dynamical evolution to obtain PESs, gradi-
ents, and any other related information that might be needed. However,
the FMS method is equally valid when analytical PESs and nonadiabatic
couplings are available. We “rst discuss the FMS method, independent of
the origin of the PESs.

The FMS method is a basis set technique and therefore is guaranteed
to converge to the exact result for su� ciently large basis sets. Of course,
this guarantee is only in principle and the more relevant question is the
practical convergence behavior in cases where a “nite (and often very small
in the case of AIMS, because of the expense associated with •on-the-”yŽ
evaluation of the PESs) basis set is used. Indeed, much of the motivation
for the adaptive basis set increase associated with •spawningŽ is to ensure
that the basis set spans the region relevant to the nuclear dynamics while
keeping the basis set as small as possible. The FMS wavefunction (nuclear
and electronic) is written as:33,40Š 43,52,53

�( r , R , t) =
N el�

I

� I (R , t) � I (r ; R ), (1)

whereR and r denote nuclear and electronic coordinates, respectively. The
total wavefunction is written as a sum over nuclear wavefunctions associated
with each of the Nel electronic states. Each of the nuclear wavefunctions
corresponding to a given electronic state is itself expanded as a sum over
TBFs:

� I (R ; t) =
N I ( t )�

m =1

cI
m (t) � I

m (R ; R̄ I
m , P̄ I

m , � I
m , � I

m ), (2)

whereNI is the number of TBFs associated with theI th electronic state and
this number will change during the simulation as new TBFs are spawned.
Each individual TBF � I

m corresponds to a multidimensional product of
one-dimensional Gaussians� I

m� ,

� I
m (R ; R̄ I

m , P̄ I
m , � I

m , � I
m ) = ei� I

m ( t )
N DOF�

� =1

� I
m� (R; R̄I

m� , P̄ I
m� , � I

m� ), (3)

where NDOF is the total number of degrees of freedom and each one-
dimensional frozen Gaussian54Š 66 is given as

� I
m� (R; R̄I

m� , P̄ I
m� , � I

m� ) =

�
2� I

m�

�

� 1/4

eŠ � I
m� (RŠ R̄ I

m� ) 2 +i P̄ I
m� (RŠ R̄ I

m� ) . (4)
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Thus, each of the TBFs is parameterized by its phase space center whose
positions and momenta are given by theR̄ I

m and P̄ I
m vectors, respectively.

For numerical convenience,each TBF also carries a phase� I
m , although this

could just as well be absorbed in the complex amplitudecI
m (t). De“ning

� I
m as a semiclassical phase for referenceamounts to an interaction picture

and allows the use of larger time steps during the integration of the equa-
tions of motion. Finally, each TBF also has an associated width� I

m which
is time-independent and usually also independent of electronic state. This
parameter determines the position space uncertainty of the Gaussian basis
functions. Although there are clear guidelines for the choice of this param-
eter based on physical considerations, the more important point is that
the results (e.g. probabilities of nonadiabatic transitions) are quite insen-
sitive to the precise value over a wide range.42,67,68 If the dynamics are
carried out in normal mode coordinates, the physically reasonable choice
for the width 41,49,51 should be related to the force constant in each mode, i.e.
� � m�/ 2 in a one-dimensional problem. In practice, one often prefers to
use Cartesian coordinates and we recently outlined a procedure for de“ning
the widths in this case.67

Classical Hamiltonian equations of motion are used to propagate the
phase space centers of all the TBFs (using forces corresponding to the asso-
ciated electronic state). At the same time, the nuclear Schrödinger equation
within the basis set of TBFs is solved at each time step to calculate the
complex amplitude cI

m (t) associated with each TBF:

�cI
l (t) = Ši

N el�

J,K

N J ( t )�

m

N K ( t )�

n

(SŠ 1)Il,Jm (HJm,Kn Š i ��SJm,Kn )cK
n (t) , (5)

where the overlap, Hamiltonian, and right-acting derivative matrix elements
are de“ned as:

SIl,Jm =
�
� I
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m � J

�
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m � J
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,

��SIl,Jm =
	

� I
l � I










�
�t

� J
m � J

�

R,r
. (6)

The matrix elements of the Hamiltonian operator contain both kinetic and
potential (with respect to the nuclear degrees of freedom) parts. For matrix
elements which are diagonal in the electronic index, the kinetic energy
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integrals can be done analytically since the basis functions are of Gaussian
form. For both o�-diagonal (in the electronic state index) kinetic energy
matrix elements and potential energymatrix elements, one usually requires
a numerical approximation. Numerical quadrature is one option to evaluate
the required integrals over the PESand the localized nature of the TBFs
can be used to minimize the number of quadrature points needed for this.
However, a simpler approach is to use saddle-point approximations (SPA)
which are motivated by the localized nature of the basis functions. This
amounts to a Taylor expansion of the operator about the centroid of the
product of the TBFs involved in the matrix element. In AIMS, we usually
truncate this Taylor expansion at the “rst term (the •zeroth orderŽ SPA)
and thus,

�
� I

m |VIJ |� J
n

�
R � VIJ

�
R IJ

centroid

 �
� I

m | � J
n

�
R , (7)

where R IJ
centroid is the coordinate space location of the centroid of the

product of TBFs |� I
m � and |� J

n � . We have integrated over the electronic
coordinates to de“ne the potential energyVIJ :

VIJ (R ) = � � I | �Helectronic (R , r )|� J � r , (8)

where the electronic Hamiltonian operator is the usual Born…Oppenheimer
Hamiltonian when the adiabatic representation is used. Higher-order SP
approximations may also be de“ned. For example, the “rst-order SPA is
given as:

� � I
m |VIJ |� J

n � � VIJ (R 0)� � I
m |� J

n � + � � I
m |R Š R 0|� J

n �
d

dR
VIJ (R )|R =R 0 . (9)

The SPA resembles the Mulliken…Ruedenberg approximation used in elec-
tronic structure theory to approximatel y evaluate multicenter two-electron
integrals.69 It requires a single calculation of the potential energy for each
matrix element, i.e. N 2

TBF solutions of the electronic Schrödinger equation
for AIMS at each time step. In practice, one can prescreen using the overlap
matrix element in Eq. (7), and the number of ab initio calculations at each
time step is much reduced, leading to nearly linear scaling with the number
of TBFs.

The prescription given so far is essentially solution of the nuclear
Schrödinger equation within a basis set of frozen Gaussians that follow
classical trajectories. The coupled coherent states (CCS) method48 of
Shalashilin and Child follows this prescription, with the di�erence being
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that the force used in propagation of the phase space centers is averaged
over the TBFs:

( �P I
m )CCS = Š

	
� I

m










�
�R

VII








 � I

m

�

R
, (10)

which should be compared to the force used in FMS:

( �P I
m )FMS = Š

�V II

�R









R I

m

. (11)

The force used in FMS is the zeroth order saddle-point evaluation of the
CCS expression. Unfortunately, progressing beyond the zeroth order saddle-
point approximation requires the calculation of second (and possibly higher)
derivatives of the PESs at each time step. This is computationally costly,
and we have not pursued it yet in the context of AIMS.

It is also possible to entirely abandon the classical equations of motion
for the phase space centers within the framework given so far. In this case,
one applies the time-dependent variational principle70 (TDVP) to the phase
space centers of the TBFs.61,71,72 Worth and Burghardt have introduced
an e�cient set of equations for this purpose,45,73 rooted in the multicon-
“guration time-dependent Hartree (MCTDH) method. 74 They have called
these the G-MCTDH and variational multicon“guration Gaussian (vMCG)
methods, according to whether the TBF widths are optimized or frozen,
respectively. Variational solution of the equations of motion for the phase
space centers incorporates further quantum mechanical e�ects in the evolu-
tion of the TBFs and may lead to faster convergence. However, the equa-
tions for the time evolution of the phase space centers of the TBFs become
coupled to each other and also to the complex amplitudes, which can lead
to numerical di�culties when integrating the equations of motion. Both the
G-MCTDH and vMCG methods require the calculation of second deriva-
tives of the PES at each time step, making a fully direct or AIMD approach
costly, although it has been done for small molecules.35,45

It is worthwhile at this stage to summarize the relationship of these
four approaches „ the G-MCTDH, vMCG, CCS, and FMS methods. In
fact, all four are closely related (as presented so far,vide infra ) and corre-
spond to Gaussian basis set expansions of the nuclear wavefunction. The
G-MCTDH method starts with the Gaussian basis set ansatz and applies
the TDVP to all basis set parameters. In the notation used in this article,
the parameters which are varied so as to minimize the deviation from
the time-dependent Schrödinger equation areR I

m , P I
m , cI

m and � I
m . The
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resulting integrals are evaluated either exactly or within the second-order
saddle point approximation (which is equivalent to the local harmonic
approximation75 for the diagonal potential matrix elements). The other
three methods can all be viewed as restrictions on the G-MCTDH ansatz,
where some of the parameters are prescribed and the remainder are varied
according to the TDVP. For example, the vMCG method “xes the TBF
width parameter � I

m and uses the TDVP to obtain equations of motion for
the remaining parametersR I

m , P I
m , and cI

m . The CCS and FMS methods
further constrain the equations of motion for the phase space centers, and
the complex amplitudes cI

m are determined through the TDVP. In the
CCS method, the phase space centers of the TBFs evolve by Hamilton•s
equations with a force averaged over each TBF as shown in Eq. (10). In
applications of CCS so far,76Š 78 the integrals have been evaluated exactly
since the PESs were given in analytical form. Finally, in FMS, the phase
space centers evolve via classical mechanics and the complex amplitudes
are determined through application of the TDVP. In AIMS, a zeroth order
saddle point approximation is further applied to facilitate evaluation of the
required integrals.

2.3. Full multiple spawning dynamics — spawning

A key aspect of the FMS method which di�erentiates it from the
G-MCTDH, vMCG and CCS methods is the adaptive nature of the nuclear
basis set, i.e. spawning. There is no formal need for spawning „ if one
applies any of the G-MCTDH, vMCG, CCS, or FMS methods with a
complete basis set (and with exact evaluation of all the required integrals),
the resulting dynamics will be exact. However, this is impractical for all
but the simplest problems. Furthermore, the number of TBFs required
to describe the nuclear wavefunction is likely to change in time. One is
often interested in cases where the wavefunction is initially well-described
by a single multidimensional Gaussian, e.g. the lowest vibrational state of
a molecule before photoexcitation. If the number of basis functions must
be “xed over the duration of the simulation, one must then start with
many more TBFs than needed in order to ensure that the dynamics can be
modeled later in the simulation. This often leads to ill-conditioned equa-
tions that can be numerically di�cult. Spawning avoids this by allowing
the number of TBFs to expand during the simulation.

The key questions in adaptively increasing the basis set are when
and where one should spawn. Although tunneling e�ects have been
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considered,79 our primary focus (and that most relevant to the case of
conical intersections) has been on the case of nonadiabatic transitions. In
this case, the question of when to spawn is simpli“ed. Speci“cally, the
classical equations of motion for the TBF phase space centers will never
generate TBFs on another electronic state. If the TBF basis set were
complete, it would include TBFs on all electronic states and therefore there
would be no need to expand the basis set to describe nonadiabatic transi-
tions. The spawning idea proceeds backward from this notion. One imag-
ines that the basis set is complete on all electronic states and then asks
which basis functions would have been important in the near future. These
are added to the basis set with vanishing complex amplitudes. One then
rewinds the simulation, i.e. •back-propagatesŽ, in order to place the new
•spawnedŽ TBFs such that they will be in the •right place at the right
timeŽ. This back-propagation applies only to the phase space centers, as it
is only a means of ensuring that the appropriate TBFs are present to be
populated if the nuclear Schrödinger equation so dictates. The simulation
proceeds with the enlarged basis set, solving for both the evolution of the
TBF phase space centers and also the complex amplitudes. It may happen
that the spawned TBF is not populated during this propagation, i.e. its
complex amplitude remains vanishingly small. This is not a problem, but
simply indicates that the spawned TBF was not important after all.

In the case of nonadiabatic transitions, the question of when to spawn
is relatively straightforward. The nonadiabatic coupling (NAC) vector can
be calculated at the center of each TBF

dIJ =
	

� I










�
�R








 � J

�

r

, (12)

and the breakdown of the Born…Oppenheimer approximation is expected if
the norm of this vector (or alternatively, its dot product with the nuclear
velocity) gets large (where one of the electronic indicesI or J corresponds to
the basis function under consideration). We introduce a numerical threshold
(determined by running preliminary dynamics simulations and choosing an
acceptable value for each problem) and when the norm of the NAC vector
exceeds this threshold, spawning should occur. In most applications of FMS
so far, one introduces the concept of a nonadiabatic event de“ned as starting
when the norm of the NAC vector exceeds the •spawning thresholdŽ and
ending when the norm of the NAC vector falls below this threshold. Then
a child TBF is added to the simulation such that it has maximum overlap
with the parent TBF when the NAC vector is largest. It is possible for a
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Fig. 1. Schematic depiction of the spawning procedure. Upper left shows a pair of model
one-dimensional potential energy curves, where the avoided crossing region is shaded.
Lower left shows the evolution of the center of position for the parent TBF, with the
avoided crossing region again shaded. It also shows the evolution of the position center
for two child TBFs that are spawned. The right panel shows the magnitude of the NAC
vector as a function of time along the center of the parent TBF. When this exceeds the
spawning threshold, a nonadiabatic event is occurring (denoted •crossing timeŽ in the
“gure). Child TBFs are spawned during the crossing time, indicated by arrows pointing
to the time axis. Three arrows are shown for each of two nonadiabatic events, and the
number of child TBFs per event is a simulation parameter. The solid arrow denotes the
child TBF which would be used if only a single child is spawned per event „ this is
placed at the maximum of the NAC during the event.

parent TBF to spawn multiple children during a nonadiabatic event, and
the number of children per event is a simulation parameter. A sketch of the
spawning procedure is provided in Fig. 1.

Recently, we have explored an alternative answer to the question of when
one should spawn. The usual spawning method identi“es a “xed number
of times within each nonadiabatic event when TBFs should be spawned.
This can be less than ideal because within a given simulation there may be
both short and long nonadiabatic events. The former can be treated with
few spawned child TBFs while the latter may require more. The •contin-
uous spawningŽ method simply attempts to spawn a new TBFevery time
stepduring every nonadiabatic event.80 This is only practical because child
TBFs are rejected when they are linearly dependent with the existing TBFs.
If a child TBF was just spawned, it is likely that an attempt to spawn
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again will generate a new child TBF which is almost identical and thus
highly linearly dependent with the previous child. Thus, most spawning
attempts do not lead to an increase in the number of TBFs in the contin-
uous spawning method. Furthermore, the back-propagation step seems to
be less important when continuous spawning is used. Continuous spawning
has not yet been used in AIMS, but this is under investigation.

Once one has establishedwhento spawn, the next question iswhereone
should spawn. Speci“cally, what should be the phase space center of the
child TBF? We demand that the child TBF have the same classical energy
as its parent, in order to ensure conservation of the classical energy once
the parent and child TBF are well separated. This is not strictly neces-
sary (there is no restriction in quantum mechanics to forbid the inclusion
of any basis functions), but rather is a restriction imposed to avoid ampli-
fying errors due to basis set incompleteness. This constraint still leaves
considerable freedom in where the child TBF can be placed. Two natural
limits can be envisioned „ placing the child TBF at the same position
(momenta) as the parent TBF and adjusting the momenta (position) to
satisfy energy conservation. We denote these as position-preserving and
momentum-preserving spawns, respectively.

The position-preserving spawn is the choice most closely resembling
current practice in surface hopping. In this case, Tully has suggested38,81

adjusting the momentum along the direction of the NAC vector in order to
satisfy energy conservation. Later, Herman showed that this choice can be
justi“ed from a semiclassical perspective.82 In practice, the momentum of
the child TBF is calculated by

PI
new = PJ

old Š Dd̂IJ , (13)

where PI
new is the momentum vector of the newly spawned child TBF and

PJ
old is the momentum vector of the parent TBF. d̂IJ is a unit vector along

the nonadiabatic coupling vector de“ned by

d̂IJ =
dIJ

|dIJ |
, (14)

and D is a scalar variable, the value of which is chosen to ensure energy
conservation.

Note that, in some cases, it may happen that the surface to which
a spawn should occur is not classically energetically accessible, i.e. there
is no real and positive value ofD which satis“es energy conservation. In
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the surface hopping method, such a failure is called a frustrated hop. The
treatment of these frustrated hops has been a matter of some debate, but
recently it has been argued83,84 that they should be ignored (i.e. no transi-
tion should be made in these cases) in order to ensure detailed balance and
correct equilibration.

In FMS, however, the detailed balance arguments do not hold. The
spawning procedure provides thepossibility of nonadiabatic transitions and
it is only the integration of the nuclear Schrödinger equation through Eq. (5)
that can turn this possibility into a reality by modulating the complex
amplitudes of the child TBFs. It is the time-dependent Schrödinger equa-
tion, not the spawning event itself, that governs population transfer and
thus maintains the detailed balance condition. Thus, there is no problem
with •frustrated spawnsŽ in FMS, although there are a number of di�erent
ways to implement the spawning algorithm when this happens. Speci“cally,
one can (1) look for the closest time during the nonadiabatic event when
the momentum adjustment is allowed, (2) accept the child TBF in spite
of its energy being di�erent from that of the parent, (3) adjust the posi-
tion of the child TBF by a steepest descent procedure, or (4) adjust the
momentum “rst along the NAC vector and then along other directions as
needed. In many cases, we “nd that the resulting population transfer is
not overly sensitive to the details here. However, one would prefer a more
elegant approach, and this is the basis of the recently introduced •optimal
spawningŽ procedure.85

The key to spawning optimally lies in pinpointing the ideal blend of posi-
tion and momentum-preserving spawns. Heller and co-workers86,87 noted
the importance of hybrid jumps in position and momentum in their anal-
ysis of both radiative and non-radiative transitions. To our knowledge, a
method acting on this intuition has thus far failed to appear. In part, this is
certainly because the classical nature of the trajectories in surface hopping
makes it di�cult to see how the position can be adjusted. In AIMS, however,
the basis functions have a phase space width and the TBFs will interact with
each other even if they have di�erent phase space centers. In order to de“ne
an optimal spawn, we appeal to the two criteria which have been implicit
in our discussion so far: (1) the parent and child TBF should have the same
classical energy and (2) the child TBF should be maximally coupled to the
parent in order that the nonadiabatic event can be described with as few
TBFs as possible. These two criteria can be encapsulated in a functional,

	 |E (� I
parent ) Š E(� J

child )|2 Š |� � I
parent |VIJ (R )|� J

child � R |, (15)
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which should be minimized, where	 is formally a Lagrange multiplier to
be optimized. Minimizing Eq. (15) is equivalent to jointly minimizing the
energy di�erence and maximizing the coupling between parent and child
basis functions (shown here in the diabatic electronic representation „
the expression for the adiabatic representation is similar). We implement
this minimization by a multiplier penalty approach, where the value of 	
is “xed and R J

child and PJ
child are varied to minimize Eq. (15). The value

of 	 is then steadily increased, each time repeating the optimization of
R J

child and PJ
child to minimize Eq. (15). The procedure ends when the clas-

sical energy di�erence falls below a small threshold. Each minimization
cycle is performed with standard conjugate gradient techniques. A graphical
depiction of the procedure for a two-dimensional model conical intersection
problem is shown in Fig. 2.

With this procedure, the question of where to spawn is answered with
no ad hocassumptions. Preliminary results on small model systems suggest
that convergence is more rapid with optimal spawning. It will be inter-
esting to see the extent to which the optimal spawning procedure picks out
the position-preserving spawn with momentum adjustment along the NAC
vector, which corresponds most closely to the choice in surface hopping.
It is easy to anticipate that this will often be the case when nonadiabatic
transitions occur around strongly •peakedŽ intersections,88Š 90 which have
a pronounced funnel shape. In these cases, the wavepacket spends little
time in the nonadiabatic coupling region and the transition is very well
described as impulsive. However, when intersections have a more sloped
topography and/or when population is funneled from a lower electronic
state to an upper electronic state91 (these are also the cases when one
would observe more frustrated hops in a surface hopping method), the
nonadiabatic events can be more prolonged and it is here that one expects
the optimal spawning procedure to be an improvement. We “nd the ability
to treat both of these limiting cases with a single prescription to be a
compelling reason for optimal spawning.

2.4. Full multiple spawning dynamics — initial conditions

The last point which needs to be speci“ed concerning the FMS method
is the choice of initial conditions. We choose the phase space centers for
the initial TBFs by sampling from the Wigner distribution of the desired
initial wavefunction. Generating this Wigner distribution can itself be quite
challenging, but is straightforward in the harmonic approximation (either
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Fig. 2. Depiction of the optimal spawning algorithm for a model two-dimensional
problem. The location of the parent TBF is shown as the gray square. Under the
•standardŽ spawning algorithm (black dot), one adjusts the momentum of the spawned
(•childŽ) TBF to ensure conservation of classical energy and its position is the same as
that of the parent. In optimal spawning, the child is placed at the phase space location
that leads to the largest coupling matrix element between parent and child TBFs while
simultaneously satisfying the classical energy conservation criteria. The graph shows the
value of the maximum coupling matrix element as a function of the two coordinates
(choosing the momenta which allow energy conservation and maximize the coupling).
Coordinate locations where there is no possible choice of momenta satisfying energy
conservation are shown in gray. Because the parent TBF lies in a gray region, this would
be a •frustrated hopŽ in the surface hopping method. In the inset, we compare phase
space locations for standard and optimal spawning. The x and y axes in this plot corre-
spond to the X coordinate and the momentum along X . For standard spawning (black
dots), only the momentum di�ers from the parent TBF. In contrast, both the momentum
and position of the child TBF di�er using optimal spawning (gray asterisks).

at zero temperature for the vibrational ground state or at any desired “nite
temperature). Once the phase space centers of the initial TBFs are identi-
“ed, the initial complex amplitudes must be determined. This is done by
least squares “tting:

cI
m (0) =

N I (0)�

n =1

(SŠ 1)II
mn

�
� I

n (t = 0) | � target
t =0

�
. (16)
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Ideally, one starts with many TBFs which are chosen to reproduce the
desired initial nuclear wavefunction as well as possible. In high-dimensional
problems, this is often not warranted because the initial TBFs will rapidly
separate and there will be little di� erence from averaging the results of
many independent simulations, each with a single initial TBF (appropri-
ately weighted). Indeed, the quantum coherence e�ects which FMS can
most accurately reproduce are short-time coherences „ after a child TBF
is spawned, it propagates according to a di�erent PES than its parent. Thus,
the parent and child eventually separate and their interaction is minimal
[this is most apparent in the zeroth-order SPA expression of Eq. (7), since
the basis function overlap will decay as the basis functions separate]. These
short-time coherence e�ects are critical „ they are the entire reason for
nonadiabatic transitions, which rely on the development of coherences that
live long enough to be converted into “nite population. However, long-time
coherences are much more di�cult to represent since the underlying clas-
sical dynamics of realistic multidimensional systems is often chaotic. This
has been discussed in a related context by Walton and Manolopoulos.92 It
is likely that a large part of this e�ect is physically correct and corresponds
to the decoherence phenomena which make it di�cult to observe quantum
interference in large systems.93Š 95

A schematic overview of the AIMS method is provided in Fig. 3. This
shows the general ”ow of the program, highlighting the selection of initial
conditions, the propagation of the TBFs and their associated complex
amplitudes, and the spawning procedure which adaptively increases the
size of the basis set.

2.5. Ab initio multiple spawning — electronic
structure considerations

So far, we have discussed the FMS dynamics method which forms the core
of AIMS. FMS was designed in order to be interfaced withab initio elec-
tronic structure methods for nonadiabatic AIMD. Thus, the method can
be interfaced with a large variety of methods for determining ground- and
excited-state PESs. Indeed, we have carried out AIMS calculations using
a variety of such methods, including wavefunction-based techniques like
multireference con“guration interaction (MRCI), 34 density-based methods
like time-dependent density functional theory (TDDFT), 96 reparameter-
ized semiempirical theories,97,98 and hybrid quantum mechanics-molecular
mechanics (QM/MM) approaches.98,99 However, it is fair to say that the
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Fig. 3. A schematic depiction of ab initio multiple spawning dynamics. Trajectory basis
functions are Monte Carlo sampled from a Wigner distribution representing the desired
initial state. These TBFs are propagated using classical equations of motion for the phase
space centers simultaneous with solution of the nuclear Schrödinger equation in the “nite
time-evolving basis set to obtain the complex amplitudes for each TBF. The spawning
procedure introduces new TBFs when the nonadiabatic coupling is large and the code
iterates between these propagation and spawning steps until the desired simulation time
is reached.

solution of the electronic Schrödinger equation for excited states is far from
routine and thus we comment here on the types of methods which are most
suitable and the types of di�culties one may expect to encounter.

Ideally, the electronic structure method that is used should provide
analytic gradients since these need tobe computed at every time step. Like-
wise, analytic NAC vectors should be available, although this is less impor-
tant since these only need to be computed if the energy gap between two
states is small (e.g.< 1 eV). Of course, it is possible to calculate gradients
and NAC vectors numerically by “nite di�erence and we have done this
previously.33,34,91 However, this is costly and not generally recommended.
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Fortunately, the utility of analytic gradients is widely recognized and the
technology is well developed.100,101 Therefore, this is often not an obstacle,
but there remain important cases where no implementation (e.g. high-order
variants of coupled-cluster theory) or only a single implementation (e.g.
MRSDCI102) of analytic gradients and NAC vectors exists.

The existence of analytic gradients and NACs is a practical matter, but
more important from a physical perspective is the ability of the electronic
structure method to describe at least qualitative aspects of the excited-state
potential-energy surfaces and conical intersections. Here one must make a
forceful distinction between methods which are appropriate for electronic
spectroscopy and those which are appropriate for excited-state nonadiabatic
dynamics. For most spectroscopic problems, it is only the description of the
excited states in the Franck…Condon region which is relevant. However, if
excited-state dynamics is of interest,a much wider range of the excited-state
PES should be well described. This poses a serious challenge for single refer-
ence methods such as the most widely used coupled-cluster techniques.103

This is especially important when the excited states are obtained by linear
response. If the ground state is poorly described, there is little hope that a
reasonable description of the excited state will ensue from such treatments.
Thus, excitation energy equation-of-motion coupled-cluster (EE-EOM-CC)
methods104 are suspect when the ground-state coupled-cluster method has
problems (which is often the case when bond rearrangement occurs). A
further potential concern stems from the non-Hermitian nature of the eigen-
value problem which yields the excited-state energies. Near an intersection
of two excited states, e.g. S1/S2, even small errors (for example, because the
excitation level of the cluster operator is necessarily truncated) can lead to
complex eigenvalues which cause severe di�culties for a dynamics method
that expects the PESs to be real-valued.105

Furthermore, the excited-state energies are determined independently
of the ground-state energy and thus a special problem arises for intersec-
tions with the ground state, e.g. S0/S1. Speci“cally, the topology of any
intersections is not likely to be correct since the S0 and S1 energies are
not obtained by diagonalization of the same Hamiltonian matrix. To see
this, one can apply the same reasoning106,107 that leads to the noncrossing
rule and the need for two directions (and only two) that lift the degeneracy
around a two-state conical intersection. The rationale is of course that there
are two conditions to satisfy „ equality of the diagonal elements of the
Hamiltonian operator, H11(R) = H 22(R), and vanishing of the o�-diagonal
element, H12(R) = 0. All three of these are independent functions and
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therefore R must have at least two independent degrees of freedom to satisfy
the two constraints. Any method which solves for the ground-state energy
“rst and then solves for the excited states separately without changing the
ground-state energy may be considered (by whatever contrivance needed)
to arise from a matrix eigenvalue problem of the form:

�
ES0 0

0 A

�

Ci = Ei C i , (17)

where the indicated o�-diagonal elements are restricted to always vanish.
Thus, there is only one nontrivial condition for an intersection and there-
fore there is only one direction which breaks the degeneracy around
the intersection. This means that the intersection is not conical, i.e. the
dimensionality of the intersection is N Š 1 and not N Š 2, where N
is the number of internal degreesof freedom. This argument is meant
in the topological sense, i.e. it is not strictly a proof and yet it is
certain that the slightest perturbation will bring any counterexamples into
conformance.

On one level, the above reasoning makes a simple statement which may
be considered as trivially profound or profoundly trivial 108: no method
which treats interacting states di�erently, i.e. independently, can possibly
give rise to the correct topography around a conical intersection. The
statement is trivial because a method which treats the region around
conical intersections correctly should also treat the intersections themselves
correctly. Since the two states are by construction degenerate at the inter-
section point, any method which treats them independently will tend to
break the degeneracy.

None of the above considerations hold much sway when one is inter-
ested in the Franck…Condon region, where the S0/S1 gap is usually large
(although when it is not, there can be surprises109). Thus, these comments
are not incompatible with the statement that EE-EOM-CC is one of the
most accurate and systematic methods for electronic spectroscopy.110 They
simply point out the di�culties which will be encountered when larger
regions of the excited-state PES are explored.

It is also worth pointing out that the above considerations apply
directly to linear response time-dependent density functional theory (LR-
TDDFT). 111,112 One should therefore not be surprised when potential ener-
gies become complex near intersections between excited states or when the
ground- and “rst-excited-state PESs are grossly distorted near intersections,
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as we have previously shown.113 One way out of this dilemma is to ensure
that the reference state is not of interest in the problem at hand. For
example, one can build response equations which change the spin of the
wavefunction or the number of electrons it describes. The spin-”ip114 and
electron a�nity EOM -CC (EA-EOM-CC) 115 approaches are examples of
this strategy. Indeed, we have suggested113 that a spin-”ip variant of
TDDFT might lead to improvements near intersections and this has been
recently veri“ed.116

The above discussion should make it clear that multireference methods
are (at least at present) the most likely to describe the regions near inter-
sections accurately. The MRCI method is one obvious choice and indeed
the “rst AIMS simulations used this. 33,34,91,117 Recently, the Lischka group
has carried out simulations using surface hopping and exploiting MRCI
analytic gradients and NAC vectors.31,118 Unfortunately, the expense asso-
ciated with MRCI limits its application to rather small molecules, although
recent developments may change this.119,120

Perhaps the simplest multireference method which could be used
in AIMS is the complete active space self-consistent “eld (CASSCF)
method.121 The use of state-averaged variants122 overcomes the root ”ip-
ping problem which is otherwise often encountered when searching for
excited states with CASSCF. The potential di�culty is that CASSCF does
not e�ectively recover dynamic electron correlation and thus large errors
(> 1 eV) may be found for vertical excitation energies. More important for
dynamics calculations than the absolute values of the vertical excitation
energies is theordering of the excited states. If this is grossly incorrect,
it will be di�cult to derive anything useful from dynamics simulations. A
key point in this regard is that the choice of the active space in CASSCF
calculations is somewhat arbitrary. Although in principle it is true that
a larger active space is better, this is not always borne out by calcula-
tions on excited states.96,123 The CASSCF method does include a varying
degree of dynamic electron correlation as the active space is increased.
This is clear because CASSCF becomes full con“guration interaction (CI)
(and hence exact within the chosen basis set) in the limit of an active
space including all electrons and orbitals in the molecule. However, one
is in practice always far from this limit, and the CASSCF method is well
known to be a very ine�cient way of in cluding dynamic electron correla-
tion e�ects. Thus, we take the pragmatic view that the active space should
be chosen on energetic criteria. One useful way to determine an initial
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guess for the number of electrons and orbitals in the active space is to
compute the vertical excitation energies using EE-EOM-CC. From analysis
of the EE-EOM-CC coe�cients for the lo w-lying electronic states, one can
deduce a good guess at the required number of electrons and orbitals in the
active space. Then, several calculations are carried out varying the number
of electrons and orbitals around the EE-EOM-CC predicted values. From
each of these, a CASPT2 calculation124 (including dynamic electron corre-
lation e�ects in the CASSCF through second-order multireference pertur-
bation theory) is carried out. If the active spaces are all reasonable, the
vertical excitation energies computed by CASPT2 will be nearly indepen-
dent of the underlying CASSCF. From this procedure, one can collect
a set of di�erent active spaces which have the electronic states ordered
correctly and also are apparently equally valid as judged by the resulting
CASPT2 vertical excitation energy. Ideally, one continues the veri“cation
procedure by tracing out reaction paths on the excited state using both
CASSCF and CASPT2 with the active spaces which remain under consid-
eration. The CASSCF active space which gives the best agreement with
CASPT2 is the one which is then used. The number of electronic states
included in the state-averaging procedure can also be varied in this process,
using the same general criteria that a reasonable CASSCF calculation will
reproduce the features predicted by CASPT2. This type of procedure is
much more e�ective at determining a robust active space than one based
on chemical intuition, which often ignores the in”uence of dynamic elec-
tron correlation. When used in the context of dynamics, it is necessary to
repeat this process several times. Essentially, one “rst determines which
active spaces are reasonable at the Franck…Condon point as discussed
above and then carries out a few dynamics simulations. From the observed
dynamics, one can extract coordinates which are important and construct
paths along which the CASSCF and CASPT2 potential-energy surfaces can
be compared.

For small to medium sized molecules, it is now possible to supplant
this procedure with dynamics and/or optimizations using CASPT2
directly. 125Š 127 Given the considerations above, it is critical in this context
to use the •multistateŽ formulations of CASPT2,128 where the “nal step is
diagonalization of an e�ective Hamiltonian. In general, any multireference
perturbation theory which ends in diagonalization should be appropriate.129

Many applications of AIMS using MS-CASPT2 are underway and it will
be interesting to see how well the •calibrated active spaceŽ approach has
worked by direct testing.
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3. Applications

Our primary focus in this article is methodological, but we also want to
highlight one application of AIMS which is of considerable interest in a
volume devoted to conical intersections. This concerns the dynamical e�ects
of three-state intersections (see also Chapter 3 by Matsika in this volume)
and the conclusions drawn here are likely to be quite general.

The existence of three-state intersections (3SIs,geometries where three
adiabatic states of the same spin symmetry are simultaneously degenerate)
has been known for some time,130 but only recently have these been located
in a number of •ordinaryŽ molecules.131Š 135 Using AIMS dynamics, we
discovered a 3SI (S0/S1/S2) in malonaldehyde,123,136,137 a prototype for
excited-state intramolecular proton transfer.138 The electronic structure
method used here was CASSCF, state averaging over the lowest three
singlet states and using an active space with four electrons in four orbitals,
i.e. SA-3-CAS(4/4). The electronic basis set used was the 6-31G* set. The
total number of TBFs included in the AIMS simulations is nearly 5000
(distributed over 128 di�erent initial conditions). The bright state in malon-
aldehyde corresponds to a� � � � excitation and is the second excited
state (S2), lying above an optically dark n � � � state (S1). As shown
schematically in Fig. 4, there are two easily accessible decay channels after
excitation to S2. The molecule can undergo hydrogen atom transfer (some-
times called proton transfer) while in a planar geometry, and in this case
an S2/S1 intersection is encountered. Alternatively, it can twist around the
C=C bond, which is more energetically favorable and leads to a 3SI. A
surprising feature was that this 3SI was, as far as we could tell, the abso-
lute minimum on the optically bright electronic excited state (see Fig. 5).
Thus, population would be funneled towards the 3SI and one might wonder
what the dynamical consequences would be. Going back to the noncrossing
rule mentioned above, it is easy to see that the number of directions which
lift the degeneracy around a 3SI will be exactly “ve. Furthermore, it is
clear that in the neighborhood of a 3SI there will be numerous •normalŽ
two-state conical intersections. Thus, even a wavepacket traveling directly
towards a 3SI is highly likely to encounter two-state conical intersections on
the way. The electronic population dynamics is shown in Fig. 6, and it can
be seen that population appears to build up on S1 before quenching to S0,
suggesting that the 3SI may not be reached directly. This is in line with the
ideas mentioned above, i.e. that the 3SI is embedded in a sea of two-state
intersections and it is exceedingly di� cult for a wavepacket to reach the 3SI
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 H-Transfer C=C Torsion

S0 

S1 

S2

Fig. 4. Schematic description of the possible reaction paths in the excited state
dynamics of malonaldehyde. Proceeding to the left, the molecule encounters a two-state
intersection related to hydrogen atom transfer. Proceeding to the right, the molecule
encounters a 3SI related to torsion about a C=C bond. The AIMS dynamics simulations
predict that these two channels are not independent „ the molecule can get close to
the two-state conical intersection while still planar, but then proceed to twist and access
the 3SI.

without “rst quenching through one of the surrounding two-state intersec-
tions. Furthermore, after quenching through a two state intersection, the
wavepacket will be directed away fromthe intersection seam and thus very
likely away from the 3SI. We can thus speculate that when 3SIs are involved
in the dynamics, there will often be signi“cant trapping of population on
the intermediate state which may be longer lived than would be expected
if population was funneled directly through the 3SI.

4. Conclusions

We have focused on the AIMS method forab initio molecular dynamics
around conical intersections in this article. The AIMS method combines
FMS dynamics with ab initio electronic structure theory to treat excited-
state dynamics including nonadiabatic transitions from “rst principles.
Unlike mixed quantum-classical methods such as trajectory surface
hopping,38,39 FMS treats all degrees of freedom on the same footing and
thus avoids many of the ambiguities which can otherwise arise. Although
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Fig. 5. Cut of the S 0, S1, and S2 potential energy surfaces around the 3SI in
malonaldehyde. There are “ve directions which lift the degeneracy and only two are
shown here.

AIMS was developed as anab initio molecular dynamics method that
can treat quantum e�ects associated with the breakdown of the Born…
Oppenheimer approximation, it was also designed to exploit the ideas of
semiclassical dynamics which provide an intuitive understanding of the
physics behind chemical reactions and nonadiabatic e�ects.139,140

We presented one recent application of AIMS involving three-state
conical intersections and suggestedthat the dynamics around three-state
intersections may often look more like closely spaced two-state intersection
dynamics. This does not in any way minimize the importance of three-state
intersections „ indeed, the only way one would ever expect to see S2 � S1

decay followed within tens of femtoseconds by S1 � S0 decay is if there
were a 3SI nearby, since a 3SI necessarily induces the presence of many
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Fig. 6. Population dynamics in malonaldehyde after S 0 � S2 excitation, as predicted
by AIMS. Population resides on S1 for a short time before proceeding to S 0, consistent
with two-state S 2/S 1 intersections being involved in the dynamics before the S 2/S 1/S 0

3SI is reached.

two-state intersections in its vicinity. It remains an open question as to
what role geometric phase plays around 3SIs. We suggest that malonalde-
hyde may be a very interesting moleculefor femtosecond experiments that
can probe the electronic population dynamics. We also suggest that 3SIs
may be quite common in molecules containing carbonyl groups conjugated
to an unsaturated carbon backbone.
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1. Introduction

Processes involving nonradiative transitions between electronic states are
ubiquitous in chemistry „ from spin-forbidden reactions in combustion to
light harvesting in solar cells „ and th ey occur via a variety of elementary
chemical mechanisms, such as intersystem crossing, internal conversion,
and nonadiabatic electron transfer. The term •non-Born…OppenheimerŽ
(NBO) may be generally applied to these processes to emphasize the idea
that the Born…Oppenheimer separation of the nuclear and electronic time
scales breaks down and that potential energy surfaces other than the
ground-electronic-state adiabatic potential energy surface play a role in
the dynamics. A detailed understanding of NBO coupling of adiabatic elec-
tronic states and of the potential energy surfaces associated with them and
the ability to predict the e�ect of this kind of coupling for real chemical
systems remain signi“cant challenges to current theories.

One may begin to understand NBO dynamics1Š 6 in terms of features
of the coupled potential energy surfaces, and in the past we have made the
distinction between conical intersections (CIs) of adiabatic surfaces, avoided
crossings (ACs) of adiabatic surfaces, and weak interactions (WIs)7,8 of
adiabatic electronic states.

The CIs are (F Š 2)-dimensional hyperseams of degenerate pairs of
potential energy surfaces9 whereF is the number of internal nuclear degrees
of freedom, which is 3N Š 6 for general polyatomics, whereN is the
number of atoms. (Sometimes more than two surfaces intersect,3,10 but
this paragraph applies to the simplest case of two.) The surfaces form
a double cone4,11 in the two nondegenerate degrees of freedom, and the
CI provides an ultrafast decay route from the higher-energy state in the
coupled pair to the lower-energy one. The prominent role of conical inter-
sections in promoting such radiationless decay routes was “rst emphasized
by Teller9; and it was later used for mechanistic explanations of photo-
chemical reactions.12Š 16 Until recently, though, the organic photochem-
ical literature usually associated these decay routes with avoided crossings
and regions where potential surfaces approach closely but do not actually
cross „ such regions were called funnels or bifunnels, which are terms now
usually applied to CIs.17,18 However, the older arguments9,19 that lead to a
correct understanding of the dimensionality of avoided crossings also make
it clear that the conical intersections are much more common than fully
avoided crossings. Furthermore, since the crossings have a high dimension-
ality, the seam of crossings can extend over a wide range of geometries, and
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this can make the dynamics more complicated than that of a reaction domi-
nated by a localized saddle point region or other localized topographical
feature of a potential energy surfacesor set of potential energy surfaces.21

The picturesque funnel language emphasizes the shape of the crossing in
the two dimensions called the branching plane where the surfaces cross only
at a point, but in many cases greater signi“cance should be attached to the
much larger number of dimensions in which the degeneracy is not broken.
A picture describing how some coordinates break the degeneracy but others
do not is an inverted cuspidal ridge rather than a funnel, or touching cusp-
idal ridges (an excited surface with ridge down and lower surface with ridge
up, with the surfaces touching all along the ridges) rather than a bifunnel
(a double cone, that is, a cone touching an inverted cone at a point).

The ACs are locations of nonzero minima in the energy gap as a function
of local motion and are almost always associated with nearby CIs,20,22,23

although those CIs may be energetically inaccessible. The most noteworthy
WIs are characterized by wide regions of weak coupling between nearly
parallel potential surfaces. Unlike CIs, there is no rule to prevent regions
of coupling due to ACs and WIs from occurring in dimensionalities higher
than F Š 2. Although the edited volume in which this chapter appears
focuses on CIs and their NBO dynamics, it is important to recognize that
realistic potential energy surfaces featuring CIs contain chemically rele-
vant nearby regions of ACs and may also contain regions of signi“cant
WIs. The methods presented in this chapter are general enough to treat all
these cases.

The presence of a CI is often inferred when ultrafast decay is observed
experimentally, and the CI is treated as a critical con“guration connecting
photoexcited reactants to quenchedproducts when constructing mecha-
nistic reaction coordinate diagrams of photochemistry. One can make a
rough analogy to a transition state, but the analogy is at best imperfect and
sometimes even deceptive because there are important di�erences between
a CI and an adiabatic transition state as well as di�erences in the ener-
getic accessibility of other critical regions of the potential energy surface in
typical non-BO processes as compared to the kind of reaction where transi-
tion state theory is most useful.21 Transition state dividing surfaces are of
dimensionF Š 1, and valid transition state dividing surfaces are such that all
of the reactive ”ux must cross through them. Due to the reduced dimension-
ality of CIs, on the other hand, only a vanishingly small fraction of electron-
ically nonadiabatic ”ux passes through a CI at the zero-gap intersection.
Furthermore, quantitative studies of electronically nonadiabatic systems
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often require dynamical treatments that are more global than conventional
transition state theories, and modeling multistate dynamics occurring via
CIs is likely to require global dynamical methods as well. These consid-
erations have motivated the development of trajectory-based methods for
simulating NBO chemistry.

In NBO molecular dynamics, an ensembleof classical trajectories is used
to model nuclear motions, electronic motion is treated quantum mechan-
ically, and the nuclear and electronic subsystems are coupled according
to semiclassical rules. Each trajectory in the ensemble may be thought
of as representing a portion of a quantum mechanical wave packet, and
taken together the evolution of the ensemble describes the ”ow of nuclear
probability density over the coupled electronic surfaces. Alternatively, each
trajectory in the ensemble may be thought of as a distinct chemical event,
with its coordinates and momenta subject to the inherent indeterminacy of
quantum mechanics.

NBO molecular dynamics is vulnerable to the same sources of error as
conventional molecular dynamics, such as the errors associated with the
neglect of tunneling through barriers, neglect of quantized vibrations and
zero point energies, and neglect of coherences and resonances. NBO molec-
ular dynamics is designed to incorporate one quantum mechanical e�ect
into classical dynamics, namely that of the nonradiative electronic transi-
tions. Accurate treatments of this quantum e�ect require consideration of
tunneling and electronic coherence as well.

A variety of NBO molecular dynamics methods have been proposed.
Here we discuss NBO molecular dynamics generally and focus our atten-
tion on two implementations: the fewest-switches with time uncertainty24

(FSTU) surface hopping25Š 27 method and the coherent switches with
decay of mixing28 (CSDM) method, a modi“cation of the mean-“eld 29Š 31

formalism. The computational cost of these methods is close to that of
conventional (i.e. electronically adiabatic) molecular dynamics, and the
methods may be readily applied to study a wide variety of chemical
processes in both small molecules and large ones.

The dynamics of each trajectory in an FSTU or CSDM ensemble is inde-
pendent of the others, and transitionsbetween electronic states are allowed
anywhere that the electronic surfaces are coupled. Other classes of semiclas-
sical NBO dynamics methods, such as those involving propagating coupled
swarms of trajectories,32Š 34 restricting hops to predetermined seams,25,26,35

dressing classical trajectories with frozen Gaussians,36Š 40 etc., are not
considered in detail, nor are fully quantal calculations.41Š 45
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The goal of this chapter is to describe in detail the latest implementa-
tions of the FSTU and CSDM methods, summarize the results of the tests
used to validate and develop the methods, and describe several recent appli-
cations. Trajectory-based methodssuch as FSTU and CSDM are well suited
for mechanistic interpretation, and a brief discussion of this application is
also given.

2. Non-Born–Oppenheimer Molecular Dynamics

2.1. Coupled potential energy surfaces

In the NBO molecular dynamics simulations described here, an ensemble
of independent classical trajectories for nuclear motion is propagated under
the in”uence of a small number of coupled electronic states. The electronic
energies (including nuclear repulsion) of each electronic statei provide a
potential energy surfaceVi for nuclear motion. When representing coupled
electronic surfaces, one has a choice ofelectronic wave functions. The adia-
batic electronic wave functions � i and energiesVi (where i labels the elec-
tronic states) are solutions of the electronic Schrödinger equation

H0� i = Vi � i , (1)

whereH0 contains the electronic kinetic energy and the Coulomb potential
operators. When solving Eq. (1), the nuclear coordinatesQ are treated
parametrically, and Vi (Q) are the adiabatic potential energy surfaces.

The nuclear kinetic energy operator is written as

Tn = Š
� 2

2M
� 2

n , (2)

where� n is a 3N -dimensional gradient in the nuclear coordinatesQ, which
are scaled to common reduced massM (for example, M could be 1 amu).
The total wave function of the system is written

� =
�

i

� i (q; Q) � i (Q), (3)

whereq is the collection of electronic coordinates, and� i is a wave function
for nuclear motion.

If Eq. (3) is used to solve the full molecular Schrödinger equation with
the Hamiltonian H = Tn + H0, and if one neglects vibronic Coriolis coupling,
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one obtains a set of coupled equations for the nuclear motion1,4,46

�
Tn + Vi Š

� 2

2M
Gii Š E

�
� i = Š

�

j �=i

�
� 2

2M
Fij · � n +

� 2

2M
Gij

�
� j , (4)

where Gii = � � i | � 2
n | � i � are Born…Oppenheimer diagonal corrections

(BODCs),47Š 50 F ij = � � i | � n | � j � are nonadiabatic coupling vectors,
Gij = � � i | � 2

n | � j � are 2nd-order nonadiabatic couplings, and Dirac
brackets denote integration over the electronic variables. Although they
are not necessarily negligible,Gii and Gij are often neglected, which is
considered a semiclassical approximation, and this yields

(Tn + Vi Š E)� i = Š
�

j �=i

� 2

2M
Fij · � n � j . (5)

Equation (5) is interpreted as coupling nuclear motion on the adiabatic
surfacesVi via the action of the nonadiabatic coupling vectorsF ij .

Diabatic electronic wave functions may be generally de“ned as a linear
combination of the adiabatic ones,51,52

� d
j =

�

i

dij � i , (6)

that, unlike the adiabatic states, do not diagonalizeH0. Note that the dij

are typically functions of Q. The particular linear combination is often
chosen such that the resulting diabatic potential energy surfaces

Wii = � � d
i | E0 | � d

i � (7)

or diabatic states have some desirable property, such as smoothness. One
may attempt to obtain to de“ne a diabatic basis by minimizing the nona-
diabatic coupling vectors; and the electronic basis where

Fd
ij � � � d

i | � n | � d
j � = 0 (8)

for all i and j is called the strictly diabatic basis. For real systems, no such
strictly diabatic basis generally exists unless an in“nite number of electronic
states are considered.53 The most useful diabatic states are those for which
Fd

ij is small enough to neglect and where the in“nities inF ij associated
with conical intersections have been transformed away. Such useful diabatic
representations can be de“ned with manageable numbers of electronic states
(even with only two). In the discussion that follows, we use •diabaticŽ both



September 22, 2011 10:40 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch10

Non-Born–Oppenheimer Molecular Dynamics 381

to refer to the arti“cial situation where Eq. (8) is satis“ed and also to refer
to the more general situation whereFd

ij is small and is neglected.
Some workers (including us at times) de“ne the nonexistent set of

diabatic states for which Fd
ij vanishes identically as •strictly diabaticŽ and

de“ne the states whereFd
ij is small or negligible as •quasidiabaticŽ. Here,

as just mentioned, we use a simpler notation, which is also in common use,
of just calling all such states •diabaticŽ. One should not think of •diabaticŽ
as a synonym for •not adiabaticŽ; one could have states that are neither
adiabatic nor diabatic. Such representations will be called •mixedŽ.

Diabatic electronic wave functions are not eigenfunctions ofH0, and in
general

Wij = � � d
i | H0 | � d

j � �= 0 (9)

for i �= j . If we write

� =
�

i

� d
i (q; Q)� i (Q), (10)

then the equation governing nuclear motion in the diabatic representation is

(Tn + Wii Š E)� i =
�

j �=i

Wij � j , (11)

where the o�-diagonal matrix elements of the electronic Hamiltonian Wij

couple the nuclear motion on the diabatic surfacesWij , and we have taken
advantage of the assumed negligibility ofFd

ij .
It is straightforward to employ a general electronic basis, whereFd

ij is
not neglected and whereWij �= 0. This so-called mixed representation will
not be explicitly considered, though the equations governing NBO dynamics
in a mixed representation are straightforward extensions of the adiabatic
and diabatic ones.

Adiabatic energies and couplings are readily calculated from the diabatic
potential energy matrix elements Wij and their gradients. The adiabatic
energiesVi are the eigenvalues of the diabatic energy matrixW , and the
variables dij introduced already in Eq. (6) are the elements of a matrix
whose columns are the eigenvectors ofW . The gradients of the adiabatic
surfaces and the nonadiabatic couplings are

� n Vi =
�

j,k

d�
ij dik � n Wjk , (12)
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F ij =

�
��

��

1
Vj Š Vi

�

k,l

d�
ik djl � n Wkl (i �= j )

0 (i = j ).
(13)

On the other hand, if one knows the adiabatic energies and couplings,
one may obtain diabatic energies and couplings, but due to the non-
uniqueness of the diabatic representation, additional choices and approx-
imations will be needed.54,55 Procedures have also been developed for
obtaining diabatic states without calculating the nonadiabatic coupling
vectors.56Š 60

Spin-orbit coupling and other perturbative terms in the molecular
Hamiltonian have not yet been considered. These terms may be readily
treated using the dynamical methods to be described here, with one
principal complexity being the need for a more complicated notation.
When spin-orbit coupling is the dominant dynamical coupling and spin-
free coupling is to be neglected, theadiabatic surfaces discussed above
(which diagonalize the spin-free HamiltonianH0 and may be calledvalence-
adiabatic states61) are often a convenient diabatic basis for the full Hamilto-
nian, e.g. a useful diabatic matrix for a spin-orbit-coupled two-state system
might be

�
V1 USO

USO V2

	

, (14)

where USO is the spin orbit coupling. The eigenvalues of Eq. (14) are
the adiabatic potential energy surfaces for the full Hamiltonian including
spin. It is equally straightforward to include both spin-free and spin-orbit
coupling, as in a recent application to the photodissociation of HBr.62

Throughout the rest of this chapter, it is assumed that global poten-
tial energy surfaces and their gradients and couplings are available or may
be readily calculated for all the electronic states of interest in either the
diabatic or the adiabatic representations.

2.2. E�cient integration of NBO trajectories

An NBO trajectory evolves independently from the other trajectories in
the ensemble and according to classical equations of motion

�P = Š� n V̄ (Q), (15)

�Q = P/M, (16)



September 22, 2011 10:40 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch10

Non-Born–Oppenheimer Molecular Dynamics 383

where P is the vector of associated mass-scaled nuclear momenta, and the
over-dot indicates time-di�erentiation. The time-dependence of Q de“nes a
path through con“guration space, and whenV̄ is the ground state adiabatic
potential energy surface,Q(t) is a conventional classical trajectory. More
general formulations of V̄ are required to accurately model NBO nuclear-
electronic coupling, as will be described in detail in Secs. 3 and 4 for the
FSTU and CSDM methods.

The electronic state of the system at any time along an NBO trajectory
may be represented as an electronic state density matrix with elements � ij

where the diagonal elements� ii are the electronic populations of statesi
and the o�-diagonal elements � ij are coherences. The time evolution of the
electronic density matrix elements � ij is obtained by solving semiclassical
equations along each NBO trajectory; this is sometimes called the classical
path approximation. This approach is equivalent to solving for the quantum
dynamics of the electronic subsystem in a time-dependent “eld, which in
the present context is created by the nuclear motion. The electronic wave
function may be expanded in the adiabatic basis

� =
�

i

ci � i , (17)

whereci = ai + ibi are complex time-dependent expansion coe�cients, and
the electronic density matrix is de“ned by

� ij = c�
i cj . (18)

The evolution in time of � is obtained in this section by solving the time-
dependent electronic Schrödinger equation

i �
�
�t

� = H0� , (19)

giving the classical path equation:

�ci = Š i � Š 1ci Vi Š
�

j

cj �Q · F ij , (20)

or, for the real and imaginary parts of ci ,

�ai = � Š 1bi Vi Š
�

j

aj �Q · F ij , (21)

�bi = Š� Š 1ai Vi Š
�

j

bj �Q · F ij , (22)
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where �� i was evaluated using the •chain ruleŽ63

�� i = �Q · � n � i , (23)

which is a semiclassical approximation. If a diabatic basis is used,

� =
�

i

cd
i � d

i , (24)

and

�cd
i = Š i � Š 1

�

j

cd
j Wij . (25)

or

�ad
i = � Š 1

�

j

bd
j Wij , (26)

�bd
i = Š� Š 1

�

j

ad
j Wij . (27)

The time-dependence in Eqs. (20) and (25) contains an arbitrary phase
factor that spins rapidly due to the action of Vi or Wii on �ci or �cd

i . This
phase is readily analytically removed to simplify integration of the electronic
variables by writing

ci = �ci exp(Š i� i ), (28)

where

� i =



Vi dt, (29)

or

cd
i = �cd

i exp(Š i� d
i ) (30)

and

� d
i =



W d

ii dt. (31)

These substitutions give

��ai = Š
�

j �=i

[cos(� j Š � i )�aj + sin( � j Š � i )�bj ] �Q · F ij , (32)

��bi = Š
�

j �=i

[cos(� j Š � i )�bj Š sin(� j Š � i )�aj ] �Q · F ij , (33)
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and

��ad
i = Š

�

j �=i

[sin(� d
j Š � d

i )�ad
j Š cos(� d

j Š � d
i )�bd

j ]Wij , (34)

��bd
i = Š

�

j �=i

[sin(� d
j Š � d

i )�bd
j + cos(� d

j Š � d
i )�ad

j ]Wij . (35)

Equation (20) neglects vibronic Coriolis coupling, which is discussed
elsewhere.3 In addition, it neglects electronic angular momentum.

It is straightforward to write equations for the time-dependence of the
elements of the electronic density matrix by di�erentiating Eq. (18) and
using Eqs. (20) or (25):

�� ij = i � Š 1(� ii Vii Š � jj Vjj ) +
�

k

� ik �Q · F ik Š � kj �Q · Fkj , (36)

�� d
ij = Š i � Š 1

�

k

� d
ik Wik Š � d

kj Wkj . (37)

The o�-diagonal elements of � ii are complex, and the real and imaginary
parts must be integrated separately. The equations for the(real) electronic
state populations may be further simpli“ed

�� ii = Š2
�

j �=i

Re(� ij �Q · F ik ), (38)

�� d
ii = 2 � Š 1

�

j �=i

Im( � d
ij Wik ). (39)

Quantum mechanical calculations without dynamical approximations
and some NBO molecular dynamics methods are independent of the choice
of electronic representation if no coupling terms are neglected. In general
though, NBO simulations will be dependent on the choice of electronic
representation, and bothrepresentations will be considered when the FSTU
and CSDM methods are described in Secs. 3 and 4. Propagating an NBO
trajectory for a system with N electronic states requires integrating the
nuclear equations of motion [Eqs. (15) and (16)], as well as either the 2N
real and imaginary parts of the adiabatic or diabatic electronic coe�cients
ci [Eqs. (32) and (33) or (34) and (35)] and theN phases [Eqs. (29) or (31)]
or the N 2 unique real and imaginary elements of the adiabatic or diabatic
electronic density matrix � ij [Eqs. (36) and (38) or (37) and (39)].

Although Eqs. (5) and (11) coupled to Eq. (20), (25), (36), or (37) are
derived from the accurate Eqs. (4) and (19), the process of treating the
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nuclear equations of motion classically means that the quantum electronic
subsystem is no longer explicitly coupled to a quantum mechanical environ-
ment. It is not correct to treat the el ectronic subsystem by eq 19 because
it is not an isolated system; Eq. (19) is valid only for isolated systems. For
subsystems coupled to a medium or environment, one must replace the time-
dependent Schrödinger equation [Eq. (19)] by a nonunitary Liouville…von
Neumann equation.64Š 66 Here the system consists of the electronic degrees
of freedom, and the medium consists of the nuclear degrees of freedom;
the •nuclear degrees of freedom play the role of observers of the electronic
degrees of freedom.Ž66 The e�ects of the medium may be broadly described
as decoherence.65Š 70 The e�ect of decoherence will be treated by a simple
model71 in Sec. 3 and by a more complete model8,28,65 in Sec. 4.

2.3. Initial conditions for photochemistry

The ensemble of NBO trajectories is initiated with some distribution in
coordinate and momentum space that is intended to simulate the width (or
uncertainty) of a quantum mechanical wave packet or of a single-energy slice
through a wave packet. The type of reaction and/or experimental situation
being modeled determines the speci“cprescription for the selection of the
initial conditions for each trajector y in the ensemble, and the techniques
developed for single surface reaction dynamics72Š 75 can be applied with
minor modi“cations.

In one typical experimental situation, a chemical system is photoex-
cited from a well-characterized vibrational state of the ground electronic
state to some excited target electronic state. A rigorous sampling scheme
might involve calculating absorption cross sections76,77 for the transitions
of interest and sampling from the resulting distribution of quantized vibra-
tional states of the excited electronic state or states. For systems with more
than a few atoms the approximate methods used to calculate the ground
state and excited state energy levels and the photoabsoprtion cross sections
are likely to have signi“cant uncertainty and/or computational cost.

A more e�cient strategy for modeling this experimental situation and
one that is likely suitable for NBO molecular dynamics of complex systems
is as follows. One selects the initial nuclear coordinates and momenta from
the ground-state wave function of interest using quasiclassical73,74 initial
conditions and then instantaneously promotes the trajectory to the target
excited state. This scheme is equivalent to the Franck principle78 (the semi-
classical analog of the Franck…Condon principle); and it corresponds to
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exciting the sampled ground state wave function with •white lightŽ that
will generally result in an ensemble of trajectories with a relatively wide
range of total energies.

An alternative to using quasiclassical initial conditions is to run a clas-
sical trajectory (often called molecular dynamics) on the ground-electronic
state adiabatic surface and sample from that trajectory. This is done by
several groups. One should note, however, that a purely classical trajectory
does not retain the quantum distribut ion of zero point energy or thermal or
state-speci“c vibrational excitation energy in the various vibrational modes,
except in the nonquantal limit of vanishingly small vibrational motion.
Therefore the quasiclassical initial conditions are preferred.

If the NBO dynamics are expected to besensitive to energetic thresh-
olds, it may be more appropriate to restrict the range of total energies. An
alternative approach is to excite only that slice of the ground-state ensemble
with energy gaps between the ground and target electronic states equal to
the simulated photon energy within some tolerance. This scheme produces
an arbitrarily narrow range of total energies, but it also limits the sampled
con“guration space.

When the initial conditions are selected from distribut ions associated
with uncoupled regions of the potential energy surfaces, the electronic ener-
gies are independent of the choice of electronic representation and the initial
electronic state may be assigned unambiguously. However, if an NBO simu-
lation starts in a region where the initial electronic state is coupled to other
electronic states, one has to choose both the initial electronic representa-
tion and the initial electronic state distribution. For example, it may be
appropriate to compute initial distributions in the adiabatic representa-
tion. If the simulation is to be carried out in the diabatic representation,
the initial adiabatic state i can be projected onto the diabatic states, with
the initial diabatic state j selected with the weightsd2

ij obtained from the
adiabatic-to-diabatic transformation.

Although quasiclassical initial conditions are quite reasonable for
modeling excited vibrational states, they are qualitatively incorrect for
ground vibrational states.79 Thus one reasonable strategy80 for photodis-
sociation is to use Wigner distributions77 for vibrational modes with vibra-
tional quantum number 0 and quasiclassical distributions for vibrational
modes with quantum number greater than 0. Wigner distributions may
also be more accurate than quasiclassical initial conditions for bimolecular
collisions,81,82 but they are only accurate for a short time,83 and their higher
quantum “delity may be lost by the time the collision partners meet.
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3. Fewest Switches with Time Uncertainty

The dynamics methods presented here may be applied in either an
adiabatic or a diabatic representation. The results of accurate quantum
mechanical calculations and some NBO molecular dynamics calcula-
tions are independent of the choice of electronic representation. In
general, however, as already mentioned in Sec. 2.2, surface hopping and
decay of mixing NBO molecular dynamics simulations carried out using
the adiabatic representation will produce di�erent results from those
employing diabatic representations. When the equations governing the
NBO molecular dynamics methods depend on the choice of electronic
representation, two equations will be given with the equation numbers
appended with •aŽ and •dŽ for the adiabatic and diabatic representations,
respectively.

Trajectory surface hopping was “rst employed by Bjerre and Nikitin. 25

Shortly thereafter it was presented in more generality by Preston and
Tully. 26 The generalization to allow hopping at any location was “rst turned
into a general algorithm by Blais and Truhlar, 27 as discussed in the excellent
review of Chapman.84 Then Tully improved this procedure by introducing
the fewest switches algorithm.63 The method we will present below di�ers
from the original fewest switches algorithm in three ways: (i) the introduc-
tion of time uncertainty, 24 leading to the FSTU method, (ii) the use of a
grad V algorithm,85 and (iii) the introduction of stochastic decay71,86 (SD).
The SD modi“cation in the FSTU/SD method is similar to the method
recently employed by Granucci and Persico.70 These three enhancements
to the method are explained in detail below.

In a surface hopping simulation, such as an FSTU simulation, trajec-
tories are propagated under the in”uence of a single adiabatic or diabatic
electronic surface which, for electronic state K, is given by

V̄ = VK , (40a)

V̄ = WKK , (40d)

but this propagation is interrupted by instantaneous surface switches,
i.e. the state label K in Eq. (40), which denotes the currently occupied
electronic state, changesat certain points along the trajectory. A change in
K is called a surface hop, and at a hopping event the trajectory is instan-
taneously placed on a di�erent potential energy surface. In general, the
potential energy V̄ will change discontinuously at a surface hop, and the
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kinetic energy is adjusted such that total energy and total nuclear angular
momentum are conserved. (Electronic angular momentum is neglected.)
The nuclear momenta P � after the hop from surfaceK to surface K � are
given by

P � = P Š P · �hKK � (1 Š
�

1 Š � KK � /T KK � ) �hKK � , (41)

where �hKK � is a unit vector called the hopping vector,

� KK � = VK � Š VK , (42a)

� KK � = WK � K � Š WKK , (42d)

and

TKK � =
1

2M
(P · �hKK � )2 (43)

is the nuclear kinetic energy associated with�hKK � . The hopping vector
determines the component of the nuclear momentum that is adjusted during
a hop, and theoretical arguments26,87 con“rmed by numerical tests42 show
that a good choice is

�hKK � = FKK � / |FKK � |. (44a)

BecauseFKK � is a vector of internal coordinates, the adjustment in Eq. (41)
with the choice of Eq. (44a) conserves total angular momentum.

Using the nonadiabatic coupling vector as the hopping vector has been
shown to provide accurate results for surface hopping calculations carried
out in both the adiabatic and diabatic representations.42 If the diabatic
representation is used,FKK � can be calculated directly from Eq. (13) for
a two-state system. When more than two states are involved,FKK � should
not be used because the adiabatic and diabatic state labels do not generally
correlate to a globally consistent pair of states. Instead, the hopping vector
in the diabatic representation can be approximated as

�hKK � = Fr
KK � / |F r

KK � |, (44d)

where Fr
KK � is the reduced nonadiabatic coupling for the submatrix

W r =

�
WKK WKK �

WK � K WK � K �

	

, (45)
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i.e.,

F r
KK �

=
dr ,�

KK dr
K � K � n W KK + ( dr ,�

KK dr
K � K � + dr ,�

KK � dr
K � K ) � n W KK � + dr ,�

KK � dr
K � K � � n W K � K �

W + Š W Š
,

(46)

and W+ and WŠ are the eigenvalues, anddr
KK � are the elements of matrices

whose columns are the eigenvectors ofW r de“ned by Eq. (45).
Equation (41) cannot be solved if the radicand is negative, i.e., if the

kinetic energy associated with the hopping vector is less than the required
energy adjustment and the hop is an upward hop. (For downward hops,
� KK � < 0 and Eq. (41) can always be solved.) When �KK � > T KK � , the
hop is declared •frustratedŽ, and additional considerations are required, as
discussed in detail below.

In early examples of trajectory surface hopping, hops were allowed only
when a trajectory crossed a seam whereWKK crosses another diabatic
surface,25,26 but in later work 27,63 this was generalized so that stochastic
hopping events may occur after each integration step � t and anywhere
along the trajectory where the currently occupied surface is coupled to one
or more other surfaces. Tully provided an elegant and useful formulation63

for the probability for hopping from the currently occupied electronic state
K to some other stateK �

PKK � (t + � t) = max

�
�

�
Š


 t +� t

t � =t
dt�bKK � (t � )/� KK (t)

0
, (47)

where

bKK � = Š2Re(� KK � �Q · FKK � ), (48a)

bKK � = 2 � Š 1Im( � d
KK � WKK � ). (48d)

Equation (47) is the relative rate of change of the electronic population
of state K due to coupling to the state K � . Hops away from state K are
allowed only if � KK is decreasing, and Eq. (47) is designed to maintain the
populations of trajectories in each electronic stateni according to � ii with
the fewest number of hops. (The self consistency ofni and � ii is generallynot
maintained, as discussed below.) Equation (47) is called the fewest switches
(FS) hopping probability, and this scheme is also called molecular dynamics
with quantum transitions (MDQT), which can be confusing because it is
not the only scheme for molecular dynamics with quantum transitions.
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The quantity BKK � (t) =
� t

t � =0 bKK � (t � )dt� can be integrated along with
the nuclear and electronic variables, such that the hopping probability at
time t + � t may be evaluated as

PKK � (t + � t) = max


[BKK � (t + � t) Š BKK � (t)] /� KK (t)

0
. (49)

Because surface hops are only allowed between time steps, and because
hopping and nonhopping trajectories diverge from one another, the results
of a surface hopping simulation must be converged with respect to the
available hopping locations. Often, quite small step sizes are required when
the electronic populations are changing rapidly, whereas larger step sizes
(ultimately limited by the accuracy of th e integration of the nuclear coordi-
nates) may be used when propagating through uncoupled regions of poten-
tial surface. This situation bene“ts from variable-step-size integrators.

It may be di�cult to converge the available hopping locations when
using e�cient adaptive-step-size integrators, as the integrator may step
through regions where� KK � changes sign. Consider an example where a
large step � t is taken through a region where� KK is locally quadratic
and where � KK (t) = � KK (t + � t). The FS hopping probability for this
step is 0, whereas if two steps of size �t/ 2 are taken, the hopping proba-
bility will be “nite for one of the steps. Many variable step size integrators
can integrate quadratic functions exactly, and this example is of practical
concern. A simple modi“cation42 provides a solution. Speci“cally, if the
increasing

b+
KK � = max( bKK � , 0) (50)

and decreasing

bŠ
KK � = min( bKK � , 0) (51)

parts of bKK � are integrated separately, the integrator is made to take small
steps wherebKK � changes sign and whereb+

KK � and bŠ
KK � have discontinuous

derivatives.
As mentioned above, the FS hopping probability attempts to populate

the various electronic states with trajectories such that the fractions of
trajectories in each electronic stateni � � ii (with the accuracy limited by
the “nite number of trajectories that a re sampled). This self consistency is
maintained only when trajectories in the various electronic states do not
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diverge from one another, i.e. when the potential surfaces are degenerate.
For real potential energy surfaces, trajectories in di�erent electronic states
diverge, and self consistency is not preserved, although it may be main-
tained in an ensemble averaged sense, i.e.ni � � � ii � , where the brackets
denote an average over the members of the ensemble of trajectories. When
classically forbidden hops occur, only upward hops can be frustrated, and
self consistency cannot be maintained.88,89

One may distinguish two sources of frustrated hops in trajectory simu-
lations. First, the FS algorithm may be incomplete in some way that is
causing it to predict “nite hopping probabilities where hops should not
be allowed. This argument is strengthened by studies showing that accu-
rate results may sometimes be obtained when frustrated hops are simply
ignored.90 As pointed out in the original formulation 63 and further devel-
oped in later work,28,65Š 71,91,92 one de“ciency of the original FS method
and other methods based on classical path electronic dynamics is that deco-
herence is not treated. (We will see below that including decoherence may
reduce the number of frustrated hops by reducing unphysical amplitudes
for unoccupied states in regions when such states are no longer strongly
coupled.) Another possibility is that the FS method is correctly predicting
energetically forbidden surface hops, but the hops are frustrated due to
the limitations of classical mechanics. In this picture, a frustrated hop is a
quantum mechanical attempt to tunnel into a classically forbidden region
of an excited electronic state. Several improvements to the FS method
based on both of the latter two considerations have been developed and
are discussed in the remainder of this section.

One suggestion that was made for eliminating frustrated hops is to use
modi“ed velocities for the integration of the quantum amplitudes.88,92 We
do not employ this because comparison to accurate quantum dynamics
shows89 that it decreases the accuracy ascompared to using the original
unmodi“ed velocities.

The “rst improvement to the FS method that we discuss is a simple
modi“cation designed to incorporate decoherence.71 Prior to the “rst
surface hop, the electronic variablesare assumed to correctly evolve coher-
ently along the trajectory according to the classical path equations. At a
surface hop or an attempted surface hop, the system is imagined to split
into two wave packets, one traveling on each of the surfaces involved in the
surface hop. The system immediately begins to decohere with a “rst-order
rate coe�cient � Š 1

SD obtained by considering the short time evolution of
the overlap of two one-dimensional wave packets traveling in the di�erent
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electronic states93

� Š 1
SD =

�
2

� f KK �

p̄KK �
+

� �
� pKK �

h

� 2 � KK �

M
+

�
� � f KK �

2p̄KK �

� 2

, (52)

where

f KK � = Š� n (VK Š VK � ) · �hKK � (53)

is the di�erence in the forces of the two electronic states in the direction of
the hopping vector,

� pKK � = ( P Š P� ) · �hKK � (54)

is the di�erence in the nuclear momenta before and after the surface hop
in the direction of the hopping vector, and

p̄KK � =
1
2

(P + P� ) · �hKK � . (55)

If the decoherence event is initiated at a frustrated hop, P � cannot be
calculated and is set to zero in Eqs. (54) and (55).

At each time step (of step size � t) after the frustrated or successful hop,
a stochastic decoherence (SD) probability is computed

PSD (� t) = exp( Š� t/� SD), (56)

and PSD is compared to a random number between 0 and 1. If the SD check
is successful, the electronic state density matrix is reset to

� ij =


1 for i, j = K,

0 otherwise,
(57)

where K is the currently occupied electronic state. After reinitializa-
tion, the electronic state populations evolve according to the coherent
classical path equations. If a frustrated or successful hop occurs before
decoherence is called for,� SD is updated and decoherence checks are
continued.

The SD algorithm damps out coherence after some physically motivated
time, which reduces the likelihood of the FS algorithm calling for surface
hops in regions of weak coupling that are encountered between regions
of strong coupling. This has the practical and intended physical e�ect of
reducing frustrated hops in regions where the potential energy surfaces have
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di�erent energies and/or shapes; decoherence is expected to be fast in such
regions.

The next improvement to the FS method incorporates time-uncertainty
(TU) hopping, 24 which simulates tunneling into classically forbidden
regions of excited electronic states.Inspired by the time-energy version
of the uncertainty principle, a fru strated hop occurring at some time tf

is allowed to hop at the nearest timeth along the trajectory where a hop
would be energetically allowed (if such a time exists) but only if

|t f Š th | � � / 2Edef , (58)

where

Edef = � KK � (t f ) Š TKK � (t f ) (59)

is the energy de“ciency by which the attempted hop is frustrated. In this
way, a TU hop may be thought of as allowing the trajectory to borrow an
energy ofEdef for some short time according to the uncertainty principle as
it hops into the excited state. The FS method with TU hops was shown to
signi“cantly improve the accuracy of the surface hopping method for some
systems, especially those with weakly coupled electronic surfaces.24

The FSTU method and the SD algorithm do not eliminate all frustrated
hops. The remaining frustrated hops [i.e. those where ath satisfying Eq. (58)
cannot be found] are attributed to the breakdown of the independent-
trajectory approximation and are treated using the •grad V Ž prescription.85

In the method, a frustrated trajector y instantaneously receives an impulse
from the classically forbidden electronic state based on its gradient in the
direction of the hopping vector. Speci“cally, at a frustrated hop that cannot
be remedied by the TU method, the components of the nuclear momentum
and force in the target electronic state in the direction of �hKK � are calcu-
lated by

pK � = P · �hKK � , (60)

f K � = Š� n VK � · �hKK � , (61a)

f K � = Š� n WK � K � · �hKK � . (61d)

If pK � and f K � have the same sign, the in”uence of the target electronic state
is to accelerate the trajectory, and we choose to continue the trajectory in
the currently occupied electronic state without making any adjustments
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to the nuclear momenta. If pK � and f K � have di�erent signs, the target
electronic state is thought to •re” ectŽ the trajectory, and we choose to
continue the trajectory in the current ly occupied electronic state with the
nuclear momentum reversed in the direction of�hKK � , i.e.

P �� = P Š 2P · �hKK � �hKK � . (62)

If the probability of an electronically inelastic event is very small because
the probability of a hop is very small, e.g. 10Š 6, it would typically require
very extensive sampling to observe even one inelastic event and even more
sampling to accumulate good statistics. For such cases special methods of
rare-event sampling have been developed.94

It is interesting to examine the question of whether surface hopping
methods can be improved by replacing the trajectories with wave packets.
In principle the answer is yes, but so far no generally a�ordable method
for doing so has been devised. The most widely employed method involving
wave packets for photochemical calculations is the full multiple spawning
(FMS) method.36Š 39 The assumptions underlying this method have been
examined in detail.37 It was stated37 that the basis set expansion method
underlying FMS •is aimed only at describing quantum mechanical e�ects
associated with electronic nonadiabaticity and not at correcting the under-
lying classical dynamics.Ž One of many serious approximations in replacing
an ensemble of trajectories with an ensemble of wave packets is that the
wave packets must be coupled. In FMS, in order to keep the method
practical, interference between the various initial wave packets that are
required95 to simulate the initial quantum state is neglected; this serious
approximation is called the independent-“rst-generation approximation.37

One of the features that makes trajectory calculations a�ordable for
complex systems is that an ensemble of trajectories can be run indepen-
dently of each other, without introducing approximations to accurate clas-
sical mechanics. In contrast, running wave packets independently is a serious
approximation that is not overcome by spawning more packets or spawning
them in a more physical way. Furthermore, FMS does not include deco-
herence in the treatment of electronic nonadiabaticity (it uses a unitary
treatment of the electronic degrees of freedom, not a nonunitary one65 as
in the CSDM method discussed in the next section). Thus FMS is expected
to have about the same accuracy as surface hopping without decoherence,
which is consistent with our numerical tests.

E�orts to derive improved wave packet methods are underway in more
than one group.40,96 The reader is also referred to the multicon“guration
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time-dependent Hartree method,43Š 45 which is a variational time-
dependent wave function expansion method designed to achieve converged
quantum dynamics in an e�cient way; it has had outstanding success
for small enough systems and systems with particularly amenable
Hamiltonians.

4. Coherent Switches with Decay of Mixing

One major de“ciency of the FSTU method and of surface hopping methods
in general is that the results of the NBO simulation may depend strongly on
the choice of electronic representation, that is, adiabatic, diabatic, or mixed.
Here we consider an alternative approach to NBO molecular dynamics
based on a mean-“eld approximation. In its simplest form, the mean-
“eld approximation under consideration here29Š 31 is called the semiclas-
sical Ehrenfest or SE approximation. It de“nes the semiclassical potential
energy as a weighted average of the potential energy surfaces

V̄ � � � | H0 | � �

=
�

i

� ii Vii (63a)

=
�

i,j

Re(� d
ij )Wij . (63d)

Note that the gradient of the diabatic mean “eld energy is straightforward

� V̄ =
�

i,j

� d
ij � Wij , (64d)

whereas the gradient of the adiabatic mean “eld energy is

� V̄ =
�

i

� ii � Vi + 2
�

i �=j

Re(� ij )Vi F ij , (64a)

with the second term on the right hand side arising semiclassically from
the action of the nuclear gradient on � ij .97 More rigorous derivations of
the equations governing mean-“eld motion in the adiabatic representation
equivalent to Eq. (64a) have been given.29 SE trajectories are independent
of the choice of electronic representation.

In the SE model, trajectories propagating through regions of coupling
are governed by an e�ective potential energy surface that is evolving as an
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appropriately weighted average of the coupled potential energy surfaces.
Although this situation may be an accurate description of coupled-states
semiclassical motion, a severe de“ciency of the approach is that the trajec-
tory remains in a coherent mixed state after the system leaves the region
of coupling. This causes the SE method to predict molecular products to
be in coherent superpositions of electronic states, which do not correspond
to quantum mechanical or experimentally measured “nal states. Another
less obvious but equally troubling consequence of fully coherent SE prop-
agation is that the system does not •resetŽ electronically between regions
of coupling, which may introduce errors into the dynamics.91,92 Finally,
SE trajectories are not able to explore some processes occurring with
small probabilities, as the potential felt by an SE trajectory will be deter-
mined mainly by the potential energy surface associated with the higher-
probability event.

The CSDM method28 is a modi“cation of the SE method designed to
introduce decoherence outside regions of strong coupling, such that the
predicted molecular products are formed in quantized “nal electronic states.
As mentioned in Sec. 2.2, decoherence in the electronic equations of motion
may be thought of as arising from the nuclear degrees of freedom acting as
a bath, and the bath relaxes the electronic density matrix. An important
feature of CSDM trajectories is that they behave similarly to SE trajecto-
ries in strong coupling regions, thus preserving much of the representation
independence of the SE method.

The decay-of-mixing (DM) formalism collapses a coherent mixed state
density matrix to a quantized pure state smoothly over time, and it includes
both dephasing

� ij � 0 (i �= j ) (65)

and demixing

� ii � � iK , (66)

where � iK is the Kronecker delta, andK labels the target decoherent state
toward which the system is collapsing. The target decoherent state label
K may change over time, as discussed below. When the electronic density
matrix collapses to a quantized electronic state, thesemiclassical potential
energy surface [Eq. (63)] collapses to a pure one, thus providing realistic
product internal energy distributions that may be compared with experi-
mental and quantum mechanical ones.
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Note that dephasing (as it is de“ned here as the damping of the o�-
diagonal elements of� ij ) is a physical e�ect, whereas demixing is a semi-
classical choice. Dephasing and demixing are assumed to occur at the same
rate � Š 1

iK , where

� iK =
�

|� iK |

�
1 +

E0

(P · �si )2/ 2M

�
, (67)

where each statei other than K has its own decoherence time� iK , E0 is a
parameter typically chosen to be 0.1Eh = 2 .72 eV, and�si is a unit vector
called the decoherence vector. The decay time in Eq. (67) has a di�erent
functional form than the one used previously for the SD method [Eq. (52)]
due to algorithmic requirements of the DM method. Equations (52) and
(67) are expected to have similar magnitudes.93 Alternatives to Eq. (67)
have also been explored for CSDM calculations, and the results are not
overly sensitive to the functional form.98

Decoherence and demixing are introduced into the NBO molec-
ular dynamics by modifying the classical path electronic equations of
motion,28,67

�cDM
i = �ci + �cD

i , (68)

where

�cD
i =

1
2

ci

� iK
i �= K

=
1
2

cK

� KK

�

j �=K

� jj

� jK
i = K (69)

Equivalently, one may write the decoherence terms for the density matrix,

�� DM
ij = �� ij + �� D

ij , (70)

where

�� D
ii = Š

� ii

� iK
i �= K

=
�

j �=K

� jj

� jK
i = K (71)
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for the diagonal elements, and

�� D
ij = Š

1
2

�
1

� iK
+

1
� jK

�
� ij i, j �= K

=
1
2

�

� 1
� KK

�

k �=K

� kk

� kK
Š

1
� jK

�

� � ij i = K, j �= K

=
1
2

�

� 1
� KK

�

k �=K

� kk

� kK
Š

1
� iK

�

� � ij i �= K, j = K (72)

for the o�-diagonal elements. Equations (69), (71), and (72) can be derived
by assuming “rst-order decay of the diagonal elements, and enforcing
conservation of the electronic density and phase angle.67

As the system decoheres and demixes, the nuclear momenta are adjusted
to conserve total energy

�PDM = �P + �PD , (73)

where it is convenient to write the additional term as

�PD = Š
�

i �=K

�V D
i

(P · �si )/M
�si . (74)

Equation (74) guarantees that decoherence is turned o� as the momentum
available in the decoherent direction�si goes to zero, with

�V D
i =

� ii

� iK
(VK Š Vi ), (75a)

�V D
i =

� ii

� iK
WKK Š

�

� � iK

� iK
+

� iK

� KK

�

j �=K

� jj

� jK

�

� WiK Š
1
2

�
1

� iK
+

1
� jK

�
� ij Wij .

(75d)

The decoherence vector determines the components ofP into and out of
which energy is exchanged as the system decoheres and demixes, and we
choose

si = ( P · �F iK F iK + Pvib ), (76a)

si = ( P · �F r
iK F r

iK + Pvib ), (76d)
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where�denotes a unit vector (as it always does in this whole chapter), and
Pvib is the vibrational momentum. In regions of strong coupling si � F iK

or F r
iK , which is a physically reasonable choice, and when the coupling

vanishes (where nonzeroF iK and Fr
iK are not de“ned) si � Pvib , which is a

choice that conserves total angular momentum. The vibrational momentum
can be calculated for polyatomics as99

P �
vib = P � Š M � × Q� , (77)

where

� = I Š 1J, (78)

I is the intertial tensor matrix, J is the total angular momentum vector, 	
labels atoms, andP�

vib , P � , � , and Q� are three-dimensional vectors.
A quantum subsystem coupled to an environment does not actually

decay to a pure state but rather to a classical, incoherent mixture of
states,100 each associated with a probability of occurring in an ensemble. To
incorporate this into the present model, the decoherent stateK is allowed to
switch stochastically along a DM trajectory according to a fewest-switches
criterion. In the coherent switches (CS) implementation of DM, equations
similar to Eqs. (47) and (48) are used to switchK , with � ij replaced by a
locally coherent electronic density matrix � CS

ij . The time evolution of � CS
ij

is fully coherent,

�� CS
ij = �� ij , (79)

i.e. it does not include �� D
ij , and � CS

ij is made locally coherent by setting

� CS
ij = � DM

ij (80)

when the trajectory experiences a local minimum in

D(t) =
�

i

|F iK |2. (81)

An ensemble of CSDM trajectories decays to a distribution of “nal elec-
tronic states, and this distribution is determined from the ensemble average,
� � CS

ii � , obtained from the locally coherent solutions of the classical path
equation.

In summary, the CSDM includes the quantum evolution of the elec-
tronic degrees of freedom as governed by a reduced density operator (density
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matrix), and it incorporates decoherence of the electronic degrees of freedom
by the nuclear degrees of freedom. In strong interaction regions it is a mean-
“eld method with the formal and practical advantage (such as representa-
tion independence) of the Ehrenfest method, but the decoherence mitigates
the disadvantage of the mean-“eld approach. We note that the CSDM does
not scale in a di�cult way with system size, and it can easily be applied to
large and complex systems.

5. Summary of Recent Tests and Applications

The FSTU method (with the SD algorithm and the grad V prescription
for treating the remaining frustrated hops) and the CSDM method are
the results of a long series of systematic studies of the NBO dynamics of
triatomic and, more recently, polyatomic systems. The FSTU and CSDM
methods are straightforward to implement, readily applicable to a wide
variety of NBO molecular dynamics simulations with any number of atoms
and any number of electronic states, and are available in the distributed
computer code ANT.101 Here we summarize the results of the validation
studies that led to the improved methods, and we discuss recent applica-
tions. Before doing this we note that large systems may involve new features
so there is no guarantee that methods found to be accurate for triatomic
and tetraatomic cases are accurate in all cases, including large molecules;
however, it is clear that methods that fail even for small molecules are not
to be trusted for large molecules, and it would be hard to argue that they
should ever be preferred. Anyway, as far as tests against accurate quantum
dynamics for the same sets of potential energy surfaces and couplings,
small-molecule tests are all we have at this point in time. Tests comparing
NBO molecular dynamics with experimental results are tests against accu-
rate quantum dynamics, but since the exact surfaces and couplings are
not known and the extent of possible experimental error is often hard
to estimate, such tests are not as straightforward to interpret as small-
molecule tests where accurate quantum dynamics are available for given
sets of surfaces and couplings.

The FSTU and CSDM NBO molecular dynamics methods, along with
several variants and predecessors, were tested against accurate outgoing
wave variational principle41,102Š 104 quantum mechanical reactive scat-
tering calculations on a series of two-state atom-diatom test cases. Full-
dimensional test cases with prototypical AC,105 WI, 89 and CI7 interactions
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Fig. 1. Examples of the adiabatic (solid) and diabatic (dashed) potential energy surfaces
along (left-to-right) the ground state reaction coordinate for the AC, WI, and CI families
of test cases.

(as illustrated in reduced dimensionality in Fig. 1) were developed for this
purpose, each of which describes a model reaction of the form

A� + BC( v, j ) � AB(E �
int ) + C , reaction

� A + BC( E ��
int ), quenching

(R1)

where the asterisk denotes electronic excitation, and the diatom is initially
prepared in a quantized rovibrational state (v,j ).

Six observables of the model reactions displayed in R1 were considered:
the probability of reactive de-excitation ( PR ), the probability of nonreactive
de-excitation or quenching (PQ ), the total probability of a nonadiabatic
event (PN = PR + PQ ), the reactive branching fraction FR = PR /P N , and
the average internal energies of the two diatomic fragments (E �

int and E ��
int ).

Several test cases for each class of prototypical interactions were considered;
they vary in the coupling strength of t he model potential energy surfaces,
the initial conditions, and/or the scattering conditions. By averaging over
several test cases in each class, we obtain more robust and predictive error
estimates. The results of these studies, which include errors for a total of
six observables for each of 17 test cases, are summarized in Table 1.8

The 17 test cases in Table 1 include three cases of weak interaction
(systems like Br� + HR � Br + HR or � HBr + R, where R is a radical;
these cases are called WI cases or YHRcases), eight cases with accessible
regions of avoided crossing but no accessible conical intersections (these
are called AC cases or MXH cases), and “ve cases of accessible conical
intersections (these are called CI cases or MCH cases). In each of these
17 cases we obtained accurate quantum dynamics results for a given real-
istic set of potential energy surfaces and couplings and compared these to
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Table 1. Highly-averaged percentage errors for several NBO methods.

Method Representation AC WI CI Overall

FSa A 53 29 53 45
D 42 289 43 125

CC 53 29 40 41
SE A/D/CC 74 c 66 c

FSTU b A 43 25 56 41
D 27 128 42 66

CC 38 25 39 34
CSDM A 20 18 42 27

D 19 22 33 25
CC 21 18 33 24

aFrustrated hops were ignored.
b Frustrated hops were treated using the TU and grad V prescriptions. The SD
algorithm was not used because it had not been developed yet at the time that
these calculations were carried out.
cThe SE method fails for weakly coupled systems in that it does not produce
all possible products; therefore average internal energies cannot be computed
for the missing products, and an overall error cannot be computed.

the results of various semiclassical dynamics methods for the same poten-
tial energy surfaces and couplings and the same initial quantum states.
The 17 cases di�er from one another in the potential energy surfaces, the
couplings, and/or the initial quantum state (for WI cases, there is one set
of surfaces, and we ran the ground vibrational-rotational state of the reac-
tants at two energies and one excited rotational state at one energy; for
AC cases there are three di�erent couplings surfaces „ strong and broadly
distributed, strong and localized, and weak and localized, and each was
run for three initial rotational states; for CI cases there are “ve di�erent
sets of couplings). The accurate dynamics are independent of represen-
tation (adiabatic or diabatic), but the semiclassical results depend on the
representation in which the dynamics are calculated; for each case and each
representation we calculated the unsigned percentage error in each of the six
physical observables mentioned in the previous paragraph by comparing the
semiclassical results tothe accurate quantum dynamics ones. Each column
in the table shows mean unsigned percentage error averaged over the six
observables in each of two representations for the cases in that column.
The last column contains all 17 cases and so the mean unsigned percentage
errors in the last column are averaged over 6× 2 × 17 = 204 absolute
percentage errors.
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The table shows that the results of the NBO molecular dynamics simu-
lations are in general strongly dependent on the choice of electronic repre-
sentation, and it shows that the adiabatic representation is usually more
accurate than the diabatic one. The SE method is formally independent of
the choice of representation, but it is less accurate than the other methods.
Furthermore, it is unable to treat the small probability events occurring in
the WI systems.8

The adiabatic representation is not always to be preferred, and the
diabatic representation was found to be more accurate for some of the
systems in the test set with ACs and CIs. A useful criterion for choosing
between the adiabatic and diabatic representations is to prefer the repre-
sentation where the diagonal surfaces are the least coupled to one another.
One way to do this is to prefer the representation with the fewest number
of attempted surface hops, and this representation is called the Calaveras
County (CC) representation.106 Results obtained using the CC representa-
tion are shown in Table 1. The CC is generally more accurate than using
either the adiabatic or diabatic representations exclusively.

For larger systems than the ones considered here, it is likely that
trajectories may sample some regions where the adiabatic representation
is preferred and others where the diabatic representation is preferred in a
single simulation. Invariance to the choice of electronic representation is
therefore desirable, and it is encouraging that the CSDM method, which
was designed with representation independence as a goal, is systematically
less representation-dependent than the FSTU and other NBO molecular
dynamics methods.

The overall accuracy of the best representations for each type of
improved NBO method is generally good, and the CSDM method is the
best method overall with an error of only 	 25%. Clearly the improvements
made to the surface hopping approach and to the mean “eld approach
have produced systematically improved methods of each type. Finally, we
note that the improved methods work nearly equally well for the three
types of interactions considered. Again, this robustness is important, as real
systems are likely to feature more than one kind of interaction. Not only
does the CSDM provide reasonably accurate “nal states, but „ because
of the explicit inclusion of decoherence with a physical time scale „ it is
expected to provide a realistic picture of the real-time process; the ability
of semiclassical methods including decoherence to do this is expected to
become more and more useful as shorter time scales107,108 for studying the
electron dynamics in molecules become accessible.
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In another test, the accuracy of NBO MD methods for simulating deep
quantum systems (i.e. systems with large electronic state energy gaps) was
considered.71 Typical energy gaps in the model AC and WI test cases
are only a few tenths of an eV, whereas many real systems have much
larger gaps. Quantum mechanical calculations of the photodissociation of
the Na · · · FH van der Waals complex with a gap of 	 1.5 eV were carried
out.109 In the ground state, thermal excitation tends to break the weak van
der Waals bond, producing the Na and HF products exclusively. Upon elec-
tronic excitation with visible light , however, the complex is promoted to a
metastable complex called an exciplex. The exciplex is proposed to exhibit
enhanced reactivity via the harpooning mechanism, where the change in
the electronic structure results in a donation of partial charge from the Na
atom to the F atom and promotes formation of the NaF + H products.

The FSTU and CSDM methods were shown to fairly accurately predict
product branching and exciplex lifetimes for the photodissociation of the
Na · · · FH system, as shown in Table 2, thus validating their use for deep
quantum systems. The NBO classical and quantum dynamics simula-
tions con“rmed the enhanced reactivity of the harpooning mechanism, and
NaF + H was predicted to be the dominant photodissociated bimolecular
product.

In the course of this study, product branching in the NBO molecular
dynamics simulations was found to be a�ected by a region of coupling
where the excited state isclassically energeticallyforbidden. An analysis
of the NBO MD trajectories revealed that the results are sensitive to the
treatment of decoherence. Figure 2 shows contour plots of the excited and
ground electronic states, as well as hopping information for a subset of
trajectories. The initial downward hops occur for a wide range of acces-
sible geometries of the exciplex. More than three-fourths of the trajectories
attempted to hop back into the exciplex after their “rst hop down, but many

Table 2. Product branching probabilities and half lives
of the Na · · · FH exciplex.

Method PNa+HF PNaF+H t1/ 2 , ps

Quantum 0.04 0.96 0.42
FSTU without SD 0.16 0.83 0.85
FSTU with SD 0.05 0.95 0.52
CSDM ( E0 = 0 .1 Eh ) 0.29 0.71 0.76
CSDM ( E0 = 0 .001Eh ) 0.06 0.94 0.40
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Fig. 2. Contour plots of the ground (dashed) and Þrst excited (solid) potential energy
surfaces for Na · · · FH. The initial hops down are shown as open triangles. Subsequent
successful hops up are shown as solid triangles, and frustrated hops up are shown as
black dots. The thick black line is the line of avoided crossings.

did so at geometries where the excited state is energetically forbidden. The
majority of these frustrated hops occur near the line of avoided crossings,
a region where the two electronic surfaces have very di�erent shapes and
where decoherence due to wave packet divergence may be expected to be
signi“cant. The use of the SD model for decoherence was found to reduce
errors associated with frustrated hopping and to predict product branching
and lifetimes in near quantitative agreement with the quantum mechanical
results, as shown in Table 2. An analogous modi“cation of the DM method
resulting in faster decoherence in this critical region (obtained by decreasing
the parameter E0) was shown to give similarly improved results. This study
highlighted the importance of accuratetreatments of electronic decoherence
in trajectory-based simulations of systems with coupled electronic states.

In another study,62 the nonadiabatic photodissociation of HBr was
modeled using several NBO trajectory methods. The calculated branching
fractions for the H + Br( 2P3/2 ) and H + Br( 2P1/2 ) products were found to
be in good agreement with experimental measurements110 over a range of
photon energies, as shown in Fig. 3.
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Fig. 3. HBr photodissociation branching fraction to form H+Br � as a function of photon
energy (h� ) obtained by the CSDM method (solid line) and experiment (diamonds).

Li et al. applied the CSDM method to several systems: the D + H2

and H + D 2 reactions at collision energies up to 2 eV,111 nonreactive and
reactive charge transfer and reactive non-charge-transfer in D+ + H 2 and
H+ +D 2 collisions,111 and intersystem crossing in O(3P2,1,0, 1D2)+H 2 reac-
tive collisions yielding OH(2� 3/2 ,1/2 )+H( 2S).112 For the “rst two reactions
they employed a two-state electronic basis, for the next two a three-state
electronic basis, and for the “nal two a four-state electronic basis (three
triplet states and one singlet). For D + H 2 and H + D 2 they obtained very
good agreement of reactive cross sections with accurate quantal dynamics
over the whole energy range. For nonreactive and reactive charge transfer in
D+ + H 2 and H+ + D 2, the CSDM cross sections provide overall trends in
good agreement with accurate quantum dynamics, and for reactive non-
charge-transfer the CSDM cross sections agree with accurate quantum
dynamical ones over the whole energy range up to 2.5 eV, although in
one case they are slightly lower. For O(3P2) + H 2, the cross sections to
produce the 2� 3/2 and 2� 1/2 states are both in goodagreement with accu-
rate quantum dynamics over the whole range of collision energies, up to
28 kcal/mol, except that the cross section to produce the2� 3/2 state has a
somewhat higher threshold.

The photodissociation of NH3, which has been studied in detail
experimentally,113,114 was also recently modeled using NBO MD
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Fig. 4. A conical intersection between the ground and Þrst excited states of NH 3 occurs
at planar geometries and at an NÐH distance of 2 ûA.

simulations.80,85 Analytic representations115 of the coupledX and A states
of NH3 are shown in Fig. 4 as functions of one N…H distance and the
umbrella angle � . This system features a CI at extended N…H distances and
planar geometries. Trends in the production of excited state amino radi-
cals as a function of initial state preparation were computed and compared
with experiment. The experimental results suggest an enhancement in the
production of excited-state products when the antisymmetric stretch of
NH3 is excited, with the interpretation that excitation of the antisymmetric
stretch causes the system to go around the CI and thus inhibits electronic
state quenching. The NBO MD calculations predict that the production
of excited state amino radicals depends on the total energy, and no state
speci“city is observed. The source of this discrepancy is unclear, although
recent quantum mechanical wave packet results116 are in fair agreement
with the NBO trajectory results.

In addition to making semiquantitative predictions of product
branching, lifetimes, and internal energy distributions, as discussed above,
NBO molecular dynamics simulations are useful for studying chemical
events in mechanistic detail, such as the role of conical intersections and
avoided crossings in NBO dynamics. This analysis has been carried out
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for the FSTU and CSDM methods for the model CI and AC test cases,7

Na · · · FH photodissociation,71 and for the photodissociation of NH3.80,85

From these studies, one can make some general comments about NBO
trajectories and CIs. The capture e�ciencies of a CI and an AC have been
compared for similar potential energy surfaces, di�ering only in the inter-
action type. Trajectories with reasonable kinetic energies were found to
be captured equally well by the CI and AC, i.e. the conical shape near
the CI did not capture trajectories any more or less easily than an AC.
The CI was shown to more e�ciently move trajectories out of the interac-
tion region than the AC, although the e�ect was small. Finally, it was noted
that trajectories did not in general switch surfaces at zero-gap geometries.
Instead, surface hops occurred over a range of energy gaps, geometries, and
coupling strengths near and at the CI.

A similar analysis of the NH3 trajectories was carried out to study
the experimentally proposed mechanism of state speci“city. The NBO MD
trajectory results showed that the system is e�ciently quenched via the
seam of CIs when either the antisymmetric or symmetric stretches are
excited. The distribution of energy gaps at surface hops was peaked at
zero, but the average gap was 0.3 eV. The CI rapidly quenched photoex-
cited NH3 nonreactively to form ground-electronic-state NH3, which subse-
quently and much more slowly decayed to NH2 + H. Only a small fraction
of trajectories dissociated directly to the NH 2 + H products. Furthermore,
the number of direct trajectories avoiding the CI was not promoted by
excitation into the antisymmetric stretch, in contrast to the experimentally
proposed mechanism.

6. Concluding Remarks

Non-Born…Oppenheimer dynamics may be dominated by regions of conical
intersections, by regions of avoided crossings, or by regions of weak interac-
tions of electronic states. When a conical intersection seam or its neighbor-
hood is dynamically accessible, the geometries in the neighborhood of the
conical intersections seam will often provide an e�cient route for excited
state decay, as originally pointed out by Teller.9 As mentioned in the intro-
duction and as indicated by analyses of non-Born…Oppenheimer trajectories
in Sec. 5, the seam of conical intersections „ due to its dimensionality being
two lower than the dimensionality of the full internal coordinate space „
does not necessarily directly mediate electronic transitions; however, the
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conical intersection seam does anchor the loci of strong interaction of
the potential energy surfaces. Because the conical intersection seam can
be a very extended hypersurface, one must consider more than just the
lowest-energy conical intersection, and because the conical intersection itself
may be dynamically inaccessible, one must consider avoided crossings as
well as conical intersections. Because conical intersections are surrounded
by avoided crossing regions, it is important to consider the multidimen-
sional character of the dynamics whenever a region of strong interaction
of the electronic states is encountered; treatments based on treating the
potentials along a trajectory path as one-dimensional avoided crossings
ignore the fact that strong interaction regions in polyatomic systems have
more complicated dynamics than the Landau…Zener behavior encountered
in atom…atom collisions. The best zero-order model of the dynamics in
a strong interaction region may be either diabatic or adiabatic. Further-
more, one must take into account the fact that decoherence may occur
between successive visits to strong interaction regions. The semiclassical
dynamics methods reviewed in this chapter take account of this decoher-
ence; they have been validated in multidimensional studies for the treat-
ment of photochemical dynamics in the vicinity of conical intersections and
avoided crossing regions and also in weak interaction regions; they may
be used for systems containing both predominantly diabatic and predomi-
nantly adiabatic regions of phase space; and rare-event sampling algorithms
are available for treating processes with small transition probabilities. The
CSDM method, in particular, is the culmination of a series of attempts to
improve mean-“eld and surface hopping methods by combining the best
features of both.
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1. Introduction

Dynamics simulation is a powerful tool for investigation of nonadiabatic
events in molecular processes. It allows the molecules to exploreby them-
selvesthe con“gurational space, to “nd the main reaction paths and conical
intersections, and to determine the di�erent time scales at which the
processes occur.

Nonadiabatic dynamics simulations are, however, computationally
demanding. In particular, the complete quantum mechanical solution1,2

given by wave packet propagation in full dimensionality reaches prohibitive
levels even for relatively small molecules. For this reason, many di�erent
theoretical approaches based on di�erent types of approximations1,2 have
been proposed such as independent trajectories,3,4 Liouville dynamics,5

trajectory-based Bohmian dynamics,6 path integrals,7,8 and multiple
spawning.9 In particular, nonadiabatic dynamics based on classical inde-
pendent trajectories, the subject of this chapter, has a long history begin-
ning with the origins of quantum mechanics with signi“cant application
to large molecules already by mid-1970s when Warshel investigated the
excited-state relaxation of retinal using mean-“eld dynamics based on semi-
empirical surfaces.10

The methodological background for nonadiabatic dynamics based on
classical trajectories nowadays is not substantially di�erent from that of
the early 1990s when Tully proposed the Fewest Switches algorithm.11

Although important developments in the “eld, such as the multiple
spawning method,9 the treatment of decoherence processes,12Š 14 and the
introduction of interactions with electric “elds 15Š 17 have improved and



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch11

Computational and Methodological Elements 417

opened new possibilities for simulations, most of advances have been
achieved due to the development of computational capabilities and to
methodological developments in quantum chemical methods. These devel-
opments include new multireference semi-empirical methods,18,19 analytical
gradients at MRPT2 level,20 and analytical gradients and nonadiabatic
coupling vectors at state-averaged MCSCF21 and MRCI levels.22Š 24 As
a result, we are witnessing the dawn of many interesting applications in
diverse “elds of photochemistry and photophysics.25Š 30

In this chapter, we will take advantage of our experience devel-
oping methods,23,24,38 implementing the programs Columbus 39Š 41

and Newton-X ,42,43 and investigating a variety of photodynamical
processes31,44Š 47 to guide the reader into the main elements necessary to
perform and to understand nonadiabatic trajectory dynamics simulations
of molecules. These elements include the time-dependent mixed quantum-
classical equations, the generation of initial conditions, and issues connected
to conventional quantum chemistry, but of deep relevance for dynamics
simulations, including electronic structure methods and the computation
of energy gradients and nonadiabatic coupling terms. Finally, we discuss
some general features revealed by nonadiabatic dynamics simulations of a
series of molecules, which have helped to shape our understanding of how
conical intersections contribute to nonadiabatic dynamics.

2. Nonadiabatic Dynamics Base d on Classical Trajectories

2.1. The time-dependent equations

The basic problem in dynamics simulations of molecules is to solve the
time-dependent Schrödinger equation (TDSE) for the complete molecular
system

�
i �

�
�t

Š H
�

�( r , R , t) = 0 , (1)

H = Tn + He, (2)

where the molecular wave function � depends on time t, on the nuclear
coordinatesR and on the electronic coordinatesr . H is the total Hamilto-
nian consisting of the nuclear kinetic energy operatorTn and the electronic
operator He which, by convention, includes the Coulombic nuclear…nuclear
repulsion and electron…nuclear attractions.
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The derivation of the time-dependent equations employed in nonadia-
batic dynamics methods based on classical trajectories is usually presented
by expanding the molecular wave function in a basis of time-dependent elec-
tronic wave functions.3,11,14,48Š 51 In this chapter we approach this problem
from a di�erent point of view, by expanding the molecular wave function
in a basis of time-dependent nuclear wave functions as it is usually done
in wave packet propagation.52 Although this is only a formal distinction
that will lead to the same results as the alternative formulation, it has the
advantage of allowing a more direct comparison with dynamics based on
wave packets, of clarifying the approximations that are employed, and of
suggesting possible ways to improve the method.

The nuclear motion can be evaluated by writing the molecular wave
function as a Born…Oppenheimer expansion52

�( r , R , t) =
�

j

� j (R , t) � j (r ; R ), (3)

� � k | � l � r = � kl , (4)

where� j and � j are, respectively, the nuclearand electronic wave functions
for electronic state j and the summation in Eq. (3) runs over all electronic
states. � j is a function of the nuclear coordinatesR and of time t, while
� j is a function of the electronic coordinatesr and depends parametrically
on R .

Substituting Eq. (3) into Eq. (1), multiplying to the left by � �
k , and

integrating over the electronic coordinates leads to

i �
�� k

�t
+

1
2

� 2� 2
M � k +

�

j

�
ŠHkj + i � Fkj · �v +

1
2

� 2Gkj

�
� j = 0 , (5)

where

� 2
M �

N at�

m

� 2
m

M m
=

2
� 2 Tn , (6)

Hkj (R ) � � � k | He | � j � r , (7)

Gkj (R ) � � � k | � 2
M | � j � r . (8)

The index m in Eq. (6) runs over all Nat nuclei of the molecule. For atom
m the velocity operator and the nonadiabatic coupling vector are de“ned,
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respectively, as

�vm � Š i �
� m

M m
, (9)

Fm
kj

(R ) � � � k | � m | � j � r . (10)

Until this point no approximation has been invoked, and di�erent prop-
agation methods will treat each of these terms in di�erent ways. Note that
to solve Eq. (5), the potential energy surfaces, nuclear wave functions, and
coupling terms should be determined beforehand for the whole con“gura-
tion space for a limited number of statesj . This is what is usually done
in wave packet propagation methods.1,53 A series of approximations can be
used to achieve a local version of this equation, which is dependent only
on a single set of coordinatesR c. In the Multiple Spawning approach for
example,9 this is done by the •saddle pointŽ approximation, which treats
the “rst and second terms in the brackets as

� � k | Okj (R ) | � l � � � � k | � l �Okj (R c) � � � k | � l �Oc
kj . (11)

Equation (5) contains information on how the wave packet evolves on
one potential energy surface as a function of time and also on how it is
transferred to other states. For our purposes, this fact can be better explored
if the wave function is written as54,55

� k = Ak (R , t)eiS k (R ,t ) /� , (12)

where the amplitude Ak and the phase Sk are real functions. Substi-
tuting Eq. (12) into Eq. (5) and separating the real and imaginary terms,
one obtains the following equations for the propagation of the probability
density A2

k and the phaseSk

�S k

�t
+

1
2

(� Sk )2 = ŠHkk +
1
2

� 2

�
1

Ak
� 2Ak + Gkk

�
+ Re[� kj ], (13)

�A 2
k

�t
+ � · (A2

k � Sk ) +
2
�

A2
k Im[� kj ] = 0 , (14)

where

� kj =
�

j �=•k

�

ŠHkj + i � Fkj · v + � 2

�
1

Aj

N at�

m

Fm
kj ·

� m Aj

M m
+

1
2

Gkj

��

×
Aj

Ak
ei (Sj Š Sk ) /� . (15)
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In this equation, the velocity v is a vector composed by the nuclear velocity
components

vm =
� m Sj

M m
. (16)

If the terms proportional to � 2 and the nonadiabatic coupling term
Re[� kj ] are neglected in Eq. (13), one obtains the Hamilton…Jacobi equa-
tion, where the phaseSk is the Hamilton•s principal function.56 In this
limit, Eq. (13) describes a swarm of independent classical trajectoriesR c

evolving on the Hkk potential energy surface or, equivalently, driven by a
force Š� Hkk according to the Newton•s law.50 The diagonal terms propor-
tional to � 2 in Eq. (13) are responsible by the spatial correlation of the wave
packet at a certain time and the last term is responsible for the nonadiabatic
in”uence from other states on statek.

Equation (14) controls the probability density A2
k of state k. When the

nonadiabatic coupling term Im[� kj ] is null, it reduces to the continuity
equation, where the A2

k � Sk is the probability ”ux. 54 The term Im[� kj ]
works as a sink term transferring the probability density between k and
other states j .

For the trajectory-based dynamics methods, the limit when the terms
proportional to � 2 in Eqs. (13) and (15) can be neglected is especially
interesting. In such case, Eq. (13) is reduced to

�S k

�t
+

1
2

(� Sk )2 = ŠHkk + Re

�

	
�

j �=•k

[ŠHkj + i � Fkj · v ]
Aj

Ak
ei (Sj Š Sk ) /�




� ,

(17)

which represents a swarm of independent trajectories moving on the poten-
tial energy Hkk but subject to a nonadiabatic interactions given by the
second term on the right hand side of the equation. In the regime of indepen-
dent trajectories, the divergence of the probability ”ux is zero and Eq. (14)
is reduced to

dAk

dt
+

1
�

Im

�

	
�

j �=•k

[ŠHkj + i � Fkj · v ]Aj ei (Sj Š Sk ) /�




� = 0 . (18)

The interpretation of the wave packet propagation in terms of the
Hamilton…Jacobi theory gives the basis for the trajectory-based methods.
The time propagation is performed by integrating the Newton•s equation
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for the swarm of trajectories, which is analogous to solving Eq. (17),
while the population of each state is controlled by an equation analogous
to Eq. (18).

To derive the actual equation controlling the population, we should turn
to Eq. (5). First, the independent trajectory approximation is enforced by
neglecting the terms proportional to � 2. This approximation also motivates
the trivial factorization of the nuclear wave function � k describing the wave
packet around each trajectory R c as

� k (R , R c, t) = ck (t) � k (R Š R c), (19)

� � k | � k � R = 1 , (20)

where � k (R Š R c) is a peaked function centered at each trajectoryR c of
the swarm. Neglecting the terms proportional to � 2, substituting Eq. (19)
into Eq. (5), multiplying to the left by � �

k , and integrating over the nuclear
coordinates leads to

i �
dck

dt
+

�

j

[Š� � k | Hki | � j � R + i � � � k | Fkj · �v | � j � R ]cj = 0 . (21)

To obtain the “nal result, the following approximations are addition-
ally employed. First, the velocity operator is substituted by the velocity
function

�v � k � v (R )� k . (22)

Second, the saddle point approximation [Eq. (11)] is employed. Third, the
overlap between the nuclear wave functions of di�erent states is assumed
to be

� � k | � l � = 1 , (23)

which is motivated by the fact that the amplitudes cannot be transferred
between di�erent R c trajectories. With these approximations, whose impli-
cations are discussed in details in Sec. 2.2, Eq. (21) is reduced to

i �
dck

dt
+

�

j

(ŠH c
kj + i � Fc

kj · v c) cj = 0 . (24)

Note that the nondiagonal terms in the parenthesis in this equation are the
same nonadiabatic coupling terms, which appeared in Eqs. (17) and (18).
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Equation (24) can be further simpli“ ed if either an adiabatic repre-
sentation ({ � k } | Hkj = Vk � kj ) or a diabatic representation ({ � d

k } | Hkj =
Wkj , Fkj = 0) is adopted:

i �
�c k

�t
+

�

j

(ŠV c
k � kj + i � Fc

kj · v c) cj = 0 (adiabatic) , (25)

i �
�c k

�t
Š

�

j

W c
kj cj = 0 (diabatic) . (26)

Although Eq. (17) establishes a clear conceptual justi“cation for the
classical propagation of independent trajectories, it is not apparent how this
can be done in practical terms. This problem can be approached by invoking
the Ehrenfest theorem,54 which states that the center of the molecular wave
packet moves like a classical set of particles, in which the motion of nucleus
m is determined by Newton•s law

d� � | �Pm | � � rR

dt
+ � � | � m He | � � rR = 0 , (27)

where �Pm is the momentum operator for nucleusm. Using Eqs. (3), (19),
(11) and (23), we can show that the force onm is

F c
m � Š� � | � m He | � � rR � Š

�

kj

c�
k cj � � c

k | � m He | � c
j � r , (28)

where the time-dependent coe�cients ci are also given by Eq. (24). In adia-
batic and diabatic representations, the force is simpli“ed to, respectively,

F c
m = Š

�

k

|ck |2 � m V c
k Š

�

kj

cj c�
k (V c

j Š V c
k ) Fc,m

kj (adiabatic) , (29)

F c
m = Š

�

kj

cj c�
k � m W c

kj (diabatic) . (30)

Using Eq. (28), the coordinatesR c can be determined from a classical
trajectory given by the Newton•s equations for each nucleusm

d2R c
m

dt2 Š
F c

m

M m
= 0 . (31)

Equations (24) and (31) de“ne the mean-“eld or Ehrenfest method,
which can also be derived via Hamilton…Jacobi theory, in a procedure
analogous to that discussed above.50,55 In this method, the evolution of
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each initial point in the phase space is determined by a single independent
trajectory driven by an average potential energy surface involving many
states like that de“ned in Eq. (28). The single trajectory feature of
the Ehrenfest method represents a great computational advantage, which
allowed the investigation of retinal dynamics in the middle 1970s.10 But
this feature is also the handicap of the method: if, for example, the wave
packet splits half/half between two adiabatic states after leaving the region
of strong nonadiabatic coupling, the single trajectory will also move on an
average surface in the long run, which represents an unrealistic situation.

The reason for such wrong asymptotic behavior is discussed in Sec. 2.2.
For now, we point out that the main alternative that has been proposed
to overcome this problem is the surface hopping approach,3 which propa-
gates multiple trajectories from each initial point of the phase space. These
trajectories are always driven by a single adiabatic potential energy surface,
with the associated force

F c
m = Š� m V c

l , (32)

and the correct distribution among the states is achieved by allowing the
trajectories to change the surface on which they are moving (the way this
is done is discussed in Sec. 2.2). In the example above, with asymptotic
half/half wave packet split, half of trajectories end up in one state and
half in the other. A comparative review of the Ehrenfest and the surface
hopping methods is given in Ref. 51.

In principle, the computational costs of the surface hopping approach
are greater than that of the mean-“eld approach because of the multiple-
trajectory feature of the “rst. In pr actical terms, however, the costs
are just about the same. This happens because for a proper descrip-
tion of the time evolution, trajectories dynamics simulations with either
method must be initiated from multiple initial points in the phase space.
(The way this initial distribution is generated is discussed in details in
Sec. 3.) Usually, only a single trajectory per initial point is carried out
in surface hopping simulations and the state distribution information is
approximately recovered by the multiple trajectories initiating at di�erent
points.

2.2. Implications of the local approximation

Equation (24) is a local version of the time-dependent Schr¨odinger equation
for the nuclei. It describes the amplitude variations of a wave packet entirely
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localized at the coordinates R c. The terms in the parenthesis (k �= j )
determine the ”ow of population between di�erent adiabatic states.

The approximations that led to Eq. (24), which usually are not explicit
in the conventional derivation using time-dependent electronic wave func-
tions, have di�erent consequences for the method. In the local approxima-
tion, neglecting the “rst term proportional to � 2 in Eq. (5) does not a�ect
the transition probability because this term only contributes to the ”ux
between the imaginary and real parts ofck within the same state k. This
term, however, is responsible for the phase information in di�erent points
of the space. The hypothesis that dynamics can be simulated by a swarm
of independent trajectories rests on the validity of this approximation.50

The second term proportional to � 2 in Eq. (5) a�ects the transition prob-
ability. However, its in”uence is expected to be minor not only because of
the � 2 factor, but also due to the usually small values of theGkj coupling
terms. In principle, this term could be reincorporated into the surface
hopping approach by noting that the main contribution to the second
derivative coupling term comes from the diagonal term Gkk , which can
be approximated by52

Gkk � Š
�

j

(Fc
kj )2. (33)

The e�ect of the replacement of the velocity operator by the velocity
function can be estimated by assuming that the nuclei can be described by
a Gaussian wave packet54 centered at the classical trajectory

� k (R ) =
N at�

m

� Š 3/4 dŠ 3/2
m exp

�
i km · (R m Š R c

m ) Š
(Rm Š Rc

m )2

2d2
m

�
, (34)

where R m is the coordinate vector of nucleusm. In this case, the action of
the velocity operator for atom m on � k results in

�vm � k (R ) = � vm � � k (R ) +
i �

M m d2
m

(R m Š R c
m )� k (R ). (35)

If Eq. (19) is inserted into Eq. (5) and the action of the velocity operator
is taken as given by Eq. (35), the relevant term becomes

i � Fkj · �v � j (R ) = i � Fkj · � v � � j (R ) Š � 2
N at�

m

1
M m d2

m
Fm

kj

· (R m Š R c
m ) � j (R ). (36)
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The “rst term in the right side of Eq. (36) is the same as that present
in Eq. (24). Therefore, the replacement of the operator by its expectation
value implies neglecting a term proportional to � 2. It has been noted in
Ref. 12 that this approximation may not work well in low temperature
regimes where zero-point motions become important.

The main implication of the saddle point approximation, Eq. (11), is
that no global feature can be described within this approach, notably
tunneling. Finally, the strong coherence between •classical wave packetsŽ
in di�erent states caused by the independent trajectories hypothesis and
that leads to the strong condition of Eq. (23) has important consequences
that are often neglected in nonadiabatic trajectory dynamics. A quantum-
mechanical system coupled to many degrees of freedom is expected to evolve
from a pure state to a statistical mixture. 12,57 This phenomenon is governed
by the evolution of the density matrix, whose non-diagonal terms quickly
drop to zero. In trajectory-independent methods, decoherence cannot prop-
erly take place because the variation of the amplitudes is restricted to occur
only between states at a single pointR c. [See, for example, Eq. (18), which
was derived under the hypothesis that the divergence of the spatial proba-
bility ”ux is zero.]

In the Ehrenfest method, the time evolution of the ck (t) coe�cients
determined by Eq. (24) along a single trajectory is fully coherent, which
causes the wrong asymptotic behaviors discussed in Sec. 2.1.Ad hoc deco-
herence corrections that force a switch to a single state after leaving
the region of strong nonadiabatic coupling have been proposed, showing
largely improved results in comparison to the conventional Ehrenfest
dynamics.13,58,59

In surface hopping methods, the problem of lack of decoherence is mini-
mized “rst because trajectories are naturally forced to mixed asymptotic
states and second because each trajectory (even starting at the same initial
point) hops at di�erent times due to the stochastic nature of the algo-
rithm. However, already in the original formulation of the Fewest…Switches
approach discussed in the next section,Tully recognized that this treatment
of coherence might not be enough, which led him to propose the applica-
tion of ad hoc damping terms to Eq. (24).11 Indeed, it has been recently
shown14 that a long standing problem in surface hopping approaches, the
divergence between occupation and population (see discussion in Sec. 2.3),
is still caused by missing decoherence. It is also shown in Ref. 14 that if the
•non-linear decay of mixingŽ model proposed in Ref. 59 in the context of
Ehrenfest dynamics is applied to surface hopping dynamics, the occupation/
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population problem is eliminated. These corrections are applied at every
time step by transforming the solutions of Eq. (24) according to

c�
k = ck exp(Š� t/� kl ) � k �= l, (37)

c�
l = cl

 1 Š
�

k �=l |c�
k |

|cl |2

� 1/2

, (38)

� kl =
�

|Vkk Š Vll |

�
1 +

�
Ekin

�
, (39)

where l is the current state, Ekin is the nuclear kinetic energy, � t is the
integration interval, and � is an empirical parameter whose recommended
value is � = 0 .1 hartree.

2.3. The surface hopping approach

In the surface hopping approach a swarm of independent trajectories
determined by Eqs. (31) and (32) is run, each one moving always in a
single state l . To guarantee the correct distribution of trajectories among
the states, Eq. (24) is integrated simultaneously andck for each state is
obtained. The transition probability between each two electronics states is
evaluated and a stochastic algorithm decides whether the system remains
on the same electronic surface or hops to another one. Therefore, if a swarm
of NT trajectories with the same initial condition is started, they will
soon diverge due to the stochastic nature of the algorithm. A good surface
hopping algorithm is expected to be self-consistent, which means that the
fraction of trajectories in each state (occupation) at a certain time, which
is given by

f k (t) � Nk (t) /N T , (40)

where Nk (t) is the number of trajectories in state k in time t, should tend
to the average value of|ck |2 over all trajectories (average population)

ākk (t) =
1

NT

N T�

n

|c(n )
k (t) |2. (41)

There are several recipes for computing transition probabilities for
the surface hopping approach.3,11,34,60Š 64 Probably the most common is
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the fewest-switches method proposed by Tully.11 In this algorithm, the
number of hopping events within one time step � t is minimized. Under
this condition, the hopping probability between states l and k is

Pl� k =
Population increment in k due to ”ux from l during � t

Population of l
.

To compute this quantity, Eq. (24) is rewritten in terms of the density
matrix elements � kl � ck c�

l :

i �
d� kl

dt
Š

�

j

[(ŠH c
jl + i � Fc

jl · v c)� kj Š (ŠH c
kj + i � Fc

kj · v c)� jl ] = 0 . (42)

Assuming that the population ”ux from and to state l involves only statek,
the population � ll of state l is determined by

d� ll

dt
= i � Š 1[(ŠH c

kl + i � Fc
kl · v c)� lk Š (ŠH c

lk + i � Fc
lk · v c)� kl ]

(43)
= Š2� Š 1Hkl Im( � kl ) Š 2Fc

kl · v c Re(� kl ).

The population increment in state k due to the ”ux from state l betweent
and t + � t is given by

� � kk = Š� � ll = 2� t( � Š 1Im( � kl )Hkl Š Re(� kl )Fc
kl · v c). (44)

If the counter-”ux from k to l is neglected, the fewest-switches probability
can be “nally written as

Pl� k = max

0,

2� t
� ll

(� Š 1Im( � kl ) H c
lk Š Re(� kl ) Fc

kl · v c)
�

. (45)

When adiabatic representation is employed, Eq. (45) simpli“es to

Pl� k = max

0,

Š2� t
� ll

Re(� kl ) Fc
kl · v c

�
(adiabatic) , (46)

while in diabatic representation it simpli“es to

Pl� k = max

0,

2� t
� � ll

Im( � kl ) W c
lk

�
(diabatic) . (47)
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In the evaluation of the hopping event, a transition from surface l
to surface k takes place in time t if two conditions are simultaneously
ful“lled:

(1) A uniformly selected random number r t in the [0, 1] interval is such
that

kŠ 1�

n =1

Pl� n (t) < r t �
k�

n =1

Pl� n (t) . (48)

(2) The energy gap between the “nal and initial states satis“es65

Vk (R c(t)) Š Vl (R c(t)) �

� � N at
m vc

m · Fc,m
kl

� 2

2
� N at

m M Š 1
m (Fc,m

kc )2
. (49)

The second condition avoids the situation in which the total energy
after hopping becomes larger than that before hopping. The situation where
only Eq. (48) is satis“ed is called a frustrated hopping (see Ref. 66 for a
discussion about this topic). Equation (49) is derived under the condition
that conservation of total energy after hopping is achieved by adding a
quantity of linear momentum equivalent to Vk Š Vl to the direction of Fc

kl .
The correction along the direction ofFc

kl is motivated by the Pechukas force
that occurs during the nonadiabatic transition, as one can see, for instance,
in the second term on the right hand side of Eq. (29).7,55 When Fc

kl is not
explicitly computed, this correction can also be applied in the direction of
vc. In this case, the second condition reads

Vk (R c(t)) Š Vl (R c(t)) � Ekin (vc), (50)

where Ekin is the nuclear kinetic energy.
To avoid the cumbersome and computationally expensive procedures

involved in the evaluation of Fc
kj for solving Eq. (24), some hopping

algorithms just assume that the probability is unity if the energy gap
between two states is smaller than some pre-de“ned energy threshold34;
other algorithms take into account variations of wave function coe�-
cients as a measurement of the nonadiabatic coupling,62 or compute
Landau…Zener transition probabilities.64 Computational time can also be
saved by neglecting the coupling terms that are expected to have minor
contributions.38 Although the usual formulation of surface hopping methods
is derived to take into account exclusively transitions between states with
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the same multiplicity, a number of reformulations of the method to treat
intersystem crossing processes have been reported.67Š 69 Most of them are
based on the computation of hopping probabilities based on Landau…Zener
approach. Recently, intersystem crossing surface hopping based on a exten-
sion of the fewest-switches algorithm has been proposed in the context of
interaction of molecules with metallic surfaces.69

As a summary, the methodology of surface hopping methods based on
on-the-”y electronic structure calculations involves the following steps:

1. For a speci“c nuclear frame, solvethe time-independent electronic
Schrödinger equation (see Sec. 4) and obtain energies, energy gradients
(Sec. 5), and nonadiabatic coupling terms (Sec. 6).

2. Still in the same nuclear frame, use the information from step 1
to integrate the local time-dependent Schrödinger equation for the
nuclei [Eq. (24)]. This integration may be evaluated by standard algo-
rithms to integrate “rst-order di�erential equations. Apply decoherence
corrections [Eq. (37), (38), and (39)], evaluate the hopping probability
[Eq. (45)], and determine the current state.

3. Determine the new nuclear arrangement by integrating the Newton•s
Equations in one time step [Eqs. (31) and (32)]. This integration is
usually done with standard molecular dynamics algorithm such as the
Velocity-Verlet. 70

4. Go back to step 1 and repeat the procedure until the end of the trajec-
tory.

5. Compute an ensemble of independent trajectories with di�erent initial
conditions (Sec. 3).

3. Initial Conditions

In order to integrate the Newton•s equations for the nuclei, an ensemble
of initial conditions needs to be prepared. These initial conditions should
represent a classical phase space representation of the initially excited
quantum wave packet. Usually, this problem is approached by building a
phase space distribution in the electronic ground state and then projecting
it onto the electronic excited states. The ground state distribution can be
prepared either by a ground state trajectory simulation or from a prob-
abilistic sampling. In principle, for an ergodic system, both approaches
should produce similar results. Nevertheless, due to the classical nature of
the trajectory simulations in the ground state and the quantum nature of
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typical distributions like that given by the Wigner function, the two sets
may di�er substantially.

3.1. Wigner and quasi-Wigner distributions

Assuming a quadratic approximation for the ground-state potential energy
surface around the minimum, the 3Nat Š 6 internal coordinates can
be described in terms of normal modesQ and the nuclear wave func-
tion can be approximated as that of a quantum harmonic oscillator.
The classical phase space distribution can be approximated by a Wigner
distribution 71

PW (Qi , P i ) = ( � � )Š 1
�

d	� 0
HO (Qi + 	 )� � 0

HO (Qi Š 	 )e2i�P i /� , (51)

where� 0
HO is the quantum harmonic oscillator wave function for the ground

vibrational state and P i is the momentum associated with the normal coor-
dinate Qi . The evaluation of this integral gives

PW (Qi , P i ) = ( � � )Š 1 exp(Šµi 
 i
HO Qi 2/ � ) exp(ŠP i 2/ (µi 
 i

HO � )), (52)

where µi and 
 i
HO are, respectively, the reduced mass, the harmonic

frequency and the equilibrium distance of normal modei .
To sample coordinates and momentum, independent random values

are assigned toQi and P i and then the acceptance of the pair is evalu-
ated according to the probability given by Eq. (52). This procedure will
result in a Gaussian distribution in the ( Qi , P i ) space and becauseQi and
P i values are uncorrelated, the initial energy will be broadly distributed
around the harmonic zero point value. This procedure should be repeated
for each normal mode and then the normal coordinates and momentum are
converted back to Cartesian coordinates.

If Eq. (51) is evaluated for a vibrationally excited level � n
HO instead

for the ground vibrational state, the Wigner function can assume negative
values and cannot be used as a distribution. To solve this problem, note
that Eq. (52) can be written as

PW (Qi , P i ) = |� 0
HO (Qi )|2 |� 0

HO (P i )|2, (53)

where� 0
HO is the harmonic oscillator wave function in the momentum repre-

sentation. Even though Eq. (53) is valid only for the ground vibrational
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level, it motivates to write an analogous quasi-Wigner distribution for the
excited vibrational states

PQW (Qi , P i ) = |� n
HO (Qi )|2 |� n

HO (P i )|2. (54)

Sampling of initial conditions based on Eq. (54) was used, for example,
to create biased distributions towards speci“c normal modes in the appli-
cations of Ref. 46, where the goal was to investigate whether the activation
of either in-plane or out-of-plane modes had di�erent impact on internal
conversion rates.

3.2. Sampling with trajectory simulations

An alternative to the probabilistic sampling is to perform a classical ground-
state trajectory simulation and select points from it to initiate the excited
state dynamics. For large systems where a normal mode analysis is not
feasible, this can be the main procedure to generate initial conditions.
Besides that, this procedure also allows inclusion of anhamonic e�ects in
the initial conditions. One di�culty of this procedure is that it demands
long simulation times to allow for an adequate sampling of the phase space.
Additionally, the energy distribution among the degrees of freedom should
be considered. Because of the classical nature of the trajectory propaga-
tion, there is no guarantee that one or more degrees of freedom will not
have less than the zero point energy. For instance, in the simulations of
oligophenylenes, it was found that ground-state trajectories thermalized at
300 K produced too cold torsional interring modes.72

3.3. Sampling in special points

Although our emphasis in this chapter is on dynamics simulations
starting at the Franck…Condon region, two recent investigations are worth
mentioning where the dynamics was initiated in other regions of the con“g-
uration space. In Ref. 33, dynamics simulations of thymine were initiated
at a transition state along the S2 state. The reason for that was to avoid the
long initial dynamics of thymine moving from the Franck…Condon region to
this transition state, a process that can take more than 2 ps.73,74 In Ref. 36,
dynamics simulations of pyrrole were started already at the conical inter-
section. In this case, the goal was to skip the whole excited state dynamics
and to investigate the photochemistry induced by the molecule exiting a
conical intersection.
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3.4. The excited-state distribution

Having a ground-state distribution either via trajectory simulations or
distribution sampling, the next step is to project this distribution onto
the initial excited state. The simplest way of doing this is just to take the
ground sate distribution as it is. This means to assume that the transition
probability from the ground to the excited state is the same for every point
in the distribution.

This approach can be re“ned by computing the transition probability for
each point in the ground state distribution and evaluating whether it should
be accepted as an initial condition or not according to this probability.75 As
for transition probability, one can take the oscillator strength, the Einstein
coe�cient B (Ref. 76), or some more advanced procedure that takes the
shape of the electric “eld signal into account.17 As a side product of these
procedures, an approximation for the absorption spectrum can be directly
obtained.77

Besides the computation of transition probabilities, the projection on
the excited state can also take into account speci“c windows of transition
energies to simulate laser excitations and transition into multiple excited
states.

4. Electronic Structure Methods

Although many methods are available for electronic structure calculations,
only few can be applied for nonadiabatic trajectories dynamics simulations.
The “rst and most obvious condition to be satis“ed by the method is that
it should provide energies of electronically excited states. It should also be
able to provide the energies at strongly distorted nuclear geometries and
it should be fast enough to allow the computation of tens of thousands of
single points composing the trajectory ensemble.

Besides energies, the method must provide energy gradients for excited
states, preferentially computed by analytical procedures. This issue is
discussed in more details in Sec. 5. The computation of nonadiabatic
coupling terms or other quantities allowing the estimation of nonadiabatic
transition probabilities is a “nal requirement to the method. This point is
addressed in Sec. 6 (see also Sec. 2.3).

Nonadiabatic events usually occur in regions of the nuclear con“gu-
ration space where the electronic wave function has strong multirefer-
ence character. This means that in general single-reference methods fail
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to adequately describe the dynamics close to regions where nonadiabatic
events occur, like conical intersections with the ground state and their
neighborhoods. This limitation precludes the usage of methods based on
single-reference coupled cluster theory (CCSD, CC2, EOM-CC, SAC-CI)
and single-reference con“guration interaction (CI) theory, although these
methods can in principle still be used in investigations involving conical
intersections between excited states.78

The computationally e�cient time-dependent density functional theory
(TD-DFT) method is inadequate to describe regions of multireference char-
acter as well. The problem arises not due to the single-reference char-
acter of the method, which can be compensated by inclusion of non-
dynamic correlation in many exchange functionals, but mostly because
of the linear response approximations in the time-dependent approach.79

Another limitation of TD-DFT method is the poor description of charge-
transfer states, an issue that hasbeen addressed by development of
new functionals.80 DFT-based methods computing excited states by other
ways than the time-dependent approach are also available. Examples
are DFT/MRCI, 81 which has been shown to provide good description
of potential energy surface even close to conical intersections, and the
restricted open shell Kohn…Sham (ROKS) method82 whose performance
should be more limited. While ROKS has been used in nonadiabatic
trajectory dynamics simulations for many di�erent investigations, 82Š 85 the
MRCI/DFT still awaits development of analytical gradients for being useful
for dynamics.

Among semiempirical methods, similar inadequacies concerning the
single-reference character are expected from methods like ZINDO/S and
single reference CI expansions based on popular methods like PM3 and
AM1. This has led to development of multireference approaches18,19

opening the possibility of dynamics investigations of relatively large
molecules.37 An important issue is still to establish parametrizations
adequate to describe large portions of conformational spaces of several
classes of molecules.

Ab initio multireference (MR) methods based on the con“guration inter-
action (CI) with singles and doubles or the coupled cluster (CC) ansatz
are computationally demanding and dynamics investigations based on such
methods are still restricted to relatively small molecules.86 MRCI restricted
to single excitations has demonstrated a good potential for dynamics
simulations.31 Recent development of analytical gradients for multiref-
erence perturbation theory (MRPT2) methods20 including the popular
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complete active space (CASPT2) version is also a promising fact for
dynamics simulations of medium sized molecules in the near future as
soon as analytical nonadiabatic coupling terms are made available. In
Ref. 87, e�cient numerical procedures are proposed to obtain nonadiabatic
couplings terms at CASPT2 level.

Currently, the most frequently used ab initio method applied in nona-
diabatic trajectory dynamics simulations has been the multicon“gura-
tional self-consistent “eld (MCSCF) method, in particular in its CASSCF
version.29,30,34,74,88,89 It allows dynamics simulations for few picosends of
molecules of the size of important biological monomers like amino acids
and nucleobases. The MCSCF method, however, has intrinsic problems,
which have to be addressed in each simulation. First, ionic states are
computed systematically too high, which leads to an overestimation of exci-
tation energies into 1�� � states in the Franck…Condon region. The origin
of the problem is related to the lack of �/� correlation in usual CAS
spaces.90,91 Second, the missing dynamical correlation may lead to inad-
equate descriptions of excited-state barriers and minima,92 which demands
careful comparison between potential energy curves computed at MCSCF
and correlated levels prior dynamics simulations. Third, orbital rotations
between the virtual and doubly occupied spaces and the active space are
often source of discontinuities in the potential energy surfaces during the
simulations.93 This last problem is much alleviated by more sophisticated
construction of multicon“gurational spaces, like combinations of GVB-PP
and CAS spaces.36

Whatever is the chosen electronic structure method, the size of
the molecule will always represent a major limitation, which is espe-
cially dramatic for investigations in solvents, solid matrices and macro-
molecular environments. This limitation has been overcome by use of
hybrid methods. Quantum-mechanical/molecular-mechanical (QM/MM)
schemes94 are starting to be used in nonadiabatic trajectory dynamics
simulations32,37,89 and have big potential for further investigations.

5. Analytical Gradients

In this section, we present an overview of some of the general features
of MCSCF and MRCI analytic energy gradients. A more detailed and
complete discussion is given in Refs. 95 and 96. Derivation of analytical
gradients at the MRPT2 level is discussed in Ref. 20. The con“guration
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state functions (CSF) expansion coe�cients for these wave functions are
variationally determined, and this allows the Hellmann…Feynman theorem,
using second-quantized conventions for the Hamiltonian operator, to be
exploited. The choice of orbitals for the MRCI expansion is somewhat
arbitrary because of redundant orbital rotation variables associated with
the MCSCF expansion space,95,97,98 and in certain situations the resolu-
tion of these rotations must be accounted for when computing the MRCI
energy gradient. One of the challengesis to develop and implement general
e�cient procedures that allow for all of these possibilities for both the
MCSCF and MRCI wave functions.

A formal approach that meets this challenge of generality and e�ciency
is based on a sequence of successive geometry-dependent orbital transfor-
mations in which the e�ects of individual constraints of the orbitals may
be considered individually. In the straightforward case, there would be four
orbital basis sets.

� [C ](R ) = � (R ) C(0), (55)

� [S](R ) = � [C ](R ) S[C ](R )Š 1/2 , (56)

� [K ](R ) = � [S](R ) exp(K ), (57)

� [Z ](R ) = � [K ](R ) exp(Z). (58)

The basis� (R ) is the atom-centered basis; as the atom centers move within
the molecular geometry, the associated basis functions move along with
them. The C(0) matrix contains the fully optimized and resolved orbital
coe�cients at the reference geometry denoted, for convenience,R = 0. The
basis � [C ](R ) is a geometry-dependent basis that generally is orthonormal
only at R = 0. The symmetric positive-de“nite matrix S[C ](R ) is the orbital
overlap matrix in the � [C ](R ) basis, and it is used to de“ne the basis
� [S](R ), which is orthonormal at all R . The basis � [K ](R ) is the energy-
optimized orthonormal orbital basis de“ned in terms of the skew-symmetric
matrix K whose nonzero elements correspond to the essential MCSCF
orbital rotation parameters. Finally, � [Z ](R ) is the fully resolved orbital
basis de“ned in terms of the skew-symmetric matrix Z whose nonzero
elements correspond to the redundant MCSCF orbital rotation parame-
ters. The two sets of orbital rotation parameters, essential and redundant,
are disjoint in the sense that a nonzeroK pq element implies a zeroZpq

element, and a nonzeroZpq element implies a zeroK pq element. It is
this “nal orbital basis that is used to de“ne the MRCI wave function at
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the reference geometry. In this formulation, the orbital bases� [K ](R ) and
� [Z ](R ) are orthonormal because the transformation matrices exp(K ) and
exp(Z) are intrinsically orthogonal; thus no additional constraints need to
be satis“ed, and no additional optimization variables, particularly in the
form of Lagrange multipliers, are introduced.

The general approach to computing a particular analytic energy gradient
will be similar for all of the electronic structure methods discussed in this
section. The energy as a function ofR will be written in terms of the
geometry-dependent one- and two-electron integrals in the most appro-
priate orbital basis. This will involve also the geometry-dependent density
matrices, transition density matri ces, and various other combinations of
these quantities such as geometry-dependent Fock matrices. Expansion
techniques will be used to determine the “rst-order dependence of the
energy on the various geometry-dependent quantities at the reference geom-
etry R = 0. Finally, the transformation properties of these quantities,
consistent with Eqs. (55)…(58), will be used as necessary to simplify the
expressions, to isolate the geometry-dependent factors from the geometry-
independent factors, and eventually to express the analytic energy gradient
in the most computationally e�cient form possible.

5.1. MCSCF gradient

We “rst summarize some of the important features of the MCSCF gradient
for a single electronic state. A trial MCSCF wave function may be written
in the � [S](R ) orbital basis as

|� trial (R )� = exp( �K (R )) exp( �P(R )) |ref (R ); [S]� , (59)

with

�K (R ) =
�

r,s

K (R )rs �Ers =
�

r>s

k(R )(rs )

�
�Ers Š �Esr

�
, (60)

�P(R ) = |p(R )��ref (R )| Š | ref (R )��p (R )|, (61)

|p(R )� =
N csf�

m

pm (R )| �m; [S]� . (62)

The vector elements k(rs ) = K rs = ŠK sr for r > s are the unique
essential orbital variation parameters. |p(R )� is some arbitrary wave func-
tion in the NCSF Š 1 dimensional subspace orthogonal to|ref (R )� , which
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itself is an arbitrary, normalized, reference wave function. This reference
wave function may be chosen to be either a ground or an excited elec-
tronic state; a ground state would correspond to the lowest Hamiltonian
matrix eigenpair at R = 0, whereas an excited state would correspond
to a higher eigenpair. The operator �P(R ) may be written either in terms
of orthonormal linear combinations of CSFs or the primitive CSF basis in
which the computational procedures are most e�cient. This trial wave func-
tion parameterization allows for arbitrary orbital variations and arbitrary
CSF expansion coe�cient variations relative to those of the reference func-
tion |ref(R )� . It is convenient to take |ref(R )� to be the optimized MCSCF
wave function at R = 0, and at displaced geometries to be the wave func-
tion with the same normalized CSF expansion coe�cients, 	 cmc (0)	 2 = 1,
and represented in the corresponding orthonormal� [S](R ) orbital basis.
This reference wave function will be denoted|mc(0);[S]� , and there is a
corresponding reference PES associated with this reference wave function
de“ned as

E ref (R ) = �mc(0); [S] | �H [S](R ) | mc(0); [S]�

=
�

r,s

h[S]
rs (R )�mc(0); [S] | �Ers | mc(0); [S]�

(63)
+

1
2

�

p,q,r,s

g[S]
pqrs (R )�mc(0); [S] | �epqrs | mc(0); [S]�

= T r(h[S](R )D mc [S](0)) +
1
2

T r(g[S](R )dmc [S](0)) .

The last expression in particular shows that all of the geometry dependence
of this reference energy surface derives from the geometry dependence of
the one- and two-electron integralsthat de“ne the second-quantized Hamil-
tonian operator. The density matrices D mc [S](0) and dmc [S](0) are geom-
etry independent because (1) they depend on the geometry-independent
coupling coe�cients, and (2) they depend on the “xed, reference-geometry,
CSF expansion coe�cients.

The trial energy expectation value may then be written

E trial (K , p; R ) = � � trial (R ) | �H | � trial (R )�

= �mc(0); [S] | exp(Š �P(R )) exp(Š �K (R )) �H (64)

× exp( �K (R )) exp( �P(R )) | mc(0); [S]� .
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The commutator expansion exposes the order-by-order dependence of the
trial energy on the K rs (R ) and pm (R ) parameters:

E trial (k(R ), p(R ); R ) = E ref (R ) + ( k(R )T p(R )T )
�

forb (R )
fcsf (R )

�

(65)

+
1
2

( k(R )T p(R )T )
�

G orb,orb (R ) G orb, csf (R )
G csf ,orb (R ) G csf ,csf (R )

� �
k(R )
p(R )

�
+ · · ·

Explicit expressions for the f(R ) and G(R ) subblocks have been given
elsewhere (e.g. Ref. 95 and referencestherein). It is sometimes convenient
to collect the parametersk(R ) and p(R ) together into a vector � (R ), which
allows the trial energy to be written

E trial (� (R ); R ) = E ref (R ) + � (R ) · f (R ) +
1
2

� (R )T G(R )� (R ) + · · ·

(66)

f(R ) is the gradient of the energy with respect to wave function variations
and consists of the forb (R ) and fcsf (R ) partitions, which correspond to
orbital and CSF variations respectively. Similarly, the symmetric Hessian
matrix G(R ) consists of the four partitions indicated above. At any arbi-
trary R , the MCSCF wave function parameters � mc (R ) are those that
satisfy the variational conditions

�E trial (� (R ); R )
� �

�
�
�
�
� mc (R )

= 0. (67)

This results in a coupled set of nonlinear equations

0 = f mc (R ) + G mc (R )� mc (R ) + O(� mc (R )2) · · · (68)

that must be satis“ed by the parameters� mc (R ) at arbitrary R . There is no
closed-form solution to this equation. However, this equation is su�cient to
determine the corresponding Taylor expansion of these geometry-dependent
parameters relative to the reference geometryR = 0 values. Di�erentiating
Eq. (68) with respect to a displacement of a representative atomic center
coordinate denotedx, evaluation at the reference geometry, and using the
relation � mc (0) = 0 gives

� mc (0)x = ŠG mc (0)Š 1f mc (0)x . (69)
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The superscript x denotes di�erentiation. This gives the “rst-order change
in the MCSCF orbitals and CSF expansion coe�cients at the reference
geometry to the displacement alongthe coordinate direction labeled byx.

The MCSCF energy at arbitrary R is given by Eq. (59) with the speci“c
K mc (R ) and pmc (R ) parameters determined from Eq. (68). Di�erentiation
of this energy expression with respectto a geometry displacement and eval-
uation at R = 0 gives an element of the MCSCF analytic energy gradient

E mc (0)x = E ref (0)x + � (0) · f (0)x + � (0)x · f (0) + O(� (0)1). (70)

Truncation follows from the relations f (0) = 0 and � (0) = 0, and the result
is an example of the Hellmann…Feynman theorem using second-quantized
conventions for the de“nition of the Hamiltonian operator. That is, the
“rst-order wave function does not contribute to the single-state MCSCF
energy gradient. [As discussed later, the “rst-order wave function term in
Eq. (70) will contribute for other energy expressions.] The MCSCF energy
gradient may be written

E mc (0)x = E ref (0)x = �mc(0); [S] | �H [S](0)x | mc(0); [S]�

= cmc (0)T �H [S](0)x cmc (0) (71)

= T r(h[S](0)x D mc [S](0)) +
1
2

T r(g[S](0)x dmc [S](0)) .

This last expression shows that the density matrices contain the
displacement-independent factors of the energy gradient elements, and the
derivative integrals contain all of the displacement-dependent factors. If
the energy gradient were evaluated using this expression, the entire set of
derivative terms h[S](0)x and g[S](0)x for all 3Nat possible displacement
directions x would need to be computed (ignoring for the moment any
simpli“cations due to the use of translational and rotational invariance and
point group symmetry). This would require e�ort proportional to 3 Nat .
A more e�cient approach is to transform the gradient expression back to
the original AO basis. Using the above sequence of orbital transformations,
the gradient component may be written as

E mc (0)x = T r(h[C ](0)x D mc [C ](0)) +
1
2

T r(g[C ](0)x dmc [C ](0))

Š
1
2

T r({ h[C ](0); S[C ](0)x } D mc [C ](0))

Š
1
4

T r({ g[C ](0); S[C ](0)x } dmc [C ](0)) (72)
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= T r(h[C ](0)x D mc [C ](0)) +
1
2

T r(g[C ](0)x dmc [C ](0))

Š T r(S[C ](0)x Fmc [C ](0)) (73)

= T r(h[� ](0)x D mc [� ](0)) +
1
2

T r(g[� ](0)x dmc [� ] (0))

Š T r(S[� ](0)x Fmc [� ](0)) . (74)

The notation { A ; T } denotes a symmetrized one-index transformation of
the array A with the transformation matrix T . The derivative overlap
terms, S[C ](0)x and S[� ](0)x , appear here because the orbital basis� [C ](R )
is nonorthogonal at R �= 0. The trace relationships such as, for example,
Tr(( CT h[� ]C) D [C ]) = T r(h[� ](CD [C ]CT )) de“ne implicitly the orbital
basis transformation properties of the various density and Fock matrix
arrays in these expressions.

This “nal expression is important because the two-electron Hamiltonian
integrals are very sparse in the atom-centered AO basis. A particular two-
electron repulsion integral depends on, at most, only four atom centers,
or twelve Cartesian displacements, out of the 3Nat total possible displace-
ments. Consequently, there are only about twelve times as many nonzero
AO derivative integrals as undi�erentiated AO integrals. By exploiting this
sparseness, the trace operation may be computed in the AO basis with
e�ort that is formally independent of Nat , i.e. O(N 0

at ) = O(1). This simpli-
“cation a�ects the number of arithmetic operations required to evaluate the
energy gradient and the total amount of memory and external storage space
that is required for the computation. Thus, the analytic gradient proce-
dure described above is both more e�cient and more accurate than a “nite
di�erence approach, and it has similar advantages when these gradients
are used to “t molecular potential energy surfaces, to optimize molecular
geometries, or when they are used directly to compute classical dynamical
trajectories. In Ref. 98, molecular geometry optimizations were performed
for 20 molecules using MCSCF wave functions and with a variety of orbital
basis sets and a wide range of CSF expansion spaces. The e�ort for the
gradient evaluations for these molecules required between 8.0% and 84.4%
of the total computational e�ort (including integral evaluation and wave
function optimization), with a mean of 58.1%. This demonstrates that the
computational procedure presented above is very e�cient, that it is indeed
independent ofNat , and that it may be applied to any molecule for which
the MCSCF wave function optimization itself is practical.
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5.2. State-averaged MCSCF gradient

It is often desirable to compute potential energy surfaces for several elec-
tronic states using a common set of molecular orbitals. This simpli“es the
computation of transition propertie s between electronic states (including
nonadiabatic coupling elements), and because the individual energies corre-
spond to eigenpairs of the same Hamiltonian matrix, the bracketing theorem
allows the association of particular variational excited-state eigenpairs with
the exact full-CI electronic state energies and wave functions. However, opti-
mization of the orbitals for a speci“c electronic state can introduce bias in
the computed energies in which one state is described preferentially to other
states. This might, for example, arti“cia lly increase vertical excitation ener-
gies to higher states and arti“cially reduce excitation energies from lower
states, or it might arti“cially introduce spurious Rydberg or ionic char-
acter from one state into the other states. This situation can be addressed
by optimizing the orbitals to minimize an average energy of the states of
interest

Ē (R ) =
N av�

J

wJ EJ (R ). (75)

Nav is the number of states included in the averaging procedure. TheEJ (R )
energies are the Hamiltonian eigenvalues corresponding to the states of
interest. The weight factors are positive constants,wJ > 0, independent of
the displacement R , with the normalization � J wJ = 1. This complicates
somewhat the speci“cation of the wave function because the CSF expansion
coe�cients associated with each electronic state J are still optimized for
the energyEJ (R ) of that speci“c state, but the orbitals, which are shared
by all the states, are optimized to minimize Ē (R ) rather than one of the
individual states. We brie”y summarize the impact of this state-averaging
procedure on the computation of the energy gradients.

The trial wave function parameterization of Eqs. (59)…(62) is general-
ized as

�P(R ) =
N av�

J

�PJ (R ), (76)

�PJ (R ) = |pJ (R )��mc J (0)| Š | mcJ (0)��p J (R )|, (77)

|pJ (R )� =
N CSF�

m

pJ
m (R )| �m; [S]� . (78)
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In analogy to the single-state case, the reference state|mcJ (0)� is de“ned
with the � [S](R ) orbitals and with the “xed CSF coe�cients cJ,mc (0) corre-
sponding to the J th eigenpair at R = 0. This generalization allows an
averaged trial energy to be written

Ē trial (k , p1:N av ; R ) =
N av�

J

wJ E trial
J (k, p1:N av ; R )

(79)

=
N av�

J

wJ �mcJ (0); [S] | exp(Š �P) exp(Š �K ) �H exp( �K ) exp( �P) | mcJ (0); [S]� .

(The R dependence will be dropped for brevity in the notation in some
of the expressions in this section.) The vectorp1:Nav,mc (R ) corresponds
to the concatenation of the individual pJ (R ) vectors for each of the states
included in the state average. The commutator expansion reveals the order-
by-order dependence of the trial energy on the wave function variation
parameters:

Ē trial (k , p1:N av ; R ) = Ē ref (R ) + ( kT p1:N av ,T )

�
f̄orb

f 1:N av
csf

�

(80)

+
1
2

�
kT p1:N av ,T

�
�

Ḡ orb,orb l G 1:N av
orb, csf

G 1:N av
csf ,orb G 1:N av

csf ,csf

� �
k

p1:N av ,T

�
+ · · · ,

with the state-averaged quantities

Ē ref (R ) =
N av�

J

wJ E ref
J (R ), (81)

f̄orb (R ) =
N av�

J

wJ f J
orb (R ), (82)

Ḡ orb,orb (R ) =
N av�

J

wJ Ḡ J
orb,orb , (83)

de“ned in terms of their state-speci“c components. See Ref. 96 for further
details of the formulation of these gradient and Hessian matrices. Imposing
the stability condition on this trial energy results in the coupled nonlinear
equation analogous to Eq. (68) that de“nes the optimal parameterskmc (R )
and p1:Nav,mc (R ) at all R . Di�erentiation of this expression with respect
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to an atom center displacement and evaluation at the reference geom-
etry gives the “rst-order equation analogous to Eq. (69) for the orbital
and CSF response in terms of these augmented gradient and Hessian
matrices

�
k(0)x

p1:N av (0)x

�
= Š

�
Ḡ orb,orb (0) G 1:N av

orb, csf (0)

G 1:N av
csf ,orb (0) G 1:N av

csf ,csf (0)

� Š 1 �
f̄orb (0)x

f 1:N av
csf (0)x

�

. (84)

At the reference geometry f̄orb (0) = 0, f 1:N av
csf (0) = 0, and k(0) = 0.

However, unlike the single-state situation, this does not mean thatfJ
orb (0) =

0 for any particular state J , only that the weighted summation Eq. (82)
satis“es this condition. If all the states simultaneously are described well
with the averaged orbitals, then the individual elements of the vectors
fJ
orb (0) would be small in magnitude, whereas if there is strong competi-

tion among the states to describe the character of the orbitals, then the
individual state gradient vectors might have large elements.

Substitution of the optimal parameters into the trial energy expression
then results in Ē mc (kmc , p1:N av ,mc ; R ), the state-averaged energy at allR .
Di�erentiation with respect to a displacement and evaluation at R = 0
gives, in principle, the state-averaged energy gradientĒ mc (0)x analogous
to Eq. (71), in terms of the state averaged density matrices. However, it
is not the gradient of the state-averagedĒ mc (R ) that is of interest; it is
rather the gradients of the individual states that we seek. It is the energy
gradients of the individual states that determine, for example, the classical
trajectories on these PESs. This gradient is given by substituting thek(0)x

and pJ (0)x for a particular state into the st ate-speci“c energy expression,
Eq. (70). This gives

E mc
J (0)x = E ref

J (0)x + k(0)x · f J
orb (0). (85)

In contrast to Eq. (71), the generally nonzero state-speci“c orbital gradient
terms fJ

orb (0) are seen to contribute to the energy gradient expression
through the “rst-order change in the orbitals. The next step is to express
this contribution to the gradient in a form that allows for e�cient evalua-
tion. To this end, Eq. (85) is written in the slightly modi“ed form

E mc
J (0)x = E ref

J (0)x + ( k(0)x,T , p1:N av (0)x,T )

�
f J
orb (0)

01:N av

�

(86)
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and Eq. (84) is used to give23,95,96,99,100 the following sequence of identities

E mc
J (0)x = E ref

J (0)x Š (f̄orb (0)x,T , f 1:N av
csf (0)x,T )

×

�
Ḡ orb,orb (0) G 1:N av

orb, csf (0)

G 1:N av
csf ,orb (0) G 1:N av

csf ,csf (0)

� Š 1 �
f J
orb (0)

01:N av

�

(87)

= E ref
J (0)x + ( f̄orb (0)x,T , f 1:N av

csf (0)x,T )

�
 J

orb (0)

 1:N av ,J
csf (0)

�

= E ref
J (0)x + f̄orb (0)x ·  J

orb (0) +
N av�

I

f I
csf (0)x ·  I,J

csf (0). (88)

The vectors � J
orb (0) and � J

csf (0) in these expressions involveG(0) and f(0)
arrays that consist only of undi�erentiated quantities, namely integrals and
density matrices at the reference geometry. These� J (0) vectors can be eval-
uated once and reused for all possiblex, and the associated e�ort is thereby
independent ofNat . As a practical matter, all Nav of the � J (0) vectors may
be computed simultaneously during a single iterative procedure. As written,
this expression for the energy gradient would require the computation of
the f̄orb (0)x and fI

csf (0)x vectors for all 3Nat possible displacements. We
next examine the e�cient computation of these last contributions to the
energy gradient.

The � J
orb (0) term may be written

f̄orb (0)x · � J
orb (0) = Š2T r(� J

orb F̄ (0)x )

= ŠT r(h[S](0)x { D̄ (0); � J
orb } )

(89)
Š

1
2

T r(g[S](0)x { d̄(0); � J
orb } )

= T r(h[S](0)x D̄ � J ) +
1
2

T r(g[S](0)x d̄ � J ),

with � J
orb,pq = Š� J

orb,qp =  J
orb (0)(pq) . The � J

csf (0) term may be written

N av�

I

f I
csf (0)x · � I,J

csf (0) = 2
N csf�

m

N av�

I

 I,J
csf (0)m � �m | �H [S](0)x | mcI (0)�

(90)
= T r(h[S](0)x D̄ J ;� ) +

1
2

T r(g[S](0)x d̄J ;� ),
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with

D̄ J ;�
pq =

N csf�

m

N av�

I

 I,J
csf (0)m � �m | �Epq + �Eqp | mcI (0)�

(91)

d̄J ;�
pqrs =

1
2

N csf�

m

N av�

I

 I,J
csf (0)m � �m | �epqrs + �eqprs + �epqsr + �eqpsr | mcI (0)� .

These gradient contributions thereby assume the same general form as the
E ref

J (0)x expression with the e�ective density matrices denotedD̄ � J and
d̄� J , which are constructed from one-index transformed averaged density
matrices at R = 0, and the averaged transition density matrices denoted
D̄ J ;� and d̄J ;� . Combining these terms together allows the energy gradient
for state J to be written as

E mc
J (0)x = T r(h[S](0)x (D J + D̄ � J + D̄ J ;� ))

+
1
2

T r(g[S](0)x (dJ + d̄� J + d̄J ;� )) (92)

= T r(h[S](0)x D J, total ) +
1
2

T r(g[S](0)x dJ, total ).

In this last form, it is clear that the analytic energy gradient can be written
in the atom-centered AO basis using the same sequence of transformations
as in Eqs. (71)…(74).

E mc
J (0)x = T r(h[� ] (0)x D J, total[ � ] (0)) +

1
2

T r(g[� ](0)x dJ, total[ � ] (0))
(93)

Š T r(S[� ](0)x FJ, total[ � ] (0)) .

As with the single-state wave function optimization case, this allows the
energy gradient for each stateJ within the state-averaging procedure to
be computed with e�ort that is formally independent of Nat . The addi-
tional e�ort corresponding to Eqs. (87)…(92) is comparable to that of a
single iteration of the state-averaged MCSCF energy optimization proce-
dure. Thus, we see that if the state-averaged wave functions and energy can
be computed, then it is also practical to compute the energy gradients for
the states of interest.

5.3. MRCI gradient

In most cases, the expansion space for a CI wave function consists of the
union of the underlying MCSCF expansion space, along with all CSFs
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generated from certain excitations from these reference CSFs. For example,
an MRCI-S expansion would include all single excitations from the MCSCF
occupied orbitals into the secondary orbitals, an MRCI-SD expansion would
include all single and double excitations, and so on. The CSF expansion
coe�cients are variationally optimized, which means that the eigenvalue
equation

�H [Z ](R )cJ (R ) = E ci
J (R )cJ (R ) (94)

is satis“ed at all R . Di�erentiating this expression with respect to an atomic
center displacement and evaluation atR = 0 results in

E ci
J (0)x = cJ (0)T �H [Z ](0)x cJ (0)

= � ciJ (0); [Z ] | �H [Z ](0)x | ciJ (0); [Z ]�
(95)

=
N csf�

m,n

cJ
m (0)cJ

n (0)� �m; [Z ] | �H [Z ](0)x | �n; [Z ]�

= T r(h[Z ](0)x D J,ci [Z ] (0)) +
1
2

T r(g[Z ](0)x dJ,ci [Z ](0)) ,

with the normalization 	 cJ (0)	 2 = 1. As for the MCSCF energy gradient
expression in Eq. (71), the “rst-order CI wave function response does not
contribute to the energy gradient, and the Hellmann…Feynman theorem
is seen to be satis“ed for the CI energy gradient. In order to avoid the
e�ort of constructing the derivative integrals in the � [Z ](R ) basis, we use
the orbital transformation sequence in Eqs. (56)…(58) and the Hamiltonian
commutator expansion to express the CI energy gradient in the� [S](R )
basis.

E ci
J (0)x = � ciJ (0); [S] | �H [S](0)x + [ �H [S](0), K (0)x ]

+ [ �H [S](0), Z (0)x ] | ciJ (0); [S]� (96)

= � ciJ (0); [S] | �H [S](0)x | ciJ (0); [S]� + kmc (0)x f J,ci
orb (0)

+ zmc (0)x f J,ci
orb (0). (97)

The “rst two terms are of the type previously considered in Eqs. (85)…(91)
for the state-averaged MCSCF energy gradient, except that the CI density
matrices and CI orbital rotation gradient vector elements are used rather
than MCSCF density elements. Before discussing these terms further, we
focus “rst on the zmc (0)x term.
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The CI orbital rotation gradient vector is nonzero because the orbitals
are optimized for either a single-state MCSCF wave function or for a state-
averaged MCSCF energy rather than for the CI wave function. However,
when the CSF expansion coe�cients satisfy the eigenvalue equation of
Eq. (94), then the f J,ci

orb,pq elements associated with CI-redundant orbital
rotations are zero even without an orbital optimization being performed.95

The most common wave function expansions discussed above, of the form
MRCI-S, MRCI-SD, etc., do have redundant orbital rotations associated
with the invariant orbital subspaces. These include, for example, the
subspace of orbitals that are doubly occupied in all of the reference CSF,
the subspace of orbitals that are unoccupied in all of the reference CSFs,
and any subsets of the active MCSCF orbitals that correspond to full-CI
subspaces. A more general discussion of invariant orbital subspaces is given
in Ref. 95. The orbital rotations that are redundant for both the MCSCF
and the CI wave functions do not contribute to the energy gradient through
either the second or third terms in Eq. (97). Some MRCI expansions are
chosen such that they have the exact same partitionings of essential and
redundant rotation parameters as the associated MCSCF reference expan-
sion; for these expansions, the third term in Eq. (94) does not contribute
to the CI energy gradient, all nonzero contributions are through the “rst
two terms only. Another situation that should be mentioned is a full-CI
expansion in the full orbital basis; in this situation all orbital rotations are
redundant in the CI wave function, f J,ci

orb (0) = 0, neither the second nor the
third term in Eq. (97) contribute, an d the CI energy gradient is computed
entirely from just the “rst term in Eq. (97).

It is common to constrain the low-lying core orbitals to be doubly occu-
pied in all of the CI expansion CSFs, or sometimes also some of the spectator
valence orbitals are similarly constrained. Higher-lying virtual orbitals are
sometimes constrained to be unoccupied in all CI expansion CSFs. These
orbitals are called frozen coreand frozen virtual orbitals respectively. This
corresponds to a situation in which an orbital rotation would be redundant
in the MCSCF expansion (a nonzerozmc

pq ) and essential in the CI expan-
sion [a nonzerof J,ci

orb (0)pq]. Similarly, if an MCSCF active orbital with large
occupation is treated as if it is doubly occupied when generating the CI
expansion space, or if an MCSCF active orbital with small occupation is
treated as if it is unoccupied when generating the CI expansion, then this
can also result in redundant MCSCF rotations that are essential in the CI
expansion. In these cases, the last term in Eq. (97) does contribute to the
energy gradient expression.
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There are several distinct resolutions (or canonicalizations) that have
been implemented. We brie”y summarize three of these: the natural orbital
resolution and two di�erent Fock matrix resolutions. Additional details of
these orbital resolutions are given in Ref. 95. With natural orbital resolu-
tion, the orbitals within an invariant orbital subspace are transformed so
that the one-particle density matrix D mc [Z ](R ) is diagonal. In the case
of state-averaged orbital optimization, the diagonal condition would be
imposed on the state-averaged one-particle density rather than the MCSCF
density for a speci“c state. Di�erentiation with respect to a displacement
and evaluation at the reference geometry results in a gradient contribution
that may be written

zmc (0)x · f J,ci
orb (0) = pmc (0)x · f J,D

csf (0). (98)

The e�ort for the computation o f the e�ective gradient vector f J,D
csf (0) is

independent ofNat .
Natural orbital resolution is one of the typical resolutions imposed on

the active orbitals in an MCSCF wave function. It cannot be imposed on the
inactive orbitals (doubly occupied in all MCSCF expansion CSFs) because
this subblock of the density matrix is invariant to orthogonal orbital trans-
formations within this occupation-degenerate orbital subspace. Similarly,
natural orbital resolution cannot be imposed on the MCSCF unoccupied
orbitals or within invariant active orbital subspaces that happen to have
occupation degeneracies. Consequently, other orbital resolutions must be
imposed within these invariant orbital subspaces. One common resolution
in these cases is diagonalization of the Fock matrix

Qmc [Z ]
pq (R ) = 2 h[Z ]

pq (R ) +
�

r.s

(2g[Z ]
pqrs (R ) Š g[Z ]

prqs (R ))D mc [Z ]
rs (R ). (99)

Di�erentiation with respect to a displacement and evaluation at R = 0
gives for these gradient contributions

zmc (0)x · f J,ci
orb (0) = T r(h[S](0)x D J,Q (0)) +

1
2

T r(g[S](0)x dJ,Q (0))
(100)

+ kmc (0)x · f J,Q
orb (0) + pmc (0)x · f J,Q

csf (0).

The quantities D J,Q (0), dJ,Q (0), f J,Q
orb (0), and f J,Q

csf (0) are all indepen-
dent of the displacement coordinate x, they depend only on reference
geometry integrals and density matrices, and the associated computation
e�ort is independent of Nat . Resolution with the Fock matrix Qmc (R )
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is applicable to MCSCF inactive, active, and unoccupied orbitals, but it
cannot resolve individual orbitals that have degenerateQmc (R ) matrix
eigenvalues. In order to resolve orbitals in this case, diagonalization of
the matrix Fmc [Z ](R ) may be imposed. Di�erentiation with respect to a
displacement and evaluation atR = 0 gives for these gradient contributions

zmc (0)x · f J,ci
orb (0) = T r(h[S](0)x D J,F (0)) +

1
2

T r(g[S](0)x dJ,F (0))
(101)

+ kmc (0)x · f J,F
orb (0) + pmc (0)x · f J,F

csf (0),

in terms of the displacement-independent quantities D J,F (0), dJ,F (0),
f J,F
orb (0), and f J,F

csf (0).
Combining Eqs. (98), (100), and (101) together allows the CI energy

gradient in Eq. (97) to be written using state-averaged orbital and CSF
gradients in the form

E ci
J (0)x = T r(h[S](0)x D J, total ) +

1
2

T r(g[S](0)x dJ, total )
(102)

+ ( f̄ mc
orb (0)x,T , f 1:N av ,mc

csf (0)x,T )

�
 J, total

orb (0)

 1:N av ,J, total
csf (0)

�

.

This is exactly the form that was considered in Eqs. (88)…(92), and it allows
the CI energy gradient to be computed in the AO basis as in Eq. (93).

E ci
J (0)x = T r(h[� ](0)x D J, total[ � ] (0)) +

1
2

T r(g[� ] (0)x dJ, total[ � ] (0))
(103)

ŠT r(S[� ](0)x FJ, total[ � ] (0)) .

The orbital resolutions discussed above may be combined in a quite
”exible and general manner. Di�erent invariant orbital subspaces may be
resolved in di�erent ways, and the corresponding e�ective operators and
density matrices computed accordingly.

The total e�ort to construct the gradient vector is dominated, partic-
ularly for large CI expansions, by the e�ort to construct the CI density
matrices D J,ci (0) and dJ,ci (0). This requires roughly the same e�ort as
that of a single Hamiltonian matrix-vector product operation during the
iterative solution of the eigenvalue equation, Eq. (94), at the reference
geometry. A consequence of this is that, unlike most other electronic struc-
ture methods, the CI energy gradient requires typically less e�ort than the
computation of the CI wave function and energy itself. For the 20 molecules
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studied in Ref. 98, the e�ort for the MRCI gradient evaluations required
between 2.5% and 52.2% of the total computational e�ort, with a mean
of 9.9% over the whole set of molecules and basis sets. This demonstrates
that the computational procedure presented above is very e�cient, that it
is independent ofNat , and that it may be applied to any molecule for which
the CI wave function optimization itself is practical.

6. Nonadiabatic Coupling Terms

The nonadiabatic coupling vector FJI (R ) between two electronic states
J and I at a molecular geometry R is given by Eq. (10), and a repre-
sentative component of this vector will be denoted

f JI (R )x =
�

� J (R )
�
�
�
�

�
�x

�
�
�
� � I (R )

�

r
, (104)

wherex is one of the 3Nat coordinates of the atomic centers. In this section,
we summarize the computation of this nonadiabatic coupling vector at the
MCSCF and MRCI levels. This procedure is discussed in more detail in
Ref. 24. The computation of the nonadiabatic coupling vector at the EOM-
CC level is discussed in Ref. 78. The computation at the TD-DFT level is
discussed in Refs. 101 and 102 and references therein. A numerical imple-
mentation especially adapted for dynamics simulations at the CASPT2 level
is discussed in Ref. 87. The alternative use of time-derivative nonadiabatic
coupling terms is discussed in Sec. 6.2.

6.1. NAC vectors in MCSCF and MRCI formalism

Expansion of the electronic wave function in a CSF basis in the fully opti-
mized and resolved orbital basis� [Z ](R ) allows a wave function derivative
to be written as

�
�x

|� I (R )� =
�
�x

N csf�

m

cI
m (R )| �m(R ; [Z ])�

(105)

=
N csf�

m

�
�

�x
cI

m (R )
�

| �m(R ; [Z ])� +
N csf�

m

cI
m (R )

�
�x

| �m(R ; [Z ])� .

The CSF expansion in Eq. (105) can be either an MCSCF expansion or
a general MRCI expansion; with orbitals optimized for either single-state
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MCSCF or state-averaged MCSCF energies, the following equations are
the same in any case. The above separation in turn allows the nonadiabatic
coupling element to be written as two contributions

f JI (R )x = f ci
JI (R )x + f csf

JI (R )x , (106)

with

f ci
JI (R )x =

N csf�

m,n

cJ
m (R )

�
�

�x
cI

n (R )
�

� �m(R ; [Z ] | �n(R ; [Z ]�

(107)
= cJ (R ) · cI (R )x ,

f csf
JI (R )x =

N csf�

m,n

cJ
m (R )cI

n (R )� �m(R ; [Z ]) | �X | �n(R ; [Z ])��, (108)

with

�X [Z ]
pq (R ) =

�

p,q

X [Z ]
pq (R ) �Epq,

(109)
X [Z ]

pq (R ) =
�

� [Z ]
p (� ; R )

�
�x

� [Z ]
q (� ; R )d� .

These two contributions to the nonadiabatic coupling element will be exam-
ined separately. Di�erentiating Eq. (94) with respect to a coordinate and
evaluation at R = 0 gives an expression for the“rst-order response of the
CSF expansion coe�cients to a perturbation

( �H [Z ](0) Š E ci
I (0)1)cI (0)x = Š( �H [Z ](0)x Š E ci

I (0)x 1)cI (0). (110)

Multiplication from the left by cJ (0)T results in

f ci
JI (0)x = ( E ci

I (0) Š E ci
J (0))Š 1cJ (0)T �H [Z ](0)x cI (0)

= ( E ci
I (0) Š E ci

J (0))Š 1 (111)

×
�

T r(h[Z ](0)x D JI ,ci (0)) +
1
2

T r(g[Z ] (0)x dJI ,ci (0))
�

= ( E ci
I (0) Š E ci

J (0))Š 1
�

T r(h[S](0)x D JI ,ci (0))

+
1
2

T r(g[S](0)x dJI ,ci (0)) + kmc (0)x · f JI ,ci (0)

+ zmc (0)x · f JI ,ci (0)
�

. (112)
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Using the variational nature of cJ (R ) in this manner avoids the explicit
computation of cI (0)x in Eq. (107), which would be relatively expensive and
also the e�ort would be proportional to Nat . Equation (111) is analogous
to Eq. (95) but using the symmetrized transition density matrices D JI ,ci (0)
and dJI ,ci (0) in place of the state-speci“c CI density matrices in the trace
expressions and in the e�ective orbital gradient vectorsfJI ,ci (0). As with the
MCSCF and CI gradients discussed in the previous section, these density
matrices are the displacement-independent factors whereas the derivative
integrals are the displacement-dependent factors in this expression. The
expression in Eq. (112) can be transformed to the AO basis using the same
sequence of steps as in Eqs. (96)…(103) where the e�ective orbital gradient,
Fock matrices, and other quantities are all written in terms of the symmetric
transition density matrices rather than the state-speci“c density matrices
in the various orbital basis sets. Before considering this transformation, the
other contribution to the nonadiabatic coupling element is examined.

The f csf
JI (R )x coupling of Eq. (108) may be written24 in the � [Z ](R )

orbitals at R = 0 as

f csf
JI (0)x =

�

p,q

X [Z ]
pq (0)

�
ciJ (0)

�
�
� �Epq

�
�
� ciI (0)

��
. (113)

The relation 0 = S[Z ]
pq (0)x = X [Z ]

pq (0)+ X [Z ]
qp (0) shows that the orbital matrix

X [Z ](0) is skew-symmetric. This allows thef csf
JI (0)x coupling to be written

in terms of the skew-symmetric CI one-particle density

f csf
JI (0)x =

�

p,q

X [Z ]
pq (0)

1
2

�
ciJ (0)

�
�
� �Epq Š �Eqp

�
�
� ciI (0)

��

=
�

p,q

X [Z ]
pq (0)D (Š )JI

qp (0) (114)

= T r(X [Z ](0)D (Š )JI (0)) .

Using Eqs. (56)…(58) and evaluation atR = 0 gives

X [Z ]
pq (0) = X [C ]

pq (0) Š
1
2

S[C ]
pq (0)x + K mc (0)x

pq + Z mc (0)x
pq

(115)
=

1
2

(X [C ]
pq (0) Š X [C ]

qp (0)) + K mc (0)x
pq + Z mc (0)x

pq.

Because of the disjoint partitioning of the essential and redundant orbital
rotation elements, only one of the last two terms in Eq. (115) can be nonzero
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for a given orbital index pair pq. Equation (114) can then be written as

f csf
JI (0)x = T r(X [C ](0)D (Š )JI (0)) + T r(K mc (0)x D (Š )JI (0))

+ T r(Zmc (0)x D (Š )JI (0)) (116)

= T r(X [C ](0)D (Š )JI (0)) + kmc (0)x · f JI ,D
orb (0) + zmc (0)x · f JI ,D

orb (0),

with f JI ,D
orb (0)(pq) = 2 D (Š )JI

qp (0). Upon comparing Eq. (116) with Eq. (112),
it is clear that the common factors can be combined to give

f JI (0)x = f ci
JI (0)x + f csf

JI (0)x

= T r(X [C ](0)D (Š )JI (0))

+ ( E ci
I (0) Š E ci

J (0))Š 1
�

T r(h[S](0)x D JI ,ci [Z ](0))

+
1
2

T r(g[S](0)x dJI ,ci [Z ](0))
�

(117)
+ ( kmc (0)x + zmc (0)x ) ·

�
(E ci

I (0) Š E ci
J (0))Š 1f JI ,ci (0) + f JI ,D (0)

�

= T r(X [C ](0)D (Š )JI (0))

+ T r(h[S](0)x D JI ,ef f (0)) +
1
2

T r(g[S](0)x dJI ,ef f (0))

+ kmc (0)x · f JI ,ef f
orb (0) + zmc (0)x · f JI ,ef f

orb (0),

where the e�ective density matrices and orbital gradient vector include the
CI energy-di�erence factors as appropriate. The transformation steps of
Eqs. (97)…(103) may be applied to transform this expression to the AO
basis in which the derivative integral sparseness may be exploited.

f JI (0)x = T r(h[� ](0)x D JI ,total[ � ] (0)) +
1
2

T r(g[� ](0)x dJI ,total[ � ] (0))
(118)

Š T r(S[� ](0)x FJI ,total[ � ] (0)) + T r(X [� ] (0)x D (Š )JI [� ] (0)) .

Given the symmetric transition density matrices and e�ective orbital
gradient vectors, the analytic energy gradient procedure may be applied,
and the contributions from the “rst three terms in Eq. (118) may be
computed in a straightforward manner. The last term in Eq. (118) is
unique to the nonadiabatic coupling element. However, it involves only the
skew-symmetric component of the one-particle transition CI density matrix,
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which requires an insigni“cant additional e�ort to compute along with the
symmetric component that is used in the “rst terms. The above procedure
may be applied to both MCSCF and general MRCI wave functions.

Timings for this procedure have been given previously. In Ref. 24, for
example, it is seen that the e�ort required for all 3N at componentsx of the
nonadiabatic coupling vector for MRCI wave functions for H2CO is almost
exactly the same as that required for the computation of a single energy
gradient vector, which, as shown in Sec. 5, is typically only a small fraction
of the e�ort required for the energy and wave function optimization steps.
Thus, for all practical purposes, if the wave functions and energies can be
optimized for the states of interest, then the energy gradient vectors and
the nonadiabatic coupling vectors can also be computed.

6.2. Time-derivative NAC terms

The integration of Eq. (24) does not demand explicit knowledge of the nona-
diabatic coupling vector, but rather of its scalar product with the velocity
vector. An alternative approach to computing nonadiabatic coupling terms
during dynamics simulations, which takes advantage of this fact, is to
rewrite the Fkl · v product in terms of time derivatives61:

Fkl · v =
�

� k

�
�
�
�

�
�t

� l

�

r
� � kl . (119)

The � kl coupling terms can be evaluated by numerical di�erences

� kl

�
t Š

3
2

� t
�

�
1

2� t
[� � k (t Š 2� t) | � l (t Š � t) �

Š � � k (t Š � t) | � l (t Š 2� t)� ], (120)

� kl

�
t Š

1
2

� t
�

�
1

2� t
[� � k (t Š � t) | � l (t) � Š � � k (t) | � l (t Š � t) � ], (121)

� kl (t) �
1
2


3� kl

�
t Š

1
2

� t
�

Š � kl

�
t Š

3
2

� t
��

. (122)

Equations (120), (121), and (122) imply that the nonadiabatic coupling
term can be approximately obtained by overlaps of electronic wave func-
tions between subsequent time steps of the dynamics. This procedure was
introduced by Hammes…Schi�er and Tully61 in a context where nonadi-
abatic coupling vectors were not available at all. Recently, it has been
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employed in dynamics at TD-DFT, 103,104 TD-DFTB, 105 MCSCF,38 and
MRCI 38 levels. In particular, it is shown in Ref. 38 that the calculation of � kl

can represent an e�ective reduction ofcomputational costs in comparison
to the computation of Fkl . The use of wave function overlaps is also the
basis for the approximated hopping algorithm discussed in Ref. 62 and for
the local-diabatization method discussed in Ref. 18.

7. Dynamics Close to Conical Intersections

It is common practice to say that conical intersections act as funnels
for radiationless transitions to other electronic states. Although true, this
statement tends to oversimplify what really happens during the dynam-
ical process of internal conversion. Itneglects a series of questions such as
how the molecule reaches the conical intersection, how long it takes to do
so, which regions of the crossing seamare reached, how e�cient for nona-
diabatic transitions the intersections really are, and what happens after
the nonadiabatic transition. Some of these questions are often addressed by
conventional quantum chemical investigations, which are especially tailored
to unveil the pathways connecting the Franck…Condon region where the
molecule is initially photoexcited to the several conical intersections.92,106

Dynamics simulations represent one step further in this analysis in the sense
that they can give yields and time scales for activations of the pathways.

After the photoexcitation, the mol ecule can relax along di�erent path-
ways. Even dynamics of very simple molecules, such as substituted ethylenes
H2C=XH 2 (X = Si , N+ ), show complex behavior with splitting of trajecto-
ries between two di�erent reaction pathways.45,107 In the dynamics of a
larger molecule like the protonated Schi� base CH2=(CH) 6=NH +

2 , trajec-
tories are distributed among several di�erent pathways, reaching di�erent
conical intersections.47 For cytosine, it has been observed that di�erent
reaction pathways can occur in completely distinct time scales.88

This competition between reaction pathways can be illustrated more
clearly by restricting the discussion to a speci“c class of molecules, the
small organic aromatic heterocycles like DNA/RNA nucleobases. Figure 1
shows schematically two sections of potential energy surface of the “rst
singlet excited state (S1), which are common to many of these molecules.
After the excitation into the 1�� � optically active state (not necessarily the
S1 state), such heterocycles can usually relax within the�� � region of the
S1 surface as shown in path 1 of Fig. 1. This relaxation leads directly to a
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Fig. 1. Schematic representation of two sections of the S 1 potential energy surface of
aromatic heterocycles. The S 1/S 0 seam of conical intersections is indicated by dashed
lines. Reaction pathways discussed in the text are indicated by dotted lines. The sections
of the surfaces labeled cs have closed shell character. Qi represents generalized nuclear
coordinates.

crossing with the ground state, whose closed shell (cs) con“guration is desta-
bilized along the same pathway. Based on the analysis of minimum energy
paths, this direct path has been suggested to be the primary pathway for
deactivation of pyrimidine nucleobases.92 However, dynamics simulations
have shown that the initial gradients are relatively unfavorable to acti-
vate this pathway108; instead, for several heterocycles like cytosine88 and
pyridone,46 the initially excited molecule relaxes into the minimum of the
S1 state with n� � character (Fig. 1 right).

From the S1 minimum, the molecule can usually reach a region of
crossing seam between the1n� � state and the ground state (path 2 in
Fig. 1). But also from the S1 minimum, the molecule can cross the barrier
to the �� � region of the S1 surface and then relax to the �� � /cs conical
intersection (path 3). If the n � � / �� � barriers and the n� � /cs conical inter-
section are both too high in energy, the molecule will remain trapped in the
S1 state until it ”uoresces or undergoes a transition to a triplet state. The
molecule can also remain trapped if a conical intersection is energetically
accessible, but it is not e�cient to promote nonadiabatic transitions. In
this way, topographical details of the energy surfaces like gradients at the
Franck…Condon region, height of barriers, or shape of conical intersections
are main determining factors to rule the competition between the several
deactivation pathways.

Since the seminal work of Atchity et al.,109 it has been recognized that
the shape of a conical intersection should play a relevant role in its e�ciency
for nonadiabatic transitions.106,110 Dynamics simulations have shown that
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conical intersections like that between n� � and the closed shell state in
Fig. 1 are especially ine�cient f or non-adiabatic transitions.46 This happens
because during the trajectory, the molecule reaches the region close to the
crossing seam where a “nite energy gap can still be observed.111 The instan-
taneous transition probabilities in one time step [see Eq. (45)] are relatively
small in such regions and the molecule should remain there for a while
in order to deactivate. In the case of path 2, the shape of the surface
is unfavorable for nonadiabatic transition because the molecule remains
shortly close to the seam and then returns to the minimum. Pyridone
is an extreme of such cases: although the conical intersection is energeti-
cally accessible, the molecule is still ”uorescent.46,112 An opposite situation
occurs in paths 1 and 3 (Fig. 1). The crossing seam is close or coinci-
dent with the surface minimum, therefore when the molecule reaches this
region, it remains trapped there until deactivation. This is what happens,
for example, with adenine.31

Minimum energy path analysis revealed that the di�erent photoprod-
ucts should be formed depending on the exit direction from a conical
intersection,106 which is con“rmed by dynamics simulations showing strong
correlation between products and initial velocity in the branching space.36

This enforces the importance of a proper nonadiabatic treatment during
the dynamics. For instance, simple surface hopping algorithms whose tran-
sition probability is determined by energy gaps tend to neglect the motion
close to the seam. This can lead to a wrong distribution of exit directions
and, therefore, also to wrong quantum yield of products.

8. Conclusions and Outlook

In this chapter, we discussed the main methodological elements necessary to
perform nonadiabatic dynamics simulations for molecules based on classical
trajectories. These elements included the derivation of the time-dependent
equations, the generation of initial conditions, and the computation of elec-
tronic structure properties. These kinds of simulations have become an
important tool in photochemical and photophysical investigations. They
allow information to be obtained about several reaction pathways in compe-
tition during the excited-state relaxation, the time scales in which they are
activated, and the e�ciency of the conical intersections.

The main limitations of these methods are the high computational
costs of the electronic structure methods used for computing excited
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states energies, energy gradients and nonadiabatic coupling terms. Progress
has been made by the development of mutireference semiempirical
methods,18,19 derivation and implementation of analytical gradients and
nonadiabatic coupling at ab initio levels,14Š 16 and the usage of hybrid
strategies to treat large molecular environments.26,37,113 Although several
attempts of working out nonadiabatic dynamics in the framework of density
functional theory have been examined and proposed,84,103,104,114 fully reli-
able DFT-based dynamics still depend on the development of functionals
with proper treatment of charge transfer states,80 more balanced account
of static correlation,115 and, for TD-DFT level, excited state calcula-
tions beyond linear response.116 In spite of these limitations, nonadia-
batic dynamics based on classical trajectories is becoming a routine tool
in quantum chemical investigations, with a great potential to reveal details
of the role of conical intersections.
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M. K állay and M. Seth, Chem. Phys. 349, 37 (2008).
99. N.C. Handy and H.F. Schaefer, J. Chem. Phys. 81, 5031 (1984).

100. J.E. Rice and R.D. Amos, Chem. Phys. Lett. 122, 585 (1985).
101. C.P. Hu, H. Hirai and O. Sugino, J. Chem. Phys. 127 (2007).
102. R. Send and F. Furche, J. Chem. Phys. 132, 044107 (2010).
103. E. Tapavicza, I. Tavernelli and U. Rothlisberger, Phys. Rev. Lett. 98,

023001 (2007).
104. U. Werner, R. Mitric, T. Suzuki and V. Bonacic-Kouteck´ y, Chem. Phys.

349, 319 (2008).
105. R. Mitric, U. Werner, M. Wohlgemuth, G. Seifert and V. Bonacic-Koutecky,

J. Phys. Chem. A 113, 12700 (2009).
106. A. Migani and M. Olivucci. in Conical Intersections: Electronic Structure,

Dynamics & Spectroscopy, edited by W. Domcke, D.R. Yarkony and H.
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1. Introduction

The Born…Oppenheimer (BO) approximation1 allows the separation of elec-
tronic and nuclear degrees of freedom and the de“nition of individual
potential energy surfaces (PESs) for di�erent electronic states. It provides
a valid description of many chemical processes and is thus invoked in
most quantum chemical calculations. However, there are also a number
of phenomena that cannot be described within this framework. When
two electronic states of the same multiplicity become degenerate, there
will generally be a pronounced interstate coupling that leads to a strong
electronic mixing and a breakdown of the BO approximation. In the
region of such conical intersections, the strong coupling of the electronic
and nuclear motion induces so-called nonadiabatic transitions between
di�erent electronic states which are at the heart of photochemistry, internal
conversion, ”uorescence quenching, and nonradiative energy dissipation
processes.2–9

In recent years, many theoretical tools have been developed to
study conical intersections and nonadiabatic phenomena. The location
of minimum-energy conical intersections4, 10–16 and of conical intersec-
tion seams17–20 can provide information on the topology of the relevant
PESs and help to “nd geometrical con“gurations that are crucial for the
dynamics. Excited-state reaction channels can be found by constructing
minimum-energy reaction paths connecting the Franck…Condon region with
di�erent conical intersections, thus identifying favorable pathways and the
associate energy barriers. A more complete characterization of nonadiabatic
processes requires the direct simulation of nonadiabatic dynamics, which
takes into account the full complexity of the relevant PESs and provides
access not only to the available reaction channels, but also to reaction times
and rates. Nonadiabatic molecular dynamics (MD) simulations are chal-
lenging because of the need for a self-consistent treatmentof the electronic
and nuclear degrees of freedom, beyond the BO approximation. In recent
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years, various methods have been developed to perform such simulations,
ranging from fully-quantum to mixed quantum-classical treatments.4

At a fundamental level, the nonadiabatic dynamics at conical inter-
sections can be studied using quantum-wavepacket methods.4, 7, 21, 22 In
this approach, an analytical model of the relevant PESs is constructed on
the basis of ab initio calculations, and the quantum nuclear wavepackets
are propagated on the resulting coupled surfaces by direct solution of the
time-dependent Schrödinger equation. This provides deep physical insight
into the nonadiabatic dynamics since all quantum e�ects are included
explicitly (for example, hydrogen-tunneling and geometric-phase e�ects),
but the computational cost increases dramatically with the number of
degrees of freedom. This problem is alleviated to some extent in the multi-
con“guration time-dependent Hartree (MCTDH) approach 8, 23–26 and the
multilayer MCTDH treatment 27, 28 which have extended the applicability
of quantum-wavepacket methods signi“cantly.

Some of the practical limitations of the quantum-wavepacket approach
can be overcome with the use of quantum dissipative theory,4, 7 in particular
when employing the Red“eld approach, which is based on a system-plus-
bath model.4, 7 Here, only the relevant degrees of freedom are simulated
explicitly, while the remaining ones are treated as an external bath. The
interaction between the active and inactive modes is described by the
system-bath coupling Hamiltonian, and the quantum evolution of the active
degrees of freedom is governed by a reduced density operator, which can
be obtained through a perturbation expansion in the case of weak system-
bath coupling. Theoretical approaches based on quantum dissipative theory
provide e�cient tools to study the in”uence of external factors, such as
vibrational relaxation, on the nonadiabatic dynamics, but they face severe
limitations in terms of general applicability and the scaling of the compu-
tational e�ort. 29, 30 Moreover, they normally employ rather simple models
for the system-bath coupling Hamiltonian.

Nonadiabatic dynamics simulations of molecular systems can be
performed using mixed quantum-classical approaches,31 which comprise the
mean-“eld Ehrenfest method,31 surface-hopping methods,31–69 quantum-
classical Liouville descriptions,31 and mapping procedures.31 In the mixed
quantum-classical methods, the degrees of freedom are again divided into
two subsets, but in this case all of them are treated explicitly, i.e. no
external bath is introduced. The relevant degrees of freedom (e.g. elec-
trons, selected protons,or selected vibrational modes) are handled quantum
mechanically, while the remaining onesare described by classical mechanics.
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This allows for an e�cient simulation of the nonadiabatic dynamics of
large systems. However, quantum e�ects of nuclear motion are not captured
for the degrees of freedom propagated by classical mechanics, and any of
the associated quantum interferences are lost during the time propagation.
These neglected quantum e�ects can bepartially recovered for moderately
sized systems, making use of semiclassical approaches like the Van-Vleck-
Gutzwiller formulation 31, 70, 71 or the full multiple spawning method.72–75

Comparisons between quantum methods, full multiple spawning, and
trajectory surface hopping are available in the literature.50, 76

In the mixed quantum-classical approaches, the quantum degrees of
freedom are generally treated by the time-dependent Schröndinger equa-
tion. In a purely quantum system, the time evolution will then be reversible
and will lead to a superposition of quantum states. This is no longer true in
mixed quantum-classical systems where the quantum subsystem is coupled
to a classical subsystem that plays the role of an observer in a measurement
and will thus eventually cause the collapse of quantum wavefunction from
a superposition state to a pure state.77 As a consequence of such decoher-
ence, the time evolution of the quantum subsystem is no longer unitary and
reversible.77 E�orts have been made to include decoherence e�ects in the
treatment of mixed quantum-classical systems.50, 78–91 For instance, within
mean-“eld approaches, the evolution of the quantum subsystem can be
described by a Liouville…von Neumann equation including decoherence.78–86

One of these approaches is the CSDM (coherent switches with decay of
mixing) method which employs a phenomenological parameter to deter-
mine decoherence time constants.78–83 Similar ideas to include decoherence
corrections can also be implemented in surface hopping approaches.50, 87–91

Such decoherence corrections will not be discussed further here because
they are described in detail in another chapter, with emphasis on the CSDM
method and its application.92

In this chapter we will focus on the surface hopping approach32–37 and
in particular on the trajectory surface hopping (TSH) method of Tully, 38, 39

where the nuclear degrees of freedom are propagated on independent clas-
sical trajectories and nonadiabatic e�ects are included by allowing hopping
between di�erent PESs. This yields a good description of the nonadia-
batic dynamics at low computational cost. In particular, the use of well-
de“ned classical trajectories in the TSH method makes it possible to employ
direct dynamics,93 i.e. an on-the-”y approach where the energies, gradi-
ents, and nonadiabatic couplings are calculated at each point along the
trajectory, which obviates the need for precomputing and constructing the
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entire PESs.42, 55, 64 The TSH method is nowadays one of the most popular
tools for studying nonadiabatic phenomena in organic molecules.38–69

2. Theory

As in conventional MD calculations, the nuclear degrees of freedom are
propagated in the TSH method on a single PES according to the classical
equations of motion. The electronic degrees of freedom are propagated along
the same trajectory according to the time-dependent Schr¨odinger equation.
To maintain the self-consistency between the nuclear and the electronic time
evolution, it is necessary to properly introduce nonadiabatic interactions.
In the surface-hopping method this is achieved by allowing instantaneous
hops from one PES to another, with the hopping probability at each time
being controlled by a stochastic switching algorithm. To account for the
random nature of the switching algorithm, a swarm of trajectories must
be considered for each initial con“guration of the dynamics, and the “nal
results are obtained as an average over a large number of trajectories.

2.1. Propagation of quantum amplitudes

In the TSH method we assume that the nuclear motion is described by a
classical trajectory R (t), which is determined by the solution of Newton•s
equations. The electronic Hamiltonian is

He(r , R ) = Š
� 2

2

�

l

1
ml

� 2
r l

+ VrR (r , R ), (1)

where l labels the electronic degrees of freedom andVrR is the poten-
tial including nuclear…electron and electron…electron interactions. The elec-
tronic Hamiltonian is time-dependent through R (t) and the electronic
wave function �( r , R , t) is the solution of the time-dependent Schrödinger
equation

i �
� �( r , R , t)

�t
= He�( r , R , t). (2)

The electronic wave function can be expanded using a sum-over-states
expression

�( r , R , t) =
�

i

ci (t) � i (r , R ), (3)
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where { � i } is a set of known electronic functions and ci (t) denotes
complex-valued expansion coe�cients. Substitution of (3) into the time-
dependent Schrödinger equation (2), multiplication on the left by � �

j (r , R )
and integration over r gives

i �
dcj (t)

dt
=

�

i

ci (t)[H ji Š i � �R · dji ], (4)

where �R is the vector of nuclear velocities and

Hji �
�

dr � �
j (r , R )

�

Š
�
2

�

l

1
ml

� 2
r l

+ VrR (r , R )

�

� i (r , R ), (5)

dji �
�

dr � �
j (r , R )[� R � i (r , R )]. (6)

In the derivation of the second term on the right hand side of Eq. (4) the
chain rule

�
�t

=
�

� R
dR
dt

(7)

was used to express the nonadiabatic coupling terms

Fij (t) =
�

dr � �
j (r , R )

�� i (r , R )
�t

(8)

as the scalar product of the velocity vector �R and the nonadiabatic coupling
elementsdji .

Equation (4) describes the time evolution of the quantum amplitude
of each state � i along the trajectory R (t). This information is used to
determine the hopping probability.

2.2. Fewest switches algorithm

A central point in the TSH method is the introduction of a hopping
criterion to maintain the self-consistency between the classical and the
quantum propagation. Although this criterion re”ects the quantum nona-
diabatic behavior of the system, it cannot be directly derived from the
Schrödinger equation, because of the choice of treating the nuclear degrees
of freedom classically. Thus, anad hochopping criterion must be imposed,
which satis“es the requirement that the classical occupation and the
quantum population ( |ci (t) |2) should be equal at any time. There is of
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course a large number of possible algorithms that satisfy this requirement
(at least approximately), each one derivable under additional speci“c
conditions.50, 65, 92, 94

A popular choice is thefewest switches algorithm(FSA). 38 It is based on
the hypothesis that di�erent trajectories are totally independent and on the
additional requirement that the quantum-classical self-consistency is main-
tained through the minimum possible number of hopping events. The latter
condition is needed since a large number of hopping events wouldde facto
lead to a mean-“eld description (similar to the Ehrenfest approach31).
In that case the dynamics would in practice evolve on an average of
the relevant PESs, while in the surface-hopping method the propagation
occurs on a single physical PES ateach time. The FSA is implemented
assuming that the hopping events occur in an in“nitesimal time. This
causes state transitions to be discontinuous in a single trajectory. However,
when the entire swarm of trajectories is considered a smooth transition is
obtained, since hopping events will occur at di�erent times for di�erent
trajectories.

In practice the FSA is not always able to guarantee the self-consistency
between the quantum population and the classical occupation,50, 88, 94–97 for
two reasons. First, there are rejected hops (see Sec. 2.3), and second, despite
the assumption of completely independent trajectories, in the derivation
of the FSA all trajectories starting from the same initial conditions are
considered to have the same quantum amplitudes when accessing conical
intersections (see below). This simplifying approximation is not valid in
general, but only in special cases (e.g. for one-dimensional systems with a
single nonadiabatic coupling region or for systems with quasi-degenerate
PESs, see Ref. 88 for a detailed discussion). Nevertheless, the FSA works
very well in most situations and, owing to its simplicity, is probably the
most widely used switching criterion in surface hopping studies.

There are other algorithms that attempt to improve upon the FSA in the
description of the hopping event. An advanced example is FSTU/SD (fewest
switches with time uncertainty and stochastic decay) with a special treat-
ment of possible momentum changes at rejected hops.87–91 This approach
is described in detail in another chapter of this book.92 A similar variant
has been presented in Ref. 50. In the following, we only address the stan-
dard FSA.

In order to derive the FSA we consider a swarm ofN trajectories. At
each time the quantum-classical self-consistency is achieved if the fraction
of trajectories classically evolving on thei -th PES is equal to the quantum
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population of state i , that is

Ni (t)
N

= |ci (t) |2. (9)

Suppose that at time t + dt the classical occupation of statei is Ni (t + dt)
and that Ni (t) > N i (t + dt), then the minimum number of transitions
needed for this change in occupation will beNi (t) Š Ni (t + dt) hops from
state i to any other state and zero hops from any state toi . The proba-
bility of a hopping out of the state i in the in“nitesimal time interval dt is
therefore

Pi (t) dt =
Ni (t) Š Ni (t + dt)

Ni (t)
. (10)

Using Eq. (9) we can rewrite Eq. (10) as

Pi (t) dt =
|ci (t) |2 Š |ci (t + dt)|2

|ci (t) |2
= Š

d|ci ( t ) |2

dt dt
|ci (t) |2

= Š
2Re(c�

i
dci
dt )

|ci (t) |2
. (11)

Use of Eq. (4) gives “nally

Pi (t) dt = Š
�

j

2
�
� Š 1Im(c�

i cj H ij ) Š Re(c�
i cj �R · dji )

�

|ci (t) |2
. (12)

If the time interval is not in“nitesimal but “nite (� t), as for example in
the practical implementation of MD simulations, the hopping probability is
found by integrating the in“nitesimal probability de“ned by Eq. (12) over
this interval. The resulting expression for the hopping probability is

Pi = Š
�

j

2
� t +� t

t dt
�
� Š 1Im(c�

i cj H ij ) Š Re(c�
i cj �R · dji )

�

|ci (t) |2
, (13)

where, in doing the integration, the denominator is considered constant,
since |ci |2 cannot change during the time interval � t (i.e. no hopping
during � t).

Equation (13) de“nes the probability that a hopping out of state i occurs
after a time interval � t. Because the probability of a transition from state
i to any other state is the sum of all transition probabilities Pij from state
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i to any state j , the probability for a transition from i to j is

Pij = Š
2

� t +� t
t dt

�
� Š 1Im(c�

i cj H ij ) Š Re(c�
i cj �R · dji )

�

|ci (t) |2
. (14)

The derivation of Eq. (14) assumesNi (t) > N i (t + dt). For a correct de“-
nition of the transition probability it is thus necessary to discard negative
(unphysical) values ofPij . The hopping probability can then be de“ned as

gij = max( Pij , 0). (15)

In order to determine whether a switch from state i to state k should occur,
a uniform random number 0 < � < 1 is selected at each time step and the
hopping is performed if

k�

j =1

gij < � <
k+1�

j =1

gij . (16)

2.3. Velocity adjustment

When a hopping is performed, the total energy of the system is in general
not conserved, since a discontinuous change occurs in the electronic energy.
This unphysical behavior is due to the fact that the hopping event is
imposed from outside, through anad hochopping algorithm, and acts as an
external perturbation on the system. Its e�ect must of course be removed
since we aim at simulating a closed system for which the total energy must
be conserved. To this end a velocity adjustment is usually performed after
each hopping event. The velocity adjustment induces a change in the nuclear
kinetic energy which is equal and opposite to the one produced by the
hopping in the electronic energy, and thus the total energy is conserved. If
the kinetic energy is too low to compensate for the energy variation caused
by the electronic transition, the hopping is considered unphysical and is
rejected. In this case the velocity of the system is reversed in analogy with
elastic scattering.39, 98

When the system jumps from state i to state j , the electronic energy
changes from� i to � j . To compensate this energy change the velocity of the
system is adjusted according to

�R �
� = �R � Š � ij

w �
ij

M �
, (17)
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with M � being the mass of nucleus� , � ij the scaling factor, and w a
vector of dimensionNatoms along which the scaling is performed. The overall
kinetic energy change is

� T =
1
2

�

�

M �

�
�R �

�

	 2
Š

1
2

�

�

M �

�
�R �

	 2

=
1
2

�

�

M �

�

� 2
ij

w � 2

ij

M 2
�

Š 2� ij

�R � · w �
ij

M �

�

= � 2
ij aij Š � ij bij , (18)

where in the last line we de“ned

aij �
1
2

�

�

w � 2

ij

M �
, (19)

bij �
�

�

�R � · w �
ij . (20)

Imposing the conservation of total energy we “nd

� 2
ij aij Š � ij bij Š (� i Š � j ) = 0 . (21)

If b2
ij + 4 aij (� i Š � j ) < 0 there are no real solutions to Eq. (21), and the

hopping cannot occur. In this case the nuclear velocities are reversed in the
direction of w setting � ij = bij /a ij . If b2

ij + 4 aij (� i Š � j ) � 0, the scaling
factor is

� ij =
bij +



b2

ij + 4 aij (� i Š � j )

2aij
if bij < 0, (22)

� ij =
bij Š



b2

ij + 4 aij (� i Š � j )

2aij
if bij � 0. (23)

The w vector can be chosen to be anyNatoms -dimensional vector and
many di�erent choices are discussed in literature.95, 96, 99–101 Usually, the
velocity adjustment is performed in the direction of the nonadiabatic
coupling elements vectordij , since this choice is suggested by semiclas-
sical analogies.102–104 An alternative choice for the scaling direction is the
gradient di�erence vector.99–101
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2.4. Adiabatic representation

For the expansion of the total electronic wave function in Eq. (3), any set
of known electronic functions can be used. In principle, the surface-hopping
method can thus be implemented using either a diabatic or adiabatic repre-
sentation. Most applications employ an adiabatic representation because
this simpli“es the formalism and facilitates the interpretation of the results
by allowing comparisons with standard BO molecular dynamics.

In the adiabatic representation the electronic functions are eigenfunctions
of the electronic Hamiltonian and the Hamiltonian matrix H ji , see Eq. (5),
is diagonal with non-zero elements equal to the eigenergies� i . That is,

H ji = � i � ji . (24)

Equation (4) is then simpli“ed to

i �
dcj (t)

dt
= cj (t) � j Š i �

�

i

ci (t) �R · dji . (25)

The time evolution of the quantum amplitude of each state is determined by
a phase factor proportional to the eigenvalue of the electronic state and by
the mixing between di�erent adiabatic states (i.e. the transfer of adiabatic
quantum population), which is driven by the nonadiabatic coupling term
�R · dji .

The expression of the hopping probability is also simpli“ed in the adia-
batic representation. Substitution of Eq. (24) into Eq. (14) gives

Pij = Š
2

� t +� t
t dt[� Š 1Im(c�

i cj � i � ji ) Š Re(c�
i cj �R · dji )]

|ci (t) |2
. (26)

The “rst term on the right-hand side vanishes if i �= j , hence

Pij =
2

� t +� t
t dtRe(c�

i cj
�R · dji )

|ci (t) |2
. (27)

3. Implementation of Trajectory Surface Hopping

3.1. Algorithm

The general algorithm for the implementation of the TSH molecular
dynamics is as follows:

1. Initialization of velocity, gradients, and quantum amplitudes.



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch12

474 E. Fabiano et al.

2. Time propagation of coordinates and velocities on the selected PES.
3. Computation of energies, gradients, and nonadiabatic coupling vectors

of all relevant states at new position and velocity.
4. Time propagation of quantum amplitudes [Eq. (25)] and computation of

hopping probabilities [Eq. (27)].
5. Random number generation and comparison with hopping probabilities

according to Eq. (16).
6. If hopping is rejected: inversion of velocity (Sec. 2.3).
7. If hopping is performed: velocity adjustment (Sec. 2.3) and update of

the active PES for molecular dynamics.
8. Back to point 2.

This scheme closely resembles the standard MD algorithm in the “rst
steps (1…3), with the exception that the energy and gradient must be
computed for several electronic states and the nonadiabatic couplings
must be calculated in addition. The need for calculating the nonadiabatic
couplings also restricts the possible choices for the nuclear propagator. In
fact the nonadiabatic couplings depend not only on the coordinates of the
system through the nonadiabatic coupling elements, but also directly on the
velocity distribution. Therefore, the classical propagator must be able to
yield both the coordinates and the velocity update at the same time. This
means, for example, that the popular position-Verlet105 and leap-frog106

algorithms cannot be used for surface-hopping dynamics. A common choice
for the nuclear propagator is the velocity-Verlet integration scheme.107 In
this algorithm the updates of position and velocity are given by

r (t + � t) = r (t) + v(t)� t Š
� E (t) · M Š 1

2
� t2, (28)

v(t + � t) = v(t) Š
[� E (t) + � E (t + � t)] · M Š 1

2
� t, (29)

where M Š 1 is the vector of the reciprocal nuclear masses, i.e.M Š 1 =
(M Š 1

1 , M Š 1
2 , . . . , M Š 1

N atoms
). The updated coordinates and velocities are

available simultaneously, and the nonadiabatic couplings can be readily
calculated at each time step.

The calculation of the nonadiabatic coupling terms can be performed
analytically, by expanding expression (6) in terms of the molecular orbital
contributions. For a wave function in the form of a multir eference con“g-
uration interaction expansion, the nonadiabatic coupling elements can be
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computed as108, 109

dij =
hij

� j Š � i
+

�

a,b

(� ij )ab

�
� a

�
�
�
�
�� b

� R


, (30)

where � ij is the one-electron transition density matrix, � denotes molecular
orbitals, and the interstate coupling vector is de“ned as

hij = C•
i
�H e

� R
Cj , (31)

with Ci representing the vector of con“guration interaction coe�cients
of state i . Alternatively, an approximate expression for the nonadiabatic
coupling between two electronic states can be derived directly from the
de“nition (8) which is written here as

Fij

�
t +

� t
2

�
=

�
dr � �

j

�
t +

� t
2

� �
�� i (t)

�t

�

t + � t
2

, (32)

using the short-hand notation � i (r , R (t)) = � i (t). The two terms in the
integral can be approximated as follows:

� �
j

�
t +

� t
2

�
=

� �
j (t) + � �

j (t + � t)

2
, (33)

�
�� i (t)

�t

�

t + � t
2

=
� i (t + � t) Š � i (t)

� t
. (34)

After substitution into Eq. (32) and use of the orthonormality of the wave
functions, we “nd

Fij

�
t +

� t
2

�
=

�
dr � �

j (t) � i (t + � t) Š
�

dr � �
j (t + � t) � i (t)

2� t
. (35)

In this way the magnitude of the nonadiabatic coupling between two states
can be calculated approximately at each time step with relatively small
computational e�ort. We n ote however that the use of the analytical proce-
dure for the computation of the nonadiabatic coupling term is advisable
whenever it is a�ordable, because of itsintrinsically superior accuracy and
numerical stability.

The treatment of the nonadiabatic interactions is implemented in the
second part of the TSH algorithm (steps 4…7). This involves the integra-
tion of Eq. (25) and the fewest switches algorithm (steps 5…7), which has
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already been discussed in Sec. 2.2. The integration of Eq. (25) is performed
numerically and requires particular attention, since the quantum ampli-
tudes are rapidly oscillating in time due to the presence of a phase factor
proportional to the energy of each state. One possible solution involves a
unitary propagator for the quantum amplitudes. For numerical convenience
we use the new variables

�ci (t) = ci (t) eŠ i
Rt

0 d� � 0
� (36)

that di�er from the original quantum amplitudes only by a phase factor,
which has no in”uence on any physical quantity. Substitution into Eq. (25)
gives

i �
d�cj (t)

dt
= �cj (t)(� j Š � 0) Š i �

�

i

�ci (t) �R · dji , (37)

which can be expressed in matrix form as

d
dt

�c(t) = iA (t) �c(t) (38)

with

Aji = Š
1
�

(� j Š � 0)� ji + i �R (t) · dji (t) . (39)

Equation (38) has the formal solution

�c(t) = �c(t0)ei
Rt

t 0
d� A ( � ) . (40)

For small time intervals � t = ( t Š t0), the integral in Eq. (40) can be
approximated by A ((t + t0)/ 2)� t. Thus we obtain the following formula
for the time propagation of quantum amplitudes

�c(t + � t) = �c(t) ei A ( t +� t/ 2)� t . (41)

The matrix ei A � t can be easily calculated using Silvester•s formula, since
the matrix A is Hermitian and therefore iA � t is diagonalizable. Hence,
we have

ei A � t = U

�

�
�
�
�
�
�

e� 1 0 . . . 0

0 e� 2 . . . 0
...

...
. . .

...

0 0 . . . e� n

�

�
�
�
�
�
�

U • (42)

with U denoting the unitary matrix of eigenvectors and { 	 i } the corre-
sponding eigenvalues.



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch12

Nonadiabatic Trajectory Calculations with Ab Initio and Semiempirical Methods 477

3.2. Initial sampling

In analogy with standard BO dynamics, initial conditions (nuclear coor-
dinates and momenta) for the dynamics must be sampled in TSH simula-
tions to mimic the distribution function of the initial nuclear motion in the
phase space. In addition, multiple trajectories must be run with the same
initial conditions to exploit the stochastic nature of the switching algo-
rithm. To simulate a photoinduced event, the starting con“gurations must
be selected not only according to their ground-state distribution function
but also according to the radiative coupling between the ground state and
the relevant excited state.

The ground-state distribution function can be sampled either from a
Wigner distribution 110, 111 (derived from normal mode analysis) or from a
su�ciently long ground-state BO molecular dynamics run, according to the
ergodic hypothesis.112, 113 For each sampled con“guration the probability
of a radiative transition from state S0 to Sk is114

Pk0 =
f k0/	 k0

max(f k0/	 k0)
=

|µk0|2

max(|µk0|2)
, (43)

whereµk0 is the transition dipole moment, f k0 is the oscillator strength, and
	 k0 is the energy di�erence between the two states. A stochastic procedure
(similar to that outlined in Sec. 2.2) can thus be used to select or reject
a given con“guration. Note that the present approach goes beyond the
Condon approximation because thef k0 and 	 k0 values are calculated at
every geometry.

4. Electronic Structure Methods

In the practical implementation of the TSH dynamics, it is extremely impor-
tant to choose a suitable electronic structure method for calculating the
energies, gradients, and nonadiabatic couplings. This constitutes in fact
the main bottleneck of the calculations and at the same time largely deter-
mines the accuracy of the “nal results. The method should satisfy several
requirements:

€ it should yield accurate energies, gradients, and nonadiabatic couplings
(interstate couplings) for the ground state and several di�erent excited
states;
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€ it should accurately describe multicon“gurational electronic states, as
those encountered in the vicinity of conical intersections;

€ it should give a balanced description of electronic states with di�erent
character (e.g. the ground state and

 � or n
 � or charge-transfer excited
states);

€ it should be computationally e�cient since a typical surface-hopping
study requires several thousands of single-point calculations.

These requirements impose strong constraints on the choice of the elec-
tronic structure method to be used in surface-hopping studies. For example,
single-reference post-Hartree…Fock methods are not eligible because they
cannot properly describe multicon“gurational states. In a similar vein, the
use of time-dependent density functional theory (TDDFT) is problematic
because it is doubtful whether the currently available TDDFT approaches
can treat conical intersections in an appropriate manner.61, 115, 116 Further-
more, TDDFT yields an unbalanced description of excitations with di�erent
character.116–119 We shall therefore focus on multicon“gurational wavefunc-
tion methods in the following.

4.1. Ab initio CASSCF and MRCI

At the ab initio level, the Complete Active Space Self-Consistent-Field
(CASSCF) approach120, 121 is a popular choice to perform single-point
calculations during TSH molecular dynamics. In CASSCF a limited number
of orbitals is selected to de“ne an active space, and the ansatz for the
multicon“guration wave function is the full con“guration interaction (CI)
expansion within the active space. Both the expansion coe�cients and the
orbitals are optimized in a multicon“gurational self-consistent-“eld proce-
dure to yield the CASSCF wave function. This ensures the inclusion of static
correlation e�ects arising from the quasi-degeneracy of the electronic states
considered and yields a reasonably balanced description of such states with
regard to static correlation e�ects. The CASSCF method is thus in principle
appropriate for the study of conical intersections and for surface-hopping
applications. However, in general, it does not properly describe dynamic
correlation e�ects arising from the instantaneous interactions between the
electrons. This can be relevant in TSH simulations where such e�ects may
be quite di�erent in the di�erent electronic states considered.

The use of larger active spaces inCASSCF could cure these problems,
but this straightforward solution is often not practical because of the steep
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scaling of the computational e�ort with the number of active orbitals and
electrons. Instead, it may be feasibleto further optimize the wave function
by performing a multireference con“guration interaction (MRCI) calcula-
tion using CASSCF reference orbitals.43 In this case, a rather small MRCI
expansion may be su�cient due to the high quality of the CASSCF reference
orbitals so that the computational e�ort remains limited. An alternative to
MRCI is provided by multireference perturbation theory. 121–124

Generally speaking, MRCI calculations need not be based on a CASSCF
reference, but can be performed using a large variety of suitably chosen
orbitals and reference con“gurations. They provide a very ”exible frame-
work for capturing both static and dynamic correlation e�ects, and they
can be made very accurate, albeit at very high computational costs.

Both CASSCF and MRCI methods have been employed inab initio
TSH excited-state dynamics studies. The technology for computing the
required energies, gradients, and nonadiabatic couplings is available for
both methods, and hence it is the balance between accuracy and computa-
tional e�ort that governs the choice between them. In current applications,
ab initio TSH dynamics calculations are still restricted to small molecules
when using accurate MRCI methods, while molecules of moderate size
(up to about 20 atoms) can be handled at the CASSCF level.

4.2. Semiempirical methods

Given the high computational cost of ab initio TSH simulations (regardless
whether based on CASSCF or MRCI), it is worthwhile to check the use of
simpler alternatives for the electronic structure calculation. Semiempirical
molecular orbital methods combined with a small MRCI treatment may
provide such an alternative. Conceptually, dynamic electronic correlation
is incorporated into these methods in an average manner by the use of
suitably damped electron…electron interactions and by the parametrization
against experiment, and therefore the MRCI calculation needs to account
only for static near-degeneracy correlation e�ects which can be captured
with small active spaces and a small number of interacting con“gurations.
Such semiempirical MRCI computations are several orders of magnitudes
faster than corresponding ab initio treatments, with substantial savings
both at the SCF level (due to the use of a minimal basis and simple inte-
gral approximations) and at the MRCI level (since smaller expansions are
su�cient). From a practical point of view, semiempirical MRCI methods are
thus well suited for TSH dynamics of large molecules. Historically, the “rst
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TSH study of electronically nonadiabatic dynamics was indeed performed
at the semiempirical CI level.125

However, some care must be taken in the choice of the actual method
applied, since the established NDDO-based semiempirical Hamiltonians
have been developed and parameterized to reproduce only ground-state
properties. The commonly used MNDO-type methods yield a poor descrip-
tion of electronically excited states and systematically underestimate the
energy gaps between the occupied and unoccupied orbitals as well as the
associated excitation energies. There are two strategies to correct this
drawback. The “rst one is to employ a standard MNDO-type method
and perform an ad hoc reparametrization to improve the description of
excited states.47–51 This approach is conceptually simple, but faces the
di�culty of “nding reliable reference data for the parametrization, and it
also requires a cumbersome reparametrization for every speci“c system.
The second option is to use an improved semiempirical Hamiltonian that
is capable of describing both the ground state and the excited states well
and in a balanced manner. This can be achieved by including orthogonal-
ization corrections in the Fock matrix which account for Pauli exchange
repulsion. They have the e�ect that the antibonding combination of two
interacting orbitals is destabilized more than the bonding combination is
stabilized, giving rise to an unsymmetrical splitting (as in the ab initio case),
thus improving on MNDO-type methods with their inherently symmetrical
splitting. Three variants of NDDO-based methods with orthogonalization
corrections are available, namely OM1,126 OM2,127, 128 and OM3,129 which
di�er in the extent of the corrections applied and in the parametriza-
tion. The most elaborate one is OM2 which has been applied most
widely. Systematic benchmarks on electronically excited states of 28 organic
molecules (with a total of 167 valence excitations) have shown that the OM2
method combined with a standardized GUGA-MRCI treatment 130 repro-
duces the reference vertical excitationenergies with a mean absolute devia-
tion of 0.5 eV,131 regardless of the electronic (

 � or n
 � ) and spin (singlet
or triplet) character of the states involved (see Fig. 1). By contrast, mean
absolute deviations of about 1.5 eV are found for MNDO-type approaches
without orthogonalization corrections.

Given the improvements over the established MNDO-type methods
both with regard to the model and the numerical results, the OM2/MRCI
approach appears to be a promising tool for TSH excited-state dynamics.
The required energies, gradients, and nonadiabatic couplings are avail-
able,132 and a corresponding implementation has been reported64 along
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Fig. 1. Comparison of OM2 excitation energies with high-level ab initio results for
(a) singlet and (b) triplet excitations.

with initial applications to DNA bases. 66–68 In the remainder of this section,
we give a brief summary of the orthogonalization corrections that are
included in OM2.

The standard semiempirical approaches solve a secular equation in
canonical form (containing a unit overlap matrix), without ever performing
an explicit transformation from the nonorthogonal set of atomic orbitals
to an orthogonal set (consistent with the zero-di�erential overlap approx-
imation). Performing this transformation in ab initio SCF treatments
introduces orthogonalization corrections (for example, terms accounting
for Pauli exchange repulsions) that are formally missing in MNDO-type
methods where their e�ect on the total energy is mimicked by additional
two-center terms in the core-core repulsions.133 The basic idea of the
OMx methods is to incorporate the dominant orthogonalization corrections
explicitly in the one-electron part of the Fock matrix, using parametric
formulas that are inspired by power series expansions in terms of overlap
for the corresponding ab initio terms. For the sake of computational e�-
ciency, the smaller corrections for the two-electron part of the Fock matrix
are not treated explicitly, assuming that their in”uence can be captured in
an average manner by a parametric scaling of the one-electron corrections.
Corrections for the orthogonalization e�ects arising from the interaction of
core and valence electrons are also included in the Fock matrix.
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Within the NDDO approximation, the orthogonalization-corrected two-
center one-electron Fock matrix elementshµ� can be expressed as

hORT
µ� = � µ� Š

1
2

�

C

�

� � C

(Sµ� � �� + � µ� S�� )

+
1
8

�

C

�

� � C

Sµ� S�� (hµµ + h�� Š 2h�� ) , (44)

where C labels the nuclear centers;µ, �, � label the atomic orbitals, S is
the o�-diagonal part of the overlap matrix (i.e. Sµµ = 0 � µ), and � is the
empirical resonance integral

� µ� =
1
2

(� A
µ + � B

� )
�

RAB eŠ (� A
µ +� B

� )R 2
AB , (45)

where A and B denote nuclear centers, A
µ and � A

µ are parameters speci“c
for the atomic orbitals, and RAB is the distance between the two centers.
Equation (44) can be rewritten in the more compact form

hORT
µ� = � µ� +

�

C

V ORT
µ�, C (46)

using the pseudopotential-like term

V ORT
µ�, C � Š

1
2

�

� � C

(Sµ� � �� + � µ� S�� ) +
1
8

�

� � C

Sµ� S�� (hµµ + h�� Š 2h�� ) .

(47)

In the OM2 model this expression is scaled, introducing parameters to
compensate for the lack of orthogonalization corrections in the two-electron
part of the Fock matrix and other approximations in the formalism. Equa-
tion (47) is then rewritten as

V ORT
µ�, C � Š

1
2

GAB
1

�

� � C

(Sµ� � �� + � µ� S�� )

+
1
8

GAB
2

�

� � C

Sµ� S�� (hµµ + h�� Š 2h�� ) , (48)

where GAB
1 and GAB

2 are adjustable parameters. The resulting corrected
Fock matrix is

F ORT
µ� = hORT

µ� + L µ� (49)
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= � µ� Š
1
2

GAB
1

�

C

�

� � C

(Sµ� � �� + � µ� S�� )

+
1
8

GAB
2

�

C

�

� � C

Sµ� S�� (hµµ + h�� Š 2h�� ) + L µ� (50)

with L µ� denoting the two-electron part of the Fock matrix.
An additional correction is provi ded to take into account the e�ects

arising from the orthogonalization of core and valence orbitals. In OM2 and
OM3, the form of these e�ective core potentials is derived by considering
the corresponding orthogonalization terms in anab initio SCF treatment
with a minimal basis set. The corrected Fock matrix is given by

�F ORT
µ� = F ORT

µ� +
�

A

V ECP
µ�, A (51)

with the e�ective core potential

V ECP
µ�, A = Š

�

� � A

(Sµ� G�� + Gµ� S�� ) Š
�

� � A

Sµ� F�� S�� , (52)

whereGµ� � Fµ� Š Sµ� F�� . In principle the F�� and Gµ� terms appearing
in Eq. (52) could be obtained from an all-electron SCF calculation.
A detailed analysis127, 128 of these terms shows, however, thatF�� is almost
independent of the molecular environment and can thus be treated as an
adjustable atomic parameter, while theGµ� terms can be approximated by
the resonance-integral-like expression

Gµ� =
1
2

�
�� A

µ + �� B
�

	 �
RAB eŠ ( �� A

µ + �� B
� )R 2

AB . (53)

4.3. Hybrid QM/MM

Even with the use of semiempirical electronic structure methods, it is not
possible to simulate the nonadiabatic dynamics of large molecules in the
condensed phase, because of the overwhelming computational cost for the
quantum-chemical calculations. Fortunately, photoinduced electronic nona-
diabatic transitions are often localized in a small part of the system so that
it is justi“ed to apply a hybrid quantum mechanical/molecular mechan-
ical (QM/MM) approach, 134, 135 with a partitioning of the system into two
subsystems. The smaller QM part contains the chromophore and is treated
at an appropriate quantum level (be it ab initio or semiempirical), while the
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larger MM part comprises the remainder of the system and is represented by
a molecular mechanics force “eld. The coupling between the QM and MM
regions is described by the QM/MM interaction Hamiltonian that includes
bonded terms as well as nonbonded van-der-Waals and electrostatic inter-
actions between QM and MM atoms. The electrostatic terms cover the
interaction between QM nuclei and MM atoms, which can be computed
from classical electrostatics, and the mutual polarization of the QM and
MM parts. There is a hierarchy of models for handling these electrostatic
terms.136 The most common approach is electronic embedding where the
polarization of the QM region due to the environment is taken into account
while the polarization of the MM atoms due to the QM part is neglected.
Electronic embedding thus captures the polarization of the electronic wave
function caused by the presence of the MM part and guarantees the state-
selectivity of QM/MM interactions. This implies the need to perform the
QM calculations in the external “eld produced by the MM part. In prac-
tical calculations this is done by incorporating the MM point charges in the
one-electron QM Hamiltonian.

5. Applications

In this section we present some examples of TSH nonadiabatic dynamics
simulations.

5.1. Methaniminium cation

The methaniminium cation (CH 2NH+
2 ) is the smallest possible model

system to investigate the nonadiabatic dynamics of protonated Schi� bases.
Due to its small size it has also often been employed as a test system for
TSH calculations at di�erent levels of accuracy.43, 62, 64, 137 Here we report
a comparison of the results of TSH simulations performed on the isolated
molecule using CASSCF and OM2/MRCI, as well as the results of simula-
tions in aqueous solution.

Figure 2 shows the dynamics of the adiabatic population decay of
CH2NH+

2 as obtained at the CASSCF level using the 6-31G* basis. After
vertical excitation to the S2 state, an ultrafast S2 � S1 population transfer
occurs with a time constant of 11 fs. This is accompanied by a slower
S1 � S0 internal conversion, with a decay time of 63 fs. Typical trajec-
tories are depicted in Fig. 3 (a) and (b). Photoexcitation is followed by
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Fig. 2. Time-dependent average occupation of the low-lying adiabatic states of
gas-phase CH2NH +

2 at the CASSCF level of theory.
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Fig. 3. Potential energies sampled by two typical trajectories during the nonadiabatic
dynamics of gas-phase CH2NH +

2 (CASSCF level): (a) M-type trajectory: short C-N bond
distance; (b) L-type trajectory: long C-N bond distance. The insets show the molecular
geometries at the hopping points.

a sudden elongation of the C-N bond. The molecule reaches the S2ŠS1

conical intersection with a planar structure very fast. In this region the
S2 � S1 hopping occurs. Thereafter two possible decay paths are observed.
For the “rst type of trajectories (hereafter denoted as M-type trajectories),
the region of a S1…S0 conical intersection is reached through a torsional
motion around the C-N axis eventually accompanied by minor distortions
due to double bond twisting or pyramidalization of one or both end groups,
without further C-N bond elongation. For the second type of trajectories
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(hereafter denoted as L-type trajectories), there is instead a further increase
of the C-N bond distance, along with bipyramidalization, and the system
accesses a di�erent S1…S0 conical intersection. Both the M-type and L-type
trajectories give almost equal contributions to the nonadiabatic dynamics
of CH2NH+

2 in the gas phase.
Similar results are found at the OM2/MRCI level. In this case, the

adiabatic population decay times are 15 and 83 fs for the S2 and S1 state,
respectively, and the ratio between the M- and L-type trajectories is 7/3.
The di�erences between the two approaches are thus small, suggesting that
the OM2/MRCI approach can indeed provide a reliable description of the
PESs and may be used to perform accurate dynamical simulations e�-
ciently. In these gas-phase calculations of the nonadiabatic dynamics of
CH2NH+

2 , a single trajectory propagating to 150 fs with a time step of
0.05 fs (and a 200-times smaller time step for the integration of quantum
amplitudes) typically takes about “ve hours at the CASSCF level of theory,
compared with “ve minutes for OM2/MRCI (on a standard 64-bit single-
CPU computer).

Solvation e�ects can be studied by performing TSH simulations of the
CH2NH+

2 cation inside a water sphere at the QM/MM level, employing
the OM2/MRCI method for the QM part (methaniminium cation) and
the TIP3 model138 to describe the surrounding MM water molecules. The
computed decay times for the adiabatic populations are slightly shorter
than that in the gas-phase, being 8 and 74 fs for the S2 and S1 state, respec-
tively. Two types of trajectories are observed also in aqueous solution, but
almost 80% of the trajectories are of M-type, since large L-type elongations
of the C-N bond are rarely observed because of the steric repulsion with
the surrounding water molecules.

5.2. 9H-adenine

9H-adenine (hereafter adenine) is a prototype for the study of the nonra-
diative decay of DNA bases. Here we present a summary of the results of
TSH calculations performed at the OM2/MRCI level in the gas phase and
in water66 and a comparison with the available experimental results.

In the gas phase, at the OM2/MRCI level, the optically active state ( 

 �

La state) in the Frank…Condon region is the second excited state (S2), while
the S1 state is a darkn
 � state. Upon photoexcitation only the S2 state with


 � La character is populated. After 10…40 fs the molecule approaches the
S1…S2 conical intersection and hops to the S1 PES. Thereafter two possible
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Fig. 4. Typical TSH trajectories for adenine: (a) trajectory passing the n� � / gs conical
intersection; (b) trajectory passing the �� � / gs conical intersection. Molecular geometries
at the hopping points are shown in the insets.

decay channels are observed. In about 90% of the trajectories (see Fig. 4(a)
for a typical case) the S1 state acquires n
 � character and the system
evolves towards a S0…S1 conical intersection of n
 � / gs character. In the
remaining trajectories (10%) the

 � character is retained after the S2 � S1

hopping and the system quickly approaches a S0…S1 conical intersection of
La/ gs character (see Fig. 4(b) for a typical trajectory). The population
decay dynamics can be analyzed using a bi-exponential “t. Decay times
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Fig. 5. Time-dependent relative populations of �� � and n� � excited states in adenine
after photoexcitation. The calculated populations have been convoluted with a laser
pulse (full width half-maximum 100 fs, centered at 0 fs) for direct comparison with the
experimental data. 139

of 15 and 560 fs are found for the La and n
 � state, respectively. These
results are compared in Fig. 5 with experimental results from time-resolved
photoelectron spectroscopy.139 Good agreement with experiment is found
both for the decay times and for the intensity of the two decay channels.

When the e�ect of solvation in wat er is considered, by performing
QM/MM simulations of an adenine molecule embedded into a sphere of
MM TIP3 138 water molecules, rather di�erent results are obtained. In
the Franck…Condon region there is a strong electronic mixing between
the S1 and S2 excited states, and after photoexcitation the two excited
states are almost evenly populated. However, due to the strong nonadia-
batic coupling, an ultrafast S2 � S1 decay follows immediately, and after
about 80 fs all trajectories evolve on the S1 PES. Thereafter the nonadia-
batic dynamics proceeds through two distinct channels. The vast majority
of the trajectories (95%) evolves towards an S0…S1 conical intersection of
n
 � / gs character within 200…600fs. A small fraction of trajectories (5%)
moves, within 180 fs, towards a S0…S1 conical intersection of 

 � / gs char-
acter. The overall population decay of the S1 state occurs with a time
constant of 410 fs, which is comparable with the published experimental
decay times of 300…500fs.140–142
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6. Summary and Outlook

In this chapter, we have reviewed the methodology for on-the-”y surface-
hopping simulations at the QM and QM/MM levels of theory. Two
examples (CH2NH+

2 and adenine) have been discussed to illustrate the
computational results that can be obtained for the nonadiabatic decay
dynamics in the gas phase and the condensed phase. In these examples,
both semiempirical OM2/GUGA-CI and ab initio CASSCF methods have
been employed for the electronic structure calculations in the gas-phase
surface-hopping simulations. For the condensed-phase dynamics in aqueous
solution, OM2/GUGA-CI has been applied in a QM/MM framework using
the TIP3P model of water. The simulations reveal the mechanisms of nona-
diabatic decay and the role of the relevant conical intersections in the nona-
diabatic dynamics of CH2NH+

2 and adenine. The results generally agree well
with the available experimental data.

On-the-”y surface-hopping simulations are expected to become more
popular because they provide detailed insight into the time evolution of
a molecular system after photoexcitation, in particular into the nonadia-
batic dynamics at conical intersections. Such simulations require a large
number of trajectories to approach the proper statistical limit, and it is
therefore essential to select an electronic structure method in such studies
that o�ers a suitable compromise between accuracy and computational cost.
High-level correlatedab initio methods are the best choice in terms of accu-
racy because they can in principle provide •the right answer for the right
reasonŽ. In practice, the application of these methods is limited by the
computational e�ort that rises steeply with system size, and the poten-
tially very accurate ab initio MRCI methods can therefore still be used
only for rather small molecules. Theab initio CASSCF approach remains
practical for medium-size systems,but its accuracy is limited by the neglect
of dynamic correlation and by the size of the active space that is a�ordable.

Given this situation, semiempirical methods such as OM2/GUGA-CI
may o�er an alternative for studying el ectronically excited states of larger
molecules, because they may often generate reliable results (comparable
to those from the high-level theories) at much lower computational costs.
Such semiempirical investigations will start with a validation phase to
ensure that the chosen method is able to reproduce key reference data from
experiments or from high-level calculations (for example, vertical excita-
tion energies, oscillator strengths, and the structure and energy of conical
intersections). When using OM2/GUGA-CI, the optimum MRCI options
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will be determined in this initial phase (for example, the size of the active
space and the number of reference con“gurations). After such validation,
the OM2/GUGA-CI approach can be used with some con“dence to treat
the nonadiabatic dynamics of large molecules, using surface-hopping calcu-
lations at the QM level in the gas phase or at the QM/MM level in the
condensed phase (solution or protein environment).

One should of course be aware of the limitations of semiempirical elec-
tronic structure methods in this context. As already noted, the estab-
lished MNDO-type methods are not suitable for excited-state work without
reparametrization. The more reliable OMx methods with explicit orthog-
onalization corrections have been parametrized only for the elements H,
C, N, O and F up to now, so that they can be applied essentially
only to organic molecules. All current semiempirical methods employ a
minimal valence basis set and can thus not handle states with Rydberg
or mixed valence/Rydberg character properly. Therefore, semiempirical
surface hopping studies are restricted to low-lying valence excited states,
and one needs to make sure that there are no dynamically important states
with substantial Rydberg character in the region of interest. Finally, there
is also the danger that the minimal basis set used in semiempirial methods
may not be ”exible enough to capture all the more intricate features of
excited-state PESs (for example, very shallow minima that are dynami-
cally important).

In view of these caveats, semiempirical TSH studies of excited-state
dynamics should not be expected to give de“nitive answers. Their main
purpose is an e�cient initial exploration of the nonadiabatic dynamics of
large molecules (either in the gas phase or in the condensed phase) to get
an overview over possible reaction anddecay paths and a qualitative feeling
about the processes that may be important. This will generate insights and
ideas that can be checked either experimentally or by higher-level calcu-
lations. On the computational side, we see such semiempirial TSH simu-
lations as the “rst step to more comprehensive studies that will include
higher-level calculations for improved accuracy. In this context, we adhere
to a modular strategy in the development of the ChemShell software143, 144

where all currently relevant electronic structure methods can be accessed in
TSH simulations, either at the QM level (gas phase) or within a QM/MM
framework (condensed phase) where the environment of the chromophore
is described by a classical force “eld.

Although surface-hopping simulations provide a reasonable description
of nonadiabatic dynamics, they do not include a number of quantum
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e�ects31, 78 that may play an important role during nonadiabatic decay
processes. Therefore, it remains interesting and worthwhile to consider
more rigorous semiclassical and quantum treatments to describe such
phenomena.31, 78 In a similar vein, it is desirable to go beyond the results
directly obtained from TSH simulations (concerning population transfer,
reaction channels, and decay times) and to compute the actual observ-
ables measured experimentally, for example in the various forms of time-
resolved ultrafast spectroscopy. Such a direct link between experiment and
theory will improve our understanding of nonadiabatic dynamics at conical
intersections.

Note Added in Proof

Since submission of this manuscript in November 2009, many papers with
nonadiabatic trajectory calculations have been reported in the literature,
including several OM2/GUGA-CI studies on excited-state dynamics.145Š 148
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56. H. Langer, N.L. Doltsinis and D. Marx, in NIC Symposium 2004, edited
by D. Wolf, G. M¨unster and M. Kremer (NIC, Forschungzentrum J¨ ulich,
2004).

57. N.L. Doltsinis, P.R.L. Markwick, H. Nieber and H. Langer, in Radition
Induced Molecular Phenomena in Nucleic Acids, edited by M.K. Shukla
and J. Leszczynski (Springer, 2008).
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1. Introduction

Nonadiabatic processes involving the coupling between the nuclear and elec-
tronic motion occur typically in the r egions of conical intersections and
induce nonradiative transitions between electronic states that are respon-
sible for fundamental photochemical processes such as internal conver-
sion, isomerization, electron transfer or proton transfer.1–4 In order to
reveal the mechanisms of these processes, a joint e�ort in the development
of experimental techniques as well as of accurate and e�cient methods
for the simulation of nonadiabatic dynamics and ultrafast spectroscopic
observables in complex molecular systems has been undertaken in recent
years.4–11

In particular, the essential contribution to the “eld of ultrafast science
has been the development of techniques of femtosecond spectroscopy4, 11–13

which allow for real-time investigation of electronic and nuclear dynamics
during geometrical transformations also involving conical intersections. The
common basis for all these techniquesis the preparation of a coherent
wavepacket by an ultrashort pump laser pulse and subsequent interroga-
tion of its time evolution by monitoring processes such as ”uorescence,
resonant multiphoton ionization or photoelectron spectroscopy which are
induced by a time-delayed probe pulse. This approach was pioneered by
Zewail,14–16 and one of its “rst applications was the observation of the
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nonadiabatic transition in the prototype system NaI exhibiting internal
conversion between an ionic anda covalent electronic state.15 In fact, such
processes are ubiquitous in photochemistry and have been theoretically
characterized in many classes of organic and bio-chromophores.1 In partic-
ular, early theoretical work has revealed the presence of conical intersections
involving biradicaloid species generated by partial breaking of double hetero
bonds.1, 17 The general criteria for the occurence of conical intersections in
biradicaloids have had a fundamental impact on establishing the impor-
tance of conical intersections and their characterization in di�erent “elds of
photochemistry. This has stimulated extensive work on “nding conical inter-
sections in many molecular and cluster systems.3, 18–23 At the same time,
the focus has shifted in recent years fromthe investigation of stationary elec-
tronic properties and locations of conical intersections between the potential
energy surfaces towards the simulation and control of the ultrafast nona-
diabatic dynamics involving also nonradiative transitions through conical
intersections.6, 23–32

The challenge for the theory in the “eld of ultrafast dynamics involves
both the appropriate description of nonadiabatic processes due to the break-
down of the Born…Oppenheimer approximation in the vicinity of conical
intersections or avoided crossings as well as the simulation of time-resolved
spectroscopic signals for interesting systems taking into account all degrees
of freedom. In this context, methods for the simulation of the nuclear
dynamics based on classical trajectories are particularly convenient to use
since they do not require the precalculation of global potential energy
surfaces (PES) and can be carried out •on the ”yŽ. First-principles ab initio
molecular dynamics (AIMD) •on the ”yŽ has been pioneered by Car and
Parrinello33 for the ground state dynamics in the framework of the density
functional method and plane-wave basis sets. The basic idea of the •on the
”yŽ methods is to compute the forces acting on the nuclei from the elec-
tronic structure calculations only when they are needed during the propa-
gation. This is in particular advantageous for systems which do not contain
•chromophore-typeŽ subunits and thus no separation in active and passive
degrees of freedom is possible.

The conceptual framework for the development of semiclassical methods
for the simulation of ultrafast spectroscopic observables is provided by
the Wigner representation of quantum mechanics.34, 35 In this approach,
the semiclassical limit of the Liouville…von Neumann equation for the
time evolution of the vibronic density matrix has been formulated and
developed for the simulation of ultrafast pump-probe spectroscopy using
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classical trajectories.23, 36–39 Our approach23, 37–39 is related to the Liouville
space theory of nonlinear spectroscopy in the density matrix represen-
tation developed by Mukamel and his colleagues40 and is characterized
by the conceptual simplicity of classical mechanics and by the ability to
approximately describe quantum phenomena such as optical transitions by
means of averaging over the ensemble of classical trajectories. Moreover,
the introduction of quantum corrections for the nuclear dynamics can be
made in a systematic manner as recently proposed by Martenset al. in
the framework of the •entangled trajectory methodŽ.41, 42 Quantum e�ects
can be also incorporated into the nuclear dynamics in the framework of
the multiple spawning method introduced by Martinez et al.43 In general,
trajectory-based methods require drastically less computational e�ort than
full quantum mechanical calculations and provide physical insight in ultra-
fast processes. Additionally, they can be combined directly with quantum
chemistry methods for the electronic structure calculations and allow to
carry out multistate dynamics at di�erent levels of accuracy.

In this context, one of the most e�cient approaches applicable to a
large variety of systems ranging from isolated molecules and clusters to
complex nanostructures interacting with di�erent environments is based
on mixed quantum-classical dynamics in which the nonadiabatic transi-
tions between electronic states occurring in the regions of strong coupling
are simulated using the Tully•s surface hopping (TSH) method.44, 45 This
method is based on the propagation of classical trajectories in di�erent
electronic states which exhibit stochastic transitions between the states
according to quantum mechanical hopping probabilities. The procedure
for performing this has been designed in order to achieve consistency
between the statistical fraction of trajectories in a speci“c state and the
quantum mechanical state populations, using the minimal number of state
switching events (fewest switching criterion). However, despite of its compu-
tational e�ciency and conceptual simplicity the TSH approach has also a
number of drawbacks such as for example the internal inconsistency which
arises due to classically forbidden transitions and due to the divergence
of independent trajectories, as analyzed in the literature.46, 47 The neces-
sary ingredients to carry out TSH simulations are forces in ground and
excited electronic states as well as nonadiabatic couplings. These can be
calculated using the whole spectrum of methods such asab initio •frozen
ionic bondŽ approximation,23 ab initio con“guration interaction (CI), 24

restricted open-shell Kohn…Sham density functional theory (DFT),28 linear
response time-dependent density functional theory (TDDFT)25–27, 29, 48–50
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as well as semiempirical methods for the electronic structure51–54 and
can be employed in the framework of the TSH simulations. In addi-
tion, recently the applications have been extended to the mixed quantum
mechanical…molecular mechanical (QM/MM) methods allowing to treat
complex systems such as photoactive proteins55–59 or chromophores inter-
acting with the environment. 60

An additional important aspect is the introduction of electric “elds into
molecular dynamics. This opens the perspective for controlling molecular
processes by shaped laser pulses and allows for new applications in which
the light is used as photonic catalyst in chemical reactions.61, 62 The idea
to control the selectivity of product f ormation in a chemical reaction using
ultrashort pulses employing either the proper choice of their phase or of time
duration and the delay between the pump and the probe (or dump) step is
based on exploitation of the coherence properties of laser radiation due to
quantum mechanical interference e�ects. Early conceptual work by Tannor
and Rice,63, 64 by Brumer and Shapiro65–67 followed by variational optimiza-
tion of electric “elds68, 69 opened further application aspects.69–74 Techno-
logical progress due to fs-pulse shapers allowed manipulation of ultrashort
laser pulses.75–79 Finally, closed-loop learning control (CLL) was introduced
by Judson and Rabitz80 and “rst realized experimentally by Gerber et al.,81

Wöste et al. and others,11 opening the possibility to apply optimal control
to more complex systems. Since the potential energy surfaces (PES) of
multidimensional systems are complicated and mostly not available, the
idea was to combine a fs-laser system with a computer-controlled pulse
shaper to produce speci“c “elds acting on the system by initiating photo-
chemical processes. After detection of the product, the learning algorithm is
used to modify the “eld based on information obtained from the experiment
and from the desired target. The shaped pulses are tested and improved
iteratively until the optimal “eld for the chosen target is reached. Such a
black-box procedure is extremely e�cient but it does not provide informa-
tion about the nature of the underlying processes which are responsible for
the requested outcome.

Since tailored laser pulses have the ability to select pathways on those
parts of the energy surfaces which optimally lead to the chosen target,
their analysis should allow to determine the mechanism of the processes
and at the end provide information about important parts of the PES.
Therefore, developments of theoretical methods are needed which allow for
the design of interpretable laser pulses for complex systems by establishing
the connection between the underlying dynamics and the pulse shapes as
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well as between theoretically and experimentally optimized pulses. Until
recently, the limitation was imposed by di�culties in precalculating multi-
dimensional PES. To avoid this obstacle,ab initio adiabatic and in partic-
ular nonadiabatic MD •on the ”yŽ without precalculation of the ground
and the excited energy surfaces is particularly suitable provided that an
accurate description of the electronic structure is feasible and practicable.6

In addition, this approach o�ers the advantage that the MD •on the ”yŽ
can be applied to relatively complex systems and moreover it can be
directly connected with di�erent procedures for optimal control.6, 82, 83 In
the context with conical intersections the question can be raised whether
it might be advantageous or not to choose pathways avoiding conical inter-
sections by laser control in photochemical reactions. Moreover, as recently
proposed by us, it is particularly convenient to introduce the “eld directly
in the nonadiabatic dynamics •on the ”yŽ which can be then optimized as
desired.84

In this chapter we aim to present the development of theoretical methods
for the simulation of nonadiabatic dynamics and its manipulation by laser
“elds in complex systems accounting for all degrees of freedom. Therefore,
we will “rst describe nonadiabatic dynamics •on the ”yŽ in the frame of
time-dependent density functional theory (TDDFT) and its approximate
tight-binding version (TDDFTB) in Sec. 2. Furthermore, we will brie”y
outline the procedure for the simulation of time-resolved photoelectron
spectra based on the nonadiabatic dynamics •on the ”yŽ in Sec. 3. Then, in
Sec. 4 we will introduce the “eld-induced surface hopping method (FISH)
which is based on the combination of quantum electronic state popula-
tion dynamics with classical nuclear dynamics. For the propagation of clas-
sical trajectories in the frame of the FISH method, the whole spectrum
of quantum chemical methods can be employed opening the possibility of
broad applications for simulation of spectroscopic observables as well as to
control dynamics employing shaped laser “elds.

The applications of the above-mentioned theoretical approaches will be
illustrated on a number of examples with the aim to show the scope and
reliability the of methods with the focus on time-dependent density func-
tional theory (TDDFT) nonadiabatic dynamics in Sec. 5 and “eld-induced
surface hopping method (FISH) in Sec. 6. The choice of the presented exam-
ples serves to emphasize the importance of mutual interaction between
theory and experiments. First, we use nonadiabatic dynamics to investigate
ultrafast photoswitching in the prototype molecule benzylideneaniline for
which the lifetimes of excited states were determined and the simulation
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of time-resolved photoelectron spectra was carried out, which allowed to
identify time-resolved photoisomerization.26 Furthermore, the simulation
of time-resolved photoelectron spectra (TRPES) with Stieltjes imaging
including the approximate description of the photoionization continuum is
introduced, demonstrated for the ultrafast internal conversion in pyrazine
and compared to the recent experimental TRPES measurements.27, 85 As
an illustration of the applicability of our nonadiabatic dynamics in the
framework of the time-dependent density functional tight-binding method
(TDDFTB) to larger systems with biological relevance, we have chosen to
present the ultrafast nonradiative relaxation of the microsolvated DNA base
adenine.86

The scope of our FISH method84 will be illustrated on two examples
which are representative for di�erent application areas. First we show that
optimal pump-dump control can be used to e�ciently drive the selective
photoisomerization on the prototype Schi� base N-methylethaniminium
through pathways avoiding the conical intersection84 as an example for
the broad application area in the photochemistry of biological molecules in
di�erent environments. Second, we wish to show that our FISH method can
be used to reveal fundamental dynamical processes responsible for optimal
dynamic discrimination (ODD) 87, 88 between the two molecular species
”avin mononucleotide (FMN) and ribo”avin (RBF), which have almost
identical spectroscopical features.89, 90 The selective identi“cation of target
molecules in the presence of a structurally and spectroscopically similar
background using optimally shaped laser “elds opens prospects for new
applications in multiple areas of science and engineering. Finally, conclu-
sions and outlook will be given in Sec. 7.

2. Nonadiabatic Dynamics “on the Fly” in the Framework
of Time-Dependent Density Functional Theory
(TDDFT)

The time-dependent density functional theory (TDDFT) represents an e�-
cient generally applicable method for the treatment of the optical prop-
erties in complex systems whose performance and accuracy have been
steadily improved.91, 92 Due to this fact, a signi“cant e�ort has been
recently invested to extend the applicability of TDDFT to the simula-
tion of ultrafast nonadiabatic processes in complex molecular systems.
In this context, a variety of approaches for performing nonadiabatic
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dynamics simulations •on the ”yŽ have been developed and success-
fully applied in recent years.25, 26, 28, 29, 48–50 Being aware of the draw-
backs of the state-of-the-art density functionals concerning failure in the
description of long range charge transfer transitions, dispersion interac-
tion and multireference character, TDDFT is still one of the most prac-
tical means to address a large class of problems if the proper choice of
the system is made. Moreover, recent developments of new hybrid func-
tionals promise to substantially improve the description of long-range
charge transfer transitions.93–97 In connection with nonadiabatic processes,
the ability of linear response TDDFT to describe conical intersections
between excited states and the groundstate has been critically exam-
ined in the literature. 49 The conclusion has been made that while the
topology of the S1ŠS0 crossing region may be not exact, this does not
substantially in”uence the relaxation pathways and photochemistry of
the studied examples. Successful applications of TDDFT nonadiabatic
dynamics steadily grow and have already signi“cantly contributed towards
understanding of the mechanisms of photochemical processes in complex
systems25–27, 49, 98 and have also been veri“ed by comparison with experi-
mental data.27, 85

Another attractive direction is the combination of the nonadiabatic
dynamics with the approximate tight-binding density functional theory
(DFTB) 99–102 which, due to its computational e�ciency, is suitable for the
treatment of large biological or supramolecular assemblies. In particular,
the DFTB and its time-dependent version (TDDFTB) have been shown to
provide a quite accurate description of both ground state99–102 and excited
state properties.103, 104 Furthermore, recent implementation of analytic
energy derivatives105 and nonadiabatic couplings86 in the framework of
TDDFTB have made possible the extension to nonadiabatic dynamics •on
the ”yŽ. 86 It should however be noted that while TDDFTB reproduces in
many cases the accuracy of the TDDFT method it also shares all its de“-
ciencies. The methodological developments sketched above should allow
to investigate fundamental photochemical processes in complex molec-
ular systems such as biomolecules interacting with e.g. solvents, surfaces,
metallic nanostructures or protein environments.

In Sec. 2.1 we present our formulation of the nonadiabatic dynamics in
the framework of TDDFT using localized Gaussian basis sets combined
with Tully•s surface hopping (TSH) method44 in which the nonadia-
batic couplings are calculated •on the ”yŽ. Furthermore, we also present
the extension of the TDDFT nonadiabatic dynamics to the approximate
TDDFTB method.
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2.1. Tully’s surface hopping in the framework of TDDFT

The simulation of nonadiabatic processes in the framework of the TSH
procedure44 relies on the propagation of ensembles of classical trajecto-
ries parallel with the solution of the time-dependent Schrödinger equation
which determines the quantum-mechanical electronic state populations. For
this purpose, along each classical trajectory an electronic wavefunction
|�( r ; R (t))� is de“ned and represented in terms of the adiabatic electronic
states according to:

|�( r ; R (t))� =
�

K

CK (t) |� K (r ; R (t))� , (1)

where |� K (r ; R (t))� represents the wavefunction for the electronic stateK
while the CK (t) are the time-dependent expansion coe�cients. The time
evolution of the expansion coe�cients for a given trajectory can be obtained
by numerical solution of the time-dependent Schrödinger equation:

i �
dCK (t)

dt
=

�

I

CI (t)
�

� � K | �Hel |� I � Š i �
�

� K (r ; R (t))
�
�
�
�
� � I (r ; R (t))

�t

��
.

(2)

Choosing the adiabatic representation for the electronic states, the “rst
term in brackets reduces toEK · � KI while the second term corresponds to
the nonadiabatic coupling DKI between the statesI and K , which can be
approximately calculated using the “nite di�erence approximation for the
time derivative106:

DKI

�
R

�
t +

�
2

��
�

1
2�

(� � K (r ; R (t))| � I (r ; R (t + �)) �

Š � � K (r ; R (t + �)) |� I (r ; R (t))� ), (3)

where � is the timestep used for the integration of the classical Newton•s
equations of motion. Since the nonadiabatic couplingDKI is calculated
only at the midpoint t + � / 2 between two nuclear timesteps [cf. Eq. (3)],
the DKI (� ) are obtained by linear interpolation in the interval [ t, t + � / 2]
and extrapolation in the interval [ t + � / 2, t + �].

The numerical solution of the Eq. (2), obtained e.g. using the fourth
order Runge…Kutta procedure, provides the time-dependent electronic state
coe�cients CK (t) which can be used to de“ne the hopping probabili-
ties PI � K that are needed for the electronic state switching procedure
in the frame of the TSH approach. In order to increase the e�ciency of
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the integration the rapidly oscillating part of the CK (� ) can be eliminated
by transforming these coe�cients to the interaction representation. There-
fore, only the slowly varying component of theCK (� ) coe�cients remains to
be calculated, for which much larger timesteps can be used for the numerical
integration, thus decreasing the computational demand. The hopping prob-
abilities PI � K can be either calculated aftereach nuclear dynamics time
step � or, alternatively, after each small time step � � used for the integra-
tion of the electronic Schrödinger equation Eq. (2), as recently introduced
by us.26

In the latter case, the hopping probability PI � K is de“ned as:

PI � K (� ) = Š2
� � [Re(C�

K (� )CI (� )DKI (� ))]
CI (� )C�

I (� )
. (4)

It should be emphasized that our procedure is numerically more stable.
The instabilities in other procedures can arise due to the fact that calcula-
tion of the hopping probabilities only in each nuclear time step � can lead
to unphysical values greater than 1 if � is not su�ciently small. This occurs
in particular in the region of strong coupling in which the change of the coef-
“cients CK (t) can become very large within one nuclear time step. While
the additional computational e�ort for determining the hopping probabil-
ities at each time step during the integration [cf. Eq. (4)] is marginal, our
approach allows to use much larger time steps for the nuclear dynamics,
thus decreasing computational demand considerably, and therefore might
be advantageous.

An alternative procedure for calculating the hopping probabilities can
be also formulated based only on the occupations of the electronic states
represented by diagonal density matrix elements� II = C�

I (t)CI (t) and
� KK = C�

K (t)CK (t). The idea of this approach is to calculate separately
the probability that the state I is depopulated and the stateK is populated.
The probability of depopulation of the state I is given by the rate of change
of � II and can be de“ned as

PI, depopulation = �( Š �� II )
Š �� II

� II
� . (5)

This probability is de“ned to be nonzero only if the population of the I
th state is decreasing which is represented by the � function in Eq. (5). The
rate of change of �� II can be calculated from the populations in successive
nuclear time stepst and t + � using the “nite di�erence approximation for
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the derivative. In the case that the population of the state I is decreasing,
the probability to populate the particular state K can by de“ned as

PK, populated =
�( � � KK ) �� KK�

L �( � � LL ) �� LL
. (6)

In this way, only those states can be populated whose population is
growing between two successive nuclear time steps and the probability is
de“ned by the rate of change of the population of the stateK normalized to
the total rate of change of the populations of all other states whose popu-
lation is also growing [denominator in Eq. (6)]. Thus the total probability
for hopping from state I to state K can be de“ned as:

PI � K = PI, depopulated PK, populated

= �( Š �� II )�( � � KK )
Š �� II

� II

�� KK�
L �( � � LL ) �� LL

� . (7)

It should be pointed out that this equation is valid for any number of elec-
tronic states and requires only the calculation of the hopping probabilities
at each nuclear time step since populations generally vary more slowly than
the coherences which are employed in Eq. (4). This is particularly useful in
the context of multistate dynamics during which the laser “eld is varying
very fast as it will be shown in Sec. 6.2.

The necessary ingredients for carrying out TSH simulations are the
forces (energy gradients) in the ground and excited electronic states as
well as the nonadiabatic couplingsDKI (R (t + �

2 )). While the calculation
of excited state forces in the framework of TDDFT is already a standard
procedure available in many commonly used quantum chemical program
packages, the procedure for the calculation of nonadiabatic couplings in
the framework of linear response TDDFT has been developed only recently
using plane wave basis sets,48–50 as well as using localized Gaussian basis
sets.25, 26 Thus, in the following after introducing the representation of the
electronic wave function within the Kohn…Sham linear response method,
we brie”y outline our approach for the calculation of the nonadiabatic
couplings using localized Gaussian basis sets.

2.1.1. Representation of the electronic wavefunction within
the Kohn–Sham linear response method

In order to calculate nonadiabatic couplings in the framework of the
TDDFT method a representation of the wavefunction based on Kohn…Sham
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orbitals is required. Since in the linear response TDDFT method the time-
dependent electron density contains only contributions from single excita-
tions from the manifold of occupied KS orbitals to virtual KS orbitals, a
natural ansatz for the excited state electronic wavefunction is the CIS-like
expansion:

|� K (r ; R (t))� =
�

i,a

cK
i,a |� CSF

i,a (r ; R (t))� , (8)

where|� CSF
i,a (r ; R (t))� represents a singlet spin adapted con“guration state

function (CSF) de“ned as:

|� CSF
i,a (r ; R (t))� =

1
�

2
(|� a�

i� (r ; R (t))� + |� a�
i� (r ; R (t))� ), (9)

and |� a�
i� (r ; R (t))� and |� a�

i� (r ; R (t))� are Slater determinants in which one
electron has been promotedfrom the occupied orbital i to the virtual orbital
a with spin � or � , respectively. Notice, that while DFT can rigorously
provide the wavefunction only for the lowest state of each symmetry, the
approximate ansatz presented in Eq. (8) gives rise to the wavefunctions for
an arbitrary number of excited states of any symmetry and represents a
practicable way of de“ning an excited state wavefunction based on linear
response TDDFT. This ansatz can be used to calculate the nonadiabatic
coupling as described below, but moregenerally, it can provide the expec-
tation values of any observable of interest. In particular, we will show in
Sec. 3.2 how this approximate wavefunction can be used to calculate tran-
sition dipole moments between excited electronic states in the framework
of TDDFT. In the context of nonadiabatic dynamics the accuracy of this
representation of the wavefunction has been previously demonstrated in our
work on pyrazine25, 27 and benzylideneaniline.26

The expansion coe�cients cK
i,a in Eq. (8) are determined on physical

grounds by requiring that the wavefunction in Eq. (8) gives rise to the
same density response as the one obtained by the linear response TDDFT
procedure. The latter can be expressed as:

� (r , t) = � 0 +
�

i

(� �
i �� i + � i �� �

i ), (10)

where� 0 represents the unperturbed ground state density,� i is an occupied
Kohn…Sham orbital and�� i is the linear response of the KS orbital which
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can be further decomposed in terms of positive and negative frequency
components as:

�� i = � +
i eŠ i� K t + � Š

i ei� K t , (11)

where � K represents the transition frequency of theK •th excited state.
Expanding the response orbitals� +

i and � Š
i in terms of virtual KS orbitals:

� +
i =

�

a

X ia � a and � Š
i =

�

a

Yia � a , (12)

the time-dependent electron density response can be formulated as:

� (r , t) = � 0 +
�

ia

(X ia + Yia )� i � �
aeŠ i� K t + c.c., (13)

whereX and Y represent the solution of the TDDFT eigenvalue problem.107

In the wavefunction picture, the time-dependent electron density
response in Eq. (13) arises physically as a consequence of the coherent
superposition of the ground and excited electronic state (|� 0� and |� K � )
described by |�( t) � = a|� 0� eŠ iE 0 t/ � + b|� K � eŠ iE K t/ � . This wavefunction
gives rise to the time-dependent electron density given by:

� (r , t) = |a|2� � 0| �� |� 0� + |b|2� � K | �� |� K �

+ a� b
�

ia

cK �
ia � i (r )� �

a (r )eŠ i� K t + c.c., (14)

where in the third term the Eq. (8) for |� K � has been used. From the
expression (14) one can see that the density� (r , t) consists of a time inde-
pendent part which is just the sum of the ground and excited state densities
and a time-dependent part (eŠ i� K t ) which oscillates with the amplitudes
determined by the CI coe�cients cK

ia . Assuming that in the linear response
regime the ground state density is only slightly perturbed (|a|2 � 1 � | b|2),
Eq. (14) can be further simpli“ed to:

� (r , t) = � 0 + a� b
�

ia

cK �
ia � i (r )� �

a (r )eŠ i� K t + c.c.. (15)

By direct comparison of Eqs. (13) and (15) it can be seen that the coe�-
cientscK

i,a can be taken to be proportional toX ia + Yia up to a normalization
constant. Due to the fact that X and Y are solutions of a non-Hermitean
eigenvalue problem they do not form an orthonormal set. Therefore, in order
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to obtain orthogonal electronic states, the non-Hermitean eigenvectors have
to be transformed according to:

C = ( A Š B )Š 1/2 (X + Y ), (16)

where A and B are standard TDDFT matrices.91 For non-hybrid func-
tionals without exact exchange the coe�cients cK

i,a giving rise to mutually
orthogonal electronic states are given by:

cK
i,a = ( 	 a Š 	 i )Š 1/2 (X ia + Yia ). (17)

This allows to de“ne the electronic wavefunction |� K (r ; R (t))� which
will be employed to calculate the nonadiabatic couplings.

2.1.2. Nonadiabatic coupling in the framework of TDDFT
and TDDFTB with localized basis sets

The electronic structure of isolated molecular systems is most naturally
described by using Gaussian type atomic orbitals (AO•s) in contrast to
plane waves, which represent the natural choice in extended periodic
systems. In the latter case the nonadiabatic couplings in the frame-
work of the TDDFT method have been formulated and implemented by
Rothlisberger et al.48, 49 Recently, also a method for calculation of the
nonadiabatic coupling vectors was introduced in this context by Roth-
lisberger et al.50 Here we present the approach for the calculation of
the nonadiabatic couplings using KS orbitals expanded in terms of local-
ized Gaussian atomic basis sets. This formulation is particularly suitable
since it can be combined with commonly used quantum chemical DFT
codes.

In order to calculate the nonadiabatic couplings according to the discrete
approximation given by Eq. (3) the overlap between two CI wavefunctions
at times t and t + � along the nuclear trajectory R (t) is needed:

� � K (r ; R (t))| � I (r ; R (t + �)) �

=
�

ia

�

i � a�

c�K
i,a cI

i � ,a � � � CSF
i,a (r ; R (t))| � CSF

i � ,a � (r ; R (t + �)) � . (18)

The overlap of the CSF•s in Eq. (18) can be expressed in terms of singly
excited Slater determinants using Eq. (9), which can be further reduced to
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the overlap of spatial KS orbitals � i :

� � CSF
i,a (r ; R (t)) | � CSF

i � ,a � (r ; R (t + �)) �

=

�

	
	
	
	
	
	
	



� � 1 | �
�

1� · · · � � 1 | �
�
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, (19)

where � � i | �
�

i � � are the overlap integrals between two spatial KS orbitals
� i (t) and �

�

i � (t + �) at time steps t and t + �. The underlined orbitals label
the replacement of an occupied orbital by a virtual orbital such as i � a
and i � � a� at t and t + �, respectively. The spatial KS orbitals can be
expressed in terms of atomic basis functions according to:

� � i (t) | =
n�

k=1

cik (t) � bk (R (t))| , (20)
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|� �
j (t + �) � =

n�

m =1

c�
jm (t + �) |b�

m (R (t + �)) � , (21)

with the Gaussian basis functionsbk (R (t)) and b�
m (R (t+�)) and the molec-

ular orbital (MO) coe�cients cik (t) and c�
jm (t + �), respectively. Notice,

that the two sets of functions bk (R (t)) and b�
m (R (t + �)) are centered

at di�erent positions R (t) and R (t + �) and therefore do not form an
orthonormal basis set. This leads to the “nal expression for the overlap
integral of two spatial KS orbitals at times t and t + �:

� � i (t) | � �
j � (t + �) � =

n�

k=1

n�

m =1

cik (t) c�
jm (t + �) � bk (R (t)) | b�

m (R (t + �)) � .

(22)

Therefore, in order to calculate nonadiabatic couplings along each clas-
sical trajectory the overlap integrals between moving basis functions are
calculated at successive nuclear time steps and the KS MO coe�cients and
linear response eigenvectors are utilized in order to transform the overlap
integrals. In order to eliminate possible random phase variations of the
nonadiabatic coupling, the phases of the CI-like wavefunction coe�cients
[cf. Eq. (8)] and of the Kohn…Sham orbital coe�cients [cf. Eq. (20)] in
each nuclear timestep are aligned to the phases of the previous one. While
the calculation of the coupling matrix elements is formally analogous for
both TDDFT and TDDFTB, the computational advantage of the TDDFTB
method is that the integrals involved are not explicitly calculated but can,
as usual in the DFTB procedure, be used in a tabulated form.86

3. Simulation of Time-Resolved Photoelectron
Spectra (TRPES)

As mentioned in the Introduction, the time-resolved photoelectron spec-
troscopy represents a powerful approach for interrogation of nonadiabatic
processes. The basic principle of the time-resolved spectroscopy involves
the creation of a coherent superposition of the ground and excited elec-
tronic states of the studied system by an ultrashort laser pulse. This
creates a wavepacket in the excited electronic states of the system whose
time evolution is subsequently probed by the photoionization due to a
time-delayed ultrashort probe pulse. The distribution of the kinetic energy
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of the photoelectrons created upon photoionization re”ects therefore the
composition of the electronic state which has been ionized. Since during
the excited state dynamics the character of the electronic state can change,
e.g. due to the passage through a conical intersection, the observables such
as photoelectron kinetic energies (PKE) or photoelectron angular distribu-
tion o�er a sensitive probe for the nonadiabatic transitions.108

In Sec. 3.1 we will shortly outline our approach for the simulation of
TRPE spectra based on the Wigner distribution approach6, 37 which relies
on the propagation of an ensemble of classical trajectories •on the ”yŽ. This
approach provides a general tool for simulation of ultrafast processes and
femtosecond signals in complex systems, involving both adiabatic and nona-
diabatic dynamics.6 Subsequently, in Sec. 3.2 we will introduce the approxi-
mate description of the ionization probability to the continuum states in the
framework of the Stieltjes imaging procedure employing transition dipole
moments between excited electronic states, which will be here formulated
in the framework of TDDFT that is used for nonadiabatic dynamics •on
the ”yŽ. 27

3.1. Wigner distribution approach for the simulation
of time-resolved photoelectron spectra

The TRPE spectra can be simulated in the framework of the Wigner
distribution approach6 by a modi“cation of the equation for the zero
kinetic energy pump-probe signals6 which takes into account that a part
of the probe-pulse energyEpr changes into the kinetic energy of the
electronsE

S(td, E ) �
� �

dq0dp0

� �

0
d� 1 exp

�
Š

(� 1 Š td)2


 2
pu + 
 2

pr

�

× exp

�

Š

 2

pr

� 2 [Epr Š V21(q1(� 1; q0, p0)) Š E]2
�

× exp

�

Š

 2

pu

� 2 [Epu Š V10(q0)]2

�

P00(q0, p0). (23)

In this expression 
 pu (
 pr ) and Epu = � � pu (Epr = � � pr ) are the
pulse durations and excitation energies for the pump and probe step
with time delay td. V21(q1(� 1; q0, p0)) labels the time-dependent energy
gap between the electronic state in which the dynamics takes place and
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the electronic state that is used for probing, both obtained from the
ab initio MD •on the ”yŽ. 6 The initial coordinates and momenta q0 and
p0 needed for the dynamics simulation can be sampled from a canonical
Wigner distribution at the given temperature including all normal modes
according to:

P00(q0, p0) =
N�

i =1

� i

� �
exp

�
Š

� i

� � i
(p2

i 0 + � 2
i q2

i 0)
�

, (24)

where � i represents the frequency of thei •th normal mode and � i =
tanh( � � i / 2kbT).6 V10(q0) represents the excitation energies of the initial
ensemble. The signal is calculated by averaging over the whole initial
distribution P00(q0, p0) represented by the ensemble of trajectories. Notice,
that expression (23) is valid under the assumption of weak electric “elds
due to the perturbation theory treatment. 6, 37 In addition we also assume
that the transition dipole moment for the ionization is independent of
the nuclear con“guration (Condon approximation). In the next Sec. 3.2
we introduce the Stieltjes imaging approach which allows to take into
account the variation of the transition dipole moment along the nuclear
trajectories.

The simulation of the TRPES involves three steps: (i) The ensemble of
initial conditions is generated by sampling the Wigner distribution function
corresponding to the canonical ensemble at the given temperature. (ii) The
ensemble of trajectories is propagated using nonadiabatic MD •on the ”yŽ.
(iii) The TRPES is calculated by averaging over the ensemble of trajectories
employing the analytical expression (23) derived in the framework of the
Wigner distribution approach. 6

3.2. Stieltjes imaging approach for approximate description
of photoionization continuum

In order to describe accurately the photoionization process but avoiding
the extremely demanding solution of the scattering problem the Stieltjes
imaging (SI) procedure can be employed to reconstruct the photoionization
spectrum from the spectral moments. In principle, these can be obtained
either by diagonalization of the full Hamiltonian matrix or by using some
approximate approach which avoids the diagonalization as shown e.g. by
Gokhberget al.109 Since in linear response TDDFT the Hamiltonian matrix
is of a reasonable size this o�ers the opportunity to validate the quality of
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SI spectra by comparison with the full spectral distribution obtained from
the diagonalization of the TDDFT matrix. Notice that this diagonalization
provides a set of neutral excited states above the ionization limit which we
use as a discrete approximation for the true continuum states.

For the calculation of the photoionization probabilities the transition
energies and transition dipole moments are needed which can be obtained
from TDDFT calculations using the CI-like wavefunction ansatz in Eq. (8)
for the excited electronic states of the neutral species. For this purpose, we
introduce the transition dipole moments among excited states which are
not available in the standard TDDFT procedure.27

The transition dipole matrix elements M IK between two excited states
I and K can be calculated according to:

M IK = � � I |µ̂|� K � =
�

i,a

�

j,b

c�I
i,a cK

j,b � � CSF
i,a (r ; R (t))| µ̂|� CSF

j,b (r ; R (t))� ,

(25)

where a and b indicate virtual and i and j occupied orbitals, respectively.
The dipole matrix elements on the right hand side of Eq. (25) can be
reduced to the transition dipoles between Kohn…Sham orbitals applying the
standard Slater-Condon-Rules for matrix elements of one electron opera-
tors. Notice, that the calculation of the transition dipole moments between
excited states within the linear response random phase approximation
(RPA) has been developed by Yeageret al.,110 which is related to our
TDDFT based formalism. Using this procedure we obtain both the tran-
sition energies and oscillator strengths which represent a discrete approxi-
mation for the photoelectron spectrum. It should be emphasized that this
description of the continuum states isextremely sensitive to the details of
the quantum chemical description.

The discrete treatment of the photoionization continuum obtained in
this way involving the transition energies and corresponding oscillator
strengths is subsequently used in the SI procedure.111–113 The basic quan-
tity in the SI approach is the frequency-dependent polarizability � which
contains both the information on the discrete part as well as on the
continuum part of the ionization spectrum and can be represented by:

� (z) =
discrete�

i

f i

	 2
i Š z2 +

� �

� 0

g(	 )d	
	 2 Š z2 . (26)
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In the above equation z is the complex frequency,g(	 ) is the density
of continuum states, 	 i are discrete transition energies,f i are the oscil-
lator strengths and 	 0 is the beginning of the ionization continuum.
The frequency-dependent polarizability can be expanded into a series
according to:

� (z) =
��

k

S(Š2k)z2kŠ 2, (27)

using the negative power spectral momentsS(Šk):

S(Šk) =
discrete�

i =1

f i

(	 i )k +
� �

� 0

g(	 )d	
	 k . (28)

It is important to notice that the series � (z) is divergent above	 0 and
thus cannot be calculated by direct summation. Therefore, an analytic
continuation has to be introduced to calculate the � (z) in the continuum
part of the spectrum.

In order to obtain approximate values of the spectral momentsS(Šk)
including discrete and continuum states, we use a similar relation between
a power series expansion of the momentsS(Šk) and the Stieltjes inte-
gral � (z):

� (z) =
� �

� 0

	g (	 )d	
	 Š z

=
l�

k=1

S(Šk)z(kŠ 1) =
Pn Š 1(z)
Qn (z)

. (29)

Furthermore, since this representation is also divergent in the continuum
part of the spectrum on the real axis, we introduce the Padé approxima-
tion113 on the right hand side of Eq. (29). The real roots of the polynomial
Qn (z) are the pseudo ionization energies�	 i , and the corresponding oscil-
lator strengths �f i are obtained from the residues of the Pad´e approximant
for z � �	 i :

�f i =
Š1
�	 i

lim
z� e� i

( �	 i Š z)
Pn Š 1(z)
Qn (z)

=
Š1
�	 i

Pn Š 1(�	 i )
Qn

� (�	 i )
, (30)

where Q�
n (�	 i ) is the derivative of the polynomial with respect to the tran-

sition energies.
The TRPE spectra are calculated by averaging over the ensemble of

trajectories obtained using nonadiabatic dynamics •on the ”yŽ employing
the analytical expression (23). For this purpose, the ionization spectrum
is approximated either by the discretized continuum (DC) represented by
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excited states of the neutral system above the ionization limit or by the
Stieltjes imaging pseudo spectrum (SI) at selected timesteps in the nuclear
dynamics.27

4. Field-Induced Surface-Hopping Method (FISH)
for Simulation and Control of Ultrafast
Photodynamics

The control of molecular processes by shaped laser “elds opens a perspec-
tive for di�erent applications. In particular, the closed-loop learning (CLL)
scheme80 has stimulated many experiments in which molecular fragmen-
tation, 81, 114 isomerization115 or ionization116 are controlled. The theoret-
ical counterpart is the optimal control theory 69, 71 which has contributed
signi“cantly to understand the mechanisms for the control of molecular
fragmentation, ionization, and isotope selection. However, these theoretical
achievements have so far been limitedto low dimensional systems in which
the explicit numerical solution of the time-dependent Schrödinger equation
is feasible.

Recently, we have developed the Wigner distribution approach and
successfully applied it to the simulation of time-resolved pump-probe
spectra6 as well as to the control of ground83 and excited state82 dynamics.
However, due to the fact that the interaction with the laser “eld has been
described using perturbation theory the method is limited only to processes
in relatively weak “elds. For this reason, the development of new theoret-
ical methods for the simulation of laser-driven dynamics using moderately
strong laser “elds (below the multielectron ionization limit) is particularly
desirable. Such “elds open a very rich manifold of pathways for the control
of ultrafast dynamics in complex systems.

Therefore, we present here our new semiclassical approach for the simu-
lation and control of the laser-driven coupled electron-nuclear dynamics in
complex molecular systems including all degrees of freedom. This stochastic
•Field-Induced Surface HoppingŽ (FISH) method84 is based on the combi-
nation of quantum electronic state population dynamics with classical
nuclear dynamics carried out •on the ”yŽ without precalculation of poten-
tial energy surfaces. The idea of the method is to propagate independent
trajectories in the manifold of adiabatic electronic states and allow them
to switch between the states under the in”uence of the laser “eld. The
switching probabilities are calculated fully quantum mechanically. Thus,
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the purpose of this section is the presentation of a new generally applicable
method for the treatment of the laser-driven photodynamics. The illustra-
tion of its scope will be presented in Sec. 6.

The description of the laser-driven multistate dynamics is based on the
semiclassical limit of the quantum Liouville…von Neumann (LvN) equation

i � ��� = [ �H0 Š �µ · �E (t) , �� ] (31)

for the density operator �� . �H0 represents the “eld-free nuclear Hamilto-
nian for a molecular system with several electronic states in the Born…
Oppenheimer approximation, and the interaction with the laser “eld �E (t)
is described using the dipole approximation. The semiclassical limit can be
conveniently derived employing a phase space representation of quantum
mechanics such as the Wigner representation.34, 35 All quantum mechanical
operators are thereby transformed to phase space functions of the coor-
dinates q and momenta p. In the lowest order, the commutators in the
quantum LvN equation reduce to the classical Poisson brackets.35 The
equations of motion for the phase space representation of the diagonal
(� ii (q, p, t)) and o�-diagonal ( � ij (q, p, t)) density matrix elements for an
arbitrary number of states read:

�� ii = { H i , � ii } Š
2
�

�

j

Im( �µ ij · �E (t) � ji ), (32)

�� ij = Š i� ij � ij +
i
�

�µ ij · �E (t)(� jj Š � ii )

+
i
�

�

k �=i,j

(�µ ik · �E (t) � kj Š �µ kj · �E (t) � ik ), (33)

where the diagonal density matrix elements determine the quantum
mechanical state populations and the o�-diagonal elements describe the
coherence. The curly braces denote the Poisson brackets, Hi are the Hamil-
tonian functions for the respective electronic statei . The quantity � ij is the
energy gap between the electronic statesi and j and �µ ij denote the tran-
sition dipole moments. In the following, for clarity reasons we restrict the
derivation to a system with two electronic states (denotedg and e) coupled
by the laser “eld. In this case, the equations for the evolution of the diagonal
(� ee and � gg) and non-diagonal (� ge) density matrix elements are

�� gg = { Hg, � gg} Š
2
�

Im( �µ ge · �E (t) � eg), (34)
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�� ge = Ši� ge� ge +
i
�

�µ ge · �E (t)(� ee Š � gg), (35)

�� ee = { He, � ee} Š
2
�

Im( �µ eg · �E (t) � ge). (36)

For calculating the population transfer between the states induced by
the laser “eld, the coherence� ge is needed. It can be obtained in analytic
form by integrating Eq. (35):

� ge(t) =
i
�

exp(i� egt)
� t

0
d� exp(i� eg� ) �µ ge · �E (� )(� ee(� ) Š � gg(� )). (37)

Inserting this expression in Eq. (36) for the statee, the rate of change of
the diagonal density matrix element �� ee which determines the excited state
population becomes

�� ee = { He, � ee} Š
2
� 2 Re

�
�µ ee · �E (t)exp ( i� egt)

� t

0
d� exp (i� eg� )

× �µ ge · �E (� ) ( � ee(� ) Š � gg(� ))
�

. (38)

The time evolution of the phase space function� ee(q, p, t) can now be
separated into two physical contributions. The Poisson bracket{ He, � ee}
corresponds to the phase space density ”ow within the excited electronic
state e while the second term in Eq. (38) describes the population transfer
between the electronic statesg and e.

In our FISH approach we represent the phase space functions� ii (q, p, t)
by independent trajectories propagated in the ground and excited elec-
tronic states, respectively. Thus, if the “nite number of trajectories Ntraj is
employed, � ii (q, p, t) can be represented by a swarm of time-dependent�
functions

� ii (q, p, t) =
1

Ntraj

�

k

 k
i (t) � (q Š qi

k (t; q0, p0))� (p Š pi
k (t; q0, p0)), (39)

where (qi
k , pi

k ) represents a trajectory propagated in the electronic statei
and the parameter  k

i (t) has a value of one if the trajectory k resides in the
state i , otherwise it has a value of zero.6 The population transfer between
the electronic states is achieved by aprocess in which the trajectories are
allowed to switch between the states.This procedure is related to Tully•s
surface hopping method44 which has been developed in order to describe
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“eld free nonadiabatic transitions in molecular systems. However, in our
case the coupling between the states is induced by the applied laser “eld.

In the case of a two-state system the hopping probabilityPg� e between
the ground state g and excited state e can be calculated from the rate of
change of the excited state population, normalized to the population of the
ground state according to

Pg� e = �( � � ee)
�� ee Š { He, � ee}

� gg
� t. (40)

The function �( � � ee) is de“ned to have a value of one for �� ee > 0 and
a value of zero for �� ee < 0, guaranteeing that the hopping probability is
nonzero only if the population of the excited state is increasing. Inserting
the Eq. (36) for the rate of change of� ee, the hopping probability for a
two-state system can be expressed in analytic form as

Pg� e(t + � t) = Š
2� t

� 2� gg
Re

�
�µ eg · �E (t)exp( i� egt)

� t

0
d� exp(i� eg� ) �µ ge

× �E (� )(� ee(� ) Š � gg(� ))
�

, (41)

illustrating the direct dependence on the electric “eld �E (t).
The simulation of the laser-induced dynamics in the framework of

our FISH method using the above derived approach is performed in the
following three steps:

(i) We generate initial conditions for an ensemble of trajectories by
sampling e.g. the canonical Wigner distribution function [cf. Eq. (24)]
or a long classical trajectory in the electronic ground state.

(ii) For each trajectory which is propagated in the framework of MD •on
the ”yŽ, we calculate the density matrix elements � ij by numerical
integration. If the initial electronic state is a pure state as it is in
our case, the set of equations (32)…(33) is equivalent to the time-
dependent Schrödinger equation in the representation of adiabatic elec-
tronic states:

i � �ci (t) = Ei (R (t))c i (t) Š
�

j

�µ ij (R (t)) · �E (t) cj (t) , (42)

whereci (t) are the expansion coe�cients of the electronic wavefunction
in the basis of adiabatic electronic states from which the density matrix
elements can be calculated as� ij = c�

i cj . It should be noticed that the
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adiabatic state energies as well as the transition dipole matrix elements
are parametrically dependent on the nuclear trajectoryR (t).

If the intrinsic nonadiabatic coupling of the electronic states also
has to be taken into account, the equation (42) can be generalized to

i � �ci (t) = Ei (R (t))c i (t) Š
�

j

(�µ ij (R (t)) · �E (t)

+ i � �R(t) · dij (R (t))) cj (t) , (43)

where dij (R (t)) = � � i (R (t)) | � R | � j (R (t))� denotes the nonadia-
batic coupling vector and �R · dij corresponds to the scalar coupling
Dij (cf. Sec. 2.1). Thus, after the duration of the applied “eld is over,
“eld free multistate nonadiabatic dynamics can be further carried out.
The Eqs. (42) or (43) are solved numerically using e.g. the fourth order
Runge…Kutta procedure.

The nuclear trajectories R (t) are obtained by solution of Newton•s
equations of motion using the Verlet algorithm117:

M R̈ (t) = Š
�

i

 i (t) � R Vi (R (t)). (44)

In Eq. (44)  i (t) represents a parameter which has a value of one for
the state in which the trajectory is propagated at the given time and
zero for all other states andVi (R (t)) is the adiabatic potential energy
of the electronic state i . The forces acting on the nuclei (� R Vi (R (t)))
are calculated •on the ”yŽ when they are needed. In contrast to “eld
free nonadiabatic dynamics, the energy of a molecular system is not
conserved if an electric “eld is present, since energy exchange with
the “eld occurs. Therefore, when exposed to a long intense laser pulse,
molecules tend to accumulate energyand eventually get heated. For an
isolated gas phase molecule, this can lead to fragmentation. However, if
the molecule is interacting with an environment such as solution, the
excess thermal energy can be dissipated. In order to approximately
include the e�ect of the environment we use dissipative Langevin
dynamics with the equation of motion

M R̈ (t) = Š
�

i

 i (t) � R Vi (R (t)) Š M� �R(t) + Frand (t) (45)

instead of Eq. (44) for calculating the forces acting on the nuclei. Here,
� is an empirical friction coe�cient and Frand represents a random
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force. The solution of the Eqs. (44) or(45) provides continuous nuclear
trajectories which reside in di�erent electronic states according to the
quantum mechanical occupation probabilities given by� ii .

(iii) In order to determine in which electronic state the trajectory is prop-
agated we calculate the hopping probabilities and decide if the trajec-
tory is allowed to change the electronic state by using a random number
generator. For a general number of states the hopping probability can
be calculated according to Eq. (7).In contrast to the “ eld-free nona-
diabatic dynamics, the energy is not conserved during the interaction
with the “eld, and thus after a hopping event no velocity rescaling is
performed until the “eld has ceased.

Notice that while the trajectories jum p between the electronic states at
a given time, all density matrix elements are propagated continuously over
the entire time according to Eqs. (32)…(33), or alternatively either (42) or
(43) depending whether intrinsic nonadiabatic coupling between the states
is treated or not. Although the individual trajectory is allowed to jump,
the total number of trajectories in a given state representing � ii is also
a continuous function of time. The phase of the electronic wavefunction
is preserved and our procedure gives rise to the full quantum mechanical
coherent state population.

Therefore, our approach is able to mimic laser-induced processes such
as coherent Rabi oscillations between the electronic states. In order to illus-
trate this, the FISH approach is compared to the full quantum mechan-
ical treatment of laser-induced dynamics in a two state harmonic oscillator
model system. The population dynamics shown in Fig. 1(a) clearly exhibits
the coherent Rabi oscillations and is in perfect agreement with the popula-
tions obtained by full quantum dynamics presented in Fig. 1(b). It should be
emphasized that the ability to describe the coherent electronic state dynamics
is inherent to our approach and does not depend on the chosen model system.

In particular, the FISH procedure can be combined with the optimal
control theory in order to steer molecular processes. For this purpose the
electric “eld entering the Eq. (41) can be iteratively optimized using e.g.
evolutionary algorithms83, 119 as it will be illustrated later. Speci“cally, the
“eld is parametrized either in the time or in the frequency domain, and
the respective parameters as e.g. intensities, frequencies, pulse widths or
chirp parameters can be iteratively optimized based on binary coding of the
parameters and the usual selection, crossover and mutation operations.119

It should be pointed out that the theoretical optimization of laser “elds
within FISH dynamics, in particula r if relatively long laser pulses are
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Fig. 1. Population dynamics in a two-electronic state harmonic model system. The ground
state is given by Vg (q) = 0 .5 q2 and the excited state by Ve(q) = 0 .5 q2 + 40. The states are
coupled by a resonant electric “eld with E (t) = 4 sin(40 t), the transition dipole moment
is µge = 1 .0. (a) Semiclassical populations of the ground (black) and excited (grey) states.
(b) Quantum mechanical populations of the ground (black) and excited (grey) states. For
quantum dynamics a grid-based numerical solution of the Schr¨ odinger equation 118 was
employed. Reprinted from Ref. 84. Copyright 2009, American Physical Society.

needed, is computationally quite demanding for complex systems since an
ensemble of trajectories needs to be propagated many times using each “eld
generated during the optimization procedure. The main part of the compu-
tational cost results from the necessity to calculate the energies and forces
as well as the nonadiabatic couplings and transition dipole matrix elements
between all electronic states. E�cient calculation of the needed quanti-
ties can e.g. be achieved by using either time-dependent density functional
theory (TDDFT) or semiempirical quantum chemistry methods, provided
they o�er a su�ciently accurate descri ption of the spectroscopic properties
of the systems under study. The calculation of nonadiabatic couplings and
transition dipole matrix elements in the frame of TDDFT is described in
Secs. 2 and 3, respectively. For semiempirical methods, calculation of nona-
diabatic couplings and transition dipole moments between excited states
was recently introduced by Thiel et al.53

Our semiclassical FISH method is a valuable tool for the simulation
and control of ultrafast laser-driven coupled electron-nuclear dynamics
involving several electronically excited states in complex molecular systems.
This approach combines classical MD simulations with the “eld-induced
surface hopping for the electronic state population dynamics and can
be used to simulate spectroscopic observables as well as to control the
dynamics employing shaped laser “elds. For the propagation of classical
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trajectories the whole spectrum of methods ranging from empirical force
“elds, semiempirical to ab initio quantum chemical methods can be
employed. Moreover, the FISH method can be used to analyze and control
laser-driven excited state dynamics in molecular systems in the gas phase
as well as interacting with di�erent environments such as solvent, bioen-
vironment, surfaces or metallic nanostructures. In particular, due to the
density matrix formulation of the method, dissipative e�ects for nuclear
and electronic motion can be taken into account. The FISH method allows
not only to obtain optimized pulses but also to analyze their shapes on
the basis of molecular dynamics •on the ”yŽ. In this way the compar-
ison between theoretically optimized laser “elds with those obtained from
experiments, e.g. using the CLL procedure allows to assign the underlying
processes to the speci“c forms of the pulses. In principle in this way the
inversion problem can be addressed or important parts of the PES could be
constructed. Altogether, the FISH method opens new avenues to perform
the optimization of laser pulses for di�erent exciting applications as it will
be described in Sec. 6. Beyond the description of the electric dipole coupling,
the FISH method represents a general approach which allows straightfor-
ward inclusion of any other kind of coupling between electronic states, e.g.
magnetic dipole interactions in chiral systems or Förster type excitation
energy transfer in molecular assemblies.

5. Applications of the Nonadiabatic Dynamics “on the Fly”

The choice of the applications presented here has the purpose to show
the broad scope of our approach on the example of organic chromophores
and biologically relevant chromophores interacting with the environment.
The simulation of ultrafast observables such as TRPES allows to make
direct comparison with experimental data and thus to reveal the dynam-
ical processes involved in the excited state relaxation and their time scales.
Moreover, the constantly developing methods for simulation of ultrafast
processes challenge also the development of new experimental techniques
allowing to address ultrafast phenomena at always increasing level of preci-
sion as it will be described below.

5.1. Ultrafast dynamics of photoswitching

The study of the ultrafast dynamics in benzylideneaniline (BAN) is of
particular interest in the context of applications of molecular switches in
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molecular electronics and biosensing. Moreover, the example of the ultrafast
nonadiabatic photoisomerization of BAN serves to illustrate the scope of
our approach for the nonadiabatic dynamics based on the time-dependent
density functional theory (TDDFT) described in Sec. 2.1. The aim of this
study is twofold: First, we wish to establish the mechanism of the ultra-
fast photoinduced switching and to determine the nonradiative lifetime of
the optically allowed S1 state, gaining fundamental insight into selectivity
and dynamics of molecular switches.Second, we present the simulation
of TRPE spectra and identify the features that are characteristic for the
excited state dynamics and for the nonadiabatic transitions. In addition,
we investigate the in”uence of the manifold of cationic excited states on
the general appearance of the TRPE spectra, since in the photoioniza-
tion usually several cationic excited states can be reached. Our theoretical
results serve also to motivate the experimental work on BAN in the frame
of the TRPE spectroscopy.

5.1.1. Computational

For the description of the electronic structure we employ the non-hybrid
gradient-corrected Perdew…Burke…Ernzerhof (PBE) exchange…correlation
functional120 combined with triple zeta valence plus polarization atomic
basis sets (TZVP)121 together with the Resolution-of-the-Identity (RI)
approximation122, 123 for the calculation of energies and forces •on the ”yŽ
as implemented in Turbomole,124 allowing to speed up the calculations
considerably. The relatively large TZVP atomic basis set has been employed
to decrease the in”uence of the basis set on the quality of the results.

In order to determine the accuracy ofTDDFT for the description of the
excited states of BAN we “rst calculated the stationary absorption spectra
for the cis and trans isomer with RI-PBE and with the B3-LYP hybrid
functional.125, 126 The transition energy for the S1 state of the trans isomer
calculated with RI-PBE is lower by approximately 0.4 eV than the one
obtained with B3-LYP and lower by approximately 0.8 eV with respect to
the available experimental results.127 The character of the S1 and S2 tran-
sitions is identical for both functionals and no additional dark states appear
below the dark S2 state. In order to address the in”uence of the functional
(B3-LYP vs. RI-PBE) we have performed excited state dynamics simula-
tions using a small number of trajectories. The results have shown that the
features of the excited state dynamics are not strongly dependent on the
choice of the functional. Thus we employ the signi“cantly computationally
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more e�cient although less accurate non-hybrid PBE functional with the
RI approximation for the nonadiabatic dynamics simulations.

Due to the well known problem of TDDFT in describing long range
interactions, especially using non-hybrid functionals, we have checked the
long range charge transfer character of theS1 and S2 states for the trans
isomer. For this purpose we calculated the recently introduced quantity
�, 128 which serves as an indicator for the long range charge transfer contri-
bution to transitions. � is de“ned as:

� =
�

ia c2
ia Oia�

ia c2
ia

, (46)

where Oia represents the overlap of the moduli of an occupied and virtual
orbital, Oia = �| � i | | |� a |� , while cia labels the contribution of the excitation
� i � � a to a given transition. � is restricted to the range between 0 and
1, where low values indicate strong long range charge transfer character.
Within the RI-PBE method both the S1 and S2 states of the trans isomer
correspond to predominantly local transitions as evidenced by the � values
of 0.67 and 0.47, respectively.128 Thus, particularly in the S1 state which is
initially populated in the nonadiabatic dynamics, the charge transfer contri-
bution is not dominant and therefore PBE o�ers an acceptable description.

For the simulation of the photodynamics of BAN using our TDDFT-
based nonadiabatic dynamics approach elucidated in Sec. 2.1, an ensemble
of 220 trajectories was excited to theS1 state of the trans isomer. The initial
coordinates and momenta were sampled from a long trajectory propagated
at the temperature of 100 K in the electronic ground state. For the nuclear
dynamics the classical Newton•s equations of motion have been integrated
using the velocity Verlet algorithm 117 with a timestep of 0.1 fs, and forces
were calculated for the currently occupied state. The expansion coe�cients
CK (� ) for the electronic wavefunction which are needed to calculate the
hopping probabilities PI � K (� ) according to Eq. (4) were propagated using
a fourth order Runge…Kutta procedure with a timestep of 10Š 5 fs. The
time-dependent photoelectron spectrum (TRPES) has been simulated in
the framework of the Wigner distribut ion approach (cf. Ref. 6) as described
in Sec. 3.1.

Here we focus on the photoionization to the cationic ground electronic
state which can be e�ectively reached both from the ground state as well
as from the excited state of the neutral species. In order to assess the
contribution of higher cationic states to the signal, we have also performed
simulations for selected individual trajectories including additional eleven
cationic excited states.
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5.1.2. Ultrafast photoswitching in benzylideneaniline (BAN)

We present here the simulation of thephotoinduced trans-cis isomeriza-
tion in the prototype switchable Schi� base benzylideneaniline (BAN). In
contrast to related photoswitchable molecules such as azobenzene and stil-
bene, the calculated equilibrium structure of the trans isomer of benzylide-
neaniline does not exhibit a planar geometry.129, 130 The equilibrium value
for the dihedral angle of the phenyl ring bound to the nitrogen atom
has the value of 42� while the phenyl ring bound to the carbon atom is
almost coplanar with the C=N bond. These values are in good agreement
with experimental gas phase electron di�raction measurements.129 The cis
isomer is 0.25 eV higher in energy and exhibits a structure in which the
phenyl ring bound to the nitrogen atom is tilted by 76 � with respect to the
C=N bond plane while the other phenyl remains almost coplanar with a
torsion angle of 14� . In order to verify the thermal stability of the cis isomer
which is the product of the photoisomerization we have run a long constant
temperature MD simulation at T = 200 K which did not exhibit any reverse
isomerization. This shows that the cis isomer is stable well above the usual
temperature of e.g. molecular beam experiments and therefore the photo-
isomerization should be easily experimentally detectable.

The lowest intense electronic transition of the trans isomer is centered
around 3.2 eV as can be seen from the simulated thermally broadened
absorption spectrum at T = 100 K shown in Fig. 2(a) (dashed line). The
thermal ensemble obtained from MD simulations atT = 100 K shows that
only the trans isomer is populated and the structure is relatively rigid [cf.
inset in Fig. 2(a)]. The S1 state has dominantly � Š � � character. Notice,
that the optical absorption of the cis isomer lies much higher in energy
[cf. Fig. 2(b)] and therefore both isomers can be selectively excited which
is a necessary requirement for reversible photoswitching. First, we present
our results for the nonradiative lifetimes and then the simulation of the
TRPE spectra.

For the calculation of lifetimes, the ensemble of 220 trajectories has been
propagated starting in the S1 state. The nonadiabatic dynamics has been
performed in a manifold consisting of the ground electronic state and the
two lowest electronically excited states. For the determination of the nonra-
diative lifetime the time-dependent electronic state populations have been
calculated by monitoring the number of trajectories in each state during
the dynamics simulation (cf. Fig. 3). After the initial � Š � � excitation,
the S1 state•s population decays approximately exponentially with a time
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Fig. 2. Theoretical stationary absorption spectrum for (a) the trans isomer and (b)
the cis isomer of benzylideneaniline obtained using the PBE functional with TZVP basis
sets. The calculated discrete transition energies are convoluted with a Lorentzian function
with a width of 0.2 eV. The character of the S1 transition is indicated by the dominant
KS-orbitals involved in the excitation. The dashed line in (a) denotes the theoretical
thermally broadened stationary absorption spectrum for the S1 state of trans benzyli-
deneaniline obtained from the 300 initial conditions shown in the inset. The discrete
absorption lines (not shown) have been convoluted with a Lorentzian function with a
width of 0.04 eV. Reprinted with permission from Ref. 26, Copyright 2008, American
Institute of Physics.

Fig. 3. Time-dependent population of the S1 state (full line) and of the S0 state of
the cis (dotted line) and trans (dashed dotted line) isomer for benzylideneaniline after
excitation of the trans isomer to the S1 state. The lifetime of the S1 state was determined
by exponential “tting (dashed line) giving rise to the value of 219 fs. The structures are
classi“ed as cis, if the “nal C-N=C-C dihedral angle is in the range [0.0 � , 60� ] and as
trans, if it is in the range [120.0 � , 180.0� ]. Reprinted with permission from Ref. 26,
Copyright 2008, American Institute of Physics.
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Fig. 4. Snapshots of the dynamics of benzylideneaniline for one trajectory exhibiting
isomerization to the cis form. Reprinted with permission from Ref. 26, Copyright 2008,
American Institute of Physics.

constant of 219 fs. The population transfer to the neutral ground state is
completed within 300 fs while the second excited stateS2 is not populated
at all. In order to determine the selectivity of the photoswitching we have
decomposed the ground electronic state population into the contribution of
cis and trans isomers. As can be seen from Fig. 3 the isomerization process
is highly nonselective with a yield for the cis isomer of� 33%. This low
selectivity results from the high excess of kinetic energy gained during the
propagation in the excited electronic state.

The mechanism of the photoisomerization is presented in Fig. 4 on the
example of a typical trajectory isomerizing to the cis form. The snapshots
of the dynamics show that the molecule reaches a semi-linear con“guration
with an almost linear C=N-C unit within the “rst 150 fs. This con“gu-
ration is closely related to the transition state for the thermal isomeriza-
tion130 and thus can lead both to the cis (cf. Fig. 4) as well as to the
trans isomer (not shown) after the nonadiabatic transition to the ground
state. The complexity of the isomerization process is evident from Fig. 5
in which a selected trajectory exhibiting trans-cis isomerization has been
projected onto the normal modes of the trans isomer. While in the “rst 70 fs
only few normal modes are excited, during the subsequent dynamics an
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Fig. 5. Displacement of the normal coordinates of trans benzylideneaniline along one
trajectory isomerizing to the cis form. The numbers indicate the corresponding normal
modes with respect to increasing frequency. Reprinted with permission from Ref. 26,
Copyright 2008, American Institute of Physics.

increasing number of normal coordinates is activated. This clearly demon-
strates that the photoisomerization of benzylideneaniline cannot be accu-
rately described using reduced models in which only few vibrational modes
are explicitly taken into account.

In order to demonstrate the scope of the TRPE spectroscopy for the
investigation of photoswitching processes we have simulated the TRPES of
benzylideneaniline using our approach outlined in Sec. 3.1. For this purpose
the energy gaps between the actual state in nonadiabatic dynamics of the
neutral species and the cationic ground state have been calculated for the
whole ensemble. The simulated TRPES shown in Fig. 6(a) initially exhibits
coherent oscillations of the electron binding energy in the range between
4.75 and 6 eV. The period of the oscillations is approximately 20 fs and
corresponds to the C=N stretching vibration, which is initially excited due
to the electronic excitation into the antibonding � � orbital (cf. Fig. 2).
This origin of the oscillations is further con“rmed by the analysis of the
time-dependent internal coordinates corresponding to the C=N, C-Cph and
N-Cph bond lengths shown in Fig. 7.

In addition to the oscillatory behavior, the electron binding energy also
exhibits a systematic shift from 4.75 eV at t = 0 to 5.75 eV after � 100 fs.
This shift is characteristic for the onset of the isomerization process during
which the semi-linear transition state is reached. After 100 fs the signal at
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Fig. 6. Calculated time-resolved photoelectron spectrum (TRPES) of benzylideneani-
line (a) for the cationic ground state averaged over 220 trajectories and (b) for the ground
and eleven excited cationic states obtained from the nonadiabatic dynamics illustrating
the population transfer from the S1 to the S0 state. Reprinted with permission from
Ref. 26, Copyright 2008, American Institute of Physics.
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Fig. 7. Time-dependent bond length for the C=N (dotted line), C-C ph (dashed line) and
N-C ph (full line) bonds of benzylideneaniline averaged over 220 trajectories. Reprinted
with permission from Ref. 26, Copyright 2008, American Institute of Physics.

5.75 eV disappears and a new signal at the much higher electron binding
energy of 7.5 eV starts to rise. This signal is characteristic for the ground
state dynamics which takes place after the nonadiabatic transition. Notice,
that in contrast to the excited state part of the TRPES the ground state
signal does not show any vibrational structure due to the high excess of
energy which is gained upon the nonadiabatic transition.
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In order to investigate the in”uence of higher cationic states on the
features of the time resolved photoelectron spectrum, we have also simu-
lated TRPES including 11 excited cationic states which is presented in
Fig. 6(b). The contribution of higher states which might correspond more
realistically to the experimental situation smears out the vibrational struc-
ture and generally leads to the broadening of the signal. Nevertheless, the
qualitative features of the nonadiabatic transition re”ected in the shift of
the electron binding energy remain preserved.

In summary, we have demonstrated on the example of the ultrafast
photoswitching of BAN that TDDFT nonadiabatic dynamics is a suitable
approach for simulation of time-resolved observables such as TRPES as
well as for the determination of nonradiative lifetimes and mechanisms
of the involved processes, provided that the description of the chosen
system does not su�er from the known de“ciencies of the TDDFT method.
Our “ndings have motivated experimental work which is in progress. The
predicted nonradiative lifetime of the S1 state of BAN of � 200 fs as well as
the characteristic features of the TRPES are comparable with the exper-
imental results for azobenzene131 which is a structurally and electroni-
cally related molecule and has been already intensively investigated by
others.30, 47, 132–135

5.2. Ultrafast internal conversion through conical
intersection in pyrazine

Pyrazine is a prototype molecule for heterocyclic biochromophores and
therefore represents a suitable system to study fundamental photochemical
and photophysical processes. In particular, it has been intensively explored
experimentally and theoretically as an example for ultrafast internal conver-
sion through a conical intersection25, 108, 136–138 and serves as a benchmark
for experimental and theoretical work. Based on earlier quantum dynam-
ical studies, it has been proposed to use the TRPES for the real-time
observation of the S2 � S1 internal conversion (IC) in pyrazine136 since
a systematic decrease of the PKE has been predicted to occur. However,
experimental measurements108, 137 revealed that the PKE distribution does
not signi“cantly change upon internal conversion. Our previous work on
TRPES of pyrazine25 based on nonadiabatic dynamics •on the ”yŽ in
the frame of TDDFT taking into account only the cationic ground state
D0 showed discrepancies from experimental TRPE spectra108 in the time
domain before the internal conversion occurs. Theoretical simulations using
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transition dipole moments for ionization to the D0 and D1 cationic states
estimated from the experimental data and quantum dynamical simulations
with reduced dimensionality have reproduced these experimental results.139

Bearing in mind these “ndings as well as the improvement of experi-
mental resolution we came to the conclusion that a general theoretical
treatment accounting for an approximate description of the photoioniza-
tion continuum is needed in order to address the growing interest in the
interpretation of experimental TRPES results. In this section, we present
our results on TRPES of pyrazine based on the Stieltjes imaging proce-
dure described in Sec. 3.2 which represents a general tool for the inves-
tigation of ultrafast photoionization processes in complex systems and
thus can be used to study their femtochemistry including all degrees of
freedom.27

5.2.1. Computational

For the nonadiabatic dynamics we have used the hybrid B3LYP func-
tional125, 126 combined with triple zeta valence plus polarization atomic
basis sets (TZVP)121 as implemented in the Turbomole program.124 As
previously described, the B3LYP functional provides a reasonably accurate
description of the lowest�� � and n� � states of pyrazine25 as no long-range
charge transfer or multireference character is involved in these transitions,
and thus it can be used for the nonadiabatic dynamics simulation.

Investigation of the occupation of the vibrational states in pyrazine at
260 K revealed that even for the lowest normal mode exhibiting a vibra-
tional temperature of 492 K the “rst excited vibrational state ( v = 1) is
only populated with 15% whereas for higher normal modes the occupa-
tion of v = 1 is less than 1%. Therefore, it can be assumed that at our
simulation temperature only the vibrational ground state ( v = 0) is occu-
pied corresponding to the experimental conditions in a supersonic molec-
ular beam.

In our nonadiabatic dynamics simulations the ground electronic state
and the four lowest electronically excited states have been included. The
Newton equations of motion have been integrated using the velocity Verlet
algorithm117 with a time step of 0.1 fs. For each dynamics time step the
hopping probabilities were determined according to Eq. (4). The electronic
state expansion coe�cients CK (� ) were evaluated by numerical integration
of Eq. (2).
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For the simulation of the TRPE spectra using both the Stieltjes imaging
(SI) as well as the discretized continuum (DC) represented by neutral
excited states above the ionization limit as described in Sec. 3, up to 200
transition energies and transition dipole moments [cf. Eq. (25)] have been
calculated at selected timesteps, densely covering the energy range between
the D0 ionization threshold and the experimental probe pulse energy of
6.25 eV. In order to provide an adequate description of the electronic states
above the ionization level the 6-311G**++ basis set containing di�use func-
tions has been employed. Subsequently, transition energies and transition
dipole moments [cf. Eq. (25)] have been used for the SI procedure giving rise
to photoionization energies and oscillator strengths according to Eq. (30).
In order to obtain continuous spectra the discrete pseudo spectra at each
time delay tD have been folded in the energy domain with a Gaussian spec-
tral pro“le with a width of 0.2 eV in accordance with the experiment, thus
yielding the continuous Stieltjes pseudo spectrumI (tD , E ). Employing such
continuous photoelectron spectra the TRPES signal related to Eq. (23) has
been calculated according to:

I T RP ES (tD , E ) =
� �

0
d� exp

�

Š
1
2

·
(� Š tD )2


 2

�

I (�, E) . (47)

To take into account the experimental time resolution we use the experi-
mental full width at half-maximum value of 22 fs for the cross-correlation
between the pump and the probe pulse which corresponds to
 = 9 .34 fs.

5.2.2. Simulation of TRPES for pyrazine and comparison
with experimental spectra

The comparison of the simulated TRPES based on the discretized
continuum of neutral excited states above the ionization limit (DC) and
the Stieltjes imaging approach (SI)27 described in Sec. 3 with the exper-
imental TRPES is presented in Fig. 8. This spectrum has been obtained
using sub-20 fs deep UV pulses at 264 nm and 198 nm generated by four-
wave mixing through “lamentation by Suzuki et al. which allowed to inves-
tigate the ultrafast dynamics of polyatomic molecules in the framework of
TRPE spectroscopy with unprecedented time resolution.85
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Fig. 8. Comparison of simulated TRPES for pyrazine (a) using discretized continuum
represented by neutral excited states above the ionization limit (DC), 27 (b) using Stieltjes
imaging (SI) 27 and (c) experimental spectrum (cf. Ref. 85). Time-dependent photoelec-
tron signal intensities for di�erent photoelectron kinetic energy (PKE) intervals obtained
from (d) DC, (e) SI and (f) experiment. The signals (d)…(f) have been independently
normalized with respect to the highest peak. Reprinted with permission from Ref. 27,
Copyright 2010, American Institute of Physics.
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Following the initial excitation to the S2 excited state, the nonradiative
transition to S1 occurs with a time constant of � 20 fs.25 As shown in Fig. 8
the theoretical SI and the experimental spectrum exhibit a maximum within
the “rst 20 fs which is less pronounced in the DC signal. After � 50 fs the
photoelectron signal remains in the PKE interval between 0 and 1 eV both
in the DC [cf. Fig. 8(a)] and SI simulations [cf. Fig. 8(b)] as well as in the
experiment [cf. Fig. 8(c)] in spite of the nonadiabatic S2 � S1 transition.
The reason for no signi“cant shift of the PKE distribution is that the energy
di�erences of the transitions from the S2 state to the cationic excited state
D1 and from the S1 state to the cationic ground state D0, predominantly
occurring in the ionization process, are very similar.

In order to perform a more detailed analysis of the simulated and exper-
imental TRPE spectra we present in Fig. 8(d), (e) and (f) sections corre-
sponding to selected PKE ranges. Whileboth theoretical spectra are very
similar after � 50 fs, the SI spectrum exhibits a more pronounced maximum
at � 10…20 fs which is in agreement with the experiment. All three signals
exhibit quantum beats in the range between 50 and 250 fs. However, the
quantum beats are more pronounced inthe theoretical spectra [cf. dashed
lines in Fig. 8(d), (e) and (f)]. The average intensity is highest for the 0.0…
0.2 eV and 0.2…0.6eV intervals and decreases with increasing PKE above
0.6 eV in both the simulated and experimental spectra.

The in”uence of the approximate treatment of the photoionization on
the appearance of the signal can be analyzed from the TRPE spectra sliced
at selected timesteps (cf. Fig. 9) by comparing the results obtained with
both presented approaches, DC (black line) and SI (blue line), results
from our earlier work25 which include only the cationic ground state D0

(green dotted line) and experimental “ndings (red).108 At time 4 fs both
the experimental and the new theoretical signals based on the DC and SI
procedures are located around 0.5 eV while the signal calculated taking into
account only the cationic ground stateD0 is located at � 2 eV. This clearly
indicates that the ionization from the initially occupied S2 state to D0

(IP equ. = 4 .02 eV, calculated at equilibrium geometry) occurs only weakly
in the experiment as con“rmed by the results obtained from the DC and
SI approaches which show the dominance of theS2 � D1 transition in this
time period. As the time proceeds (t > 24 fs) a change in the ionization
process takes place as can be seen fromthe experimental and theoretical
results presented in Fig. 9. Within the period of 0 fs< t < 24 fs the internal
conversion from the S2 to the S1 state occurs (cf. Ref. 25) and subse-
quently for t > 24 fs ionization from S1 to D0 dominates. This is re”ected
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Fig. 9. Comparison of photoelectron spectra (PES) of pyrazine at selected timesteps
obtained from DC (black), SI (blue line), 27 simulations only including the cationic ground
state D 0 (green, dotted line) 25 and experiment (red). 85 Reprinted with permission from
Ref. 27, Copyright 2010, American Institute of Physics.

in the similarity of all three theoreti cal and the experimental spectra for
the time after 24 fs. The fact that several cationic states (D1 at t � 0 fs
and D0 at t > 24 fs) are involved in the ionization process clearly demon-
strates that the approximate description of the transition probabilities to
ionization continua corresponding toD0 and D1 cationic states is necessary
for the accurate description of the ionization process which is accounted for
in the DC and SI procedures. Therefore both provide agreement with the
experimental TRPE spectra in the whole measured time domain.

Further insight into the ionization process can be gained by analyzing a
selected nonadiabatic trajectory which is presented in Fig. 10(a). As can be
seen from the electron density di�erence during the dynamics the character
of the electronic state changes from the�� � (S2) to the n� � (S1) state at
t = 20 fs. The time-dependent energies ofthe four excited states of the single
trajectory in Fig. 10(a) are well separated from the ground state within the
simulation period which is in agreement with the absence of population
transfer to the ground state within this time period. The character of the



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch13

538 R. Mitri´ c, J. Petersen and V. Bona� cić-Kouteck ý

(b)(a)

0 50 100 150 200 250 300
time [fs]

0

2

4

6

8

10

12

14

en
er

gy
 [e

V
]

)

)
)

� *
1

2 )*S  (� � � *
1 � *

1

S  (n

S  (n
S  (n

)

� *

� * � *

� *

�

��

�

�

� � * � *

1

S  (2 )
1

1
0D  (      )1

t = 0 fs t > 24 fs

n

n n

n

S  (n

D  (n    )

Fig. 10. (a) Energies of the four excited states and the ground state of pyrazine as
a function of time obtained from the nonadiabatic dynamics along one selected trajec-
tory. The thick violet line indicates the energy of the state in which the trajectory
resides during the dynamics and the insets denote character of the dominant excitations.
(b) Schematic analysis of the time-dependent ionization processes in pyrazine. Reprinted
with permission from Ref. 27, Copyright 2010, American Institute of Physics.

states is also re”ected in the dominant con“gurations shown in Fig. 10(b).
As can be seen the dominant con“guration at the beginning of the dynamics
(t = 0 fs) corresponds to theS2 state. In the one electron picture ionization
of one electron out of the highest occupied molecular orbital leads to a
con“guration corresponding to the cationic D1 state [cf. left hand side of
Fig. 10(b)]. After 20 fs the main con“guration in the dynamics has changed
to the S1 state which in the one electron picture ionizes toD0 [cf. right
hand side of Fig. 10(b)]. Notice, that the wavefunction is a superposition of
many con“gurations and therefore an ionization process which is forbidden
in the one-electron single determinant picture can become weakly allowed
due to the minor contribution of other con“gurations.

The character of the excited state is also re”ected in the time evolu-
tion of the diabatic populations, which can be estimated from the time-
dependent oscillator strength averaged over the ensemble of trajectories
presented in Fig. 11, since the�� � state exhibits a high oscillator strength
compared to the n� � states. The oscillator strength decays within the
“rst 50 fs corresponding to the depopulation of the diabatic �� � state and
exhibits a recurrence at� 75 fs.
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Fig. 11. Time-dependent oscillator strength for the transitions from the S0 state to the
excited state in which dynamics takes place in pyrazine averaged over the ensemble of
trajectories. The population of the diabatic states ( �� � /n� � ) can be estimated, since
the �� � state exhibits a high oscillator strength compared to the n� � states. Therefore,
a high oscillator strength indicates population in the �� � state whereas low oscillator
strength indicates population in the n� � state. Reprinted with permission from Ref. 27,
Copyright 2010, American Institute of Physics.

In order to identify the normal modes responsible for the relaxation
dynamics the time-dependent Cartesian coordinates of the ensemble of
trajectories have been projected onto the normal modes of the equilibrium
structure of pyrazine and the averaged values are presented in Fig. 12. As
can be seen several modes are excited during the dynamics which in the
Wilson notation are labeled by � 1, � 2, � 6a, � 8a, � 9a and � 10a. The dominant
mode is the totally symmetric � 6a mode which involves mainly the in-plane
motion of the carbon and nitrogen atoms with a period of� 60 fs. This mode
is mainly responsible for the quantum beats present in the experimental and
theoretically simulated TRPE spectra (cf. Fig. 8).

In summary, we have presented a theoretical approach for the simu-
lation of TRPE spectra combining the nonadiabatic dynamics •on the
”yŽ with approximate description of the electronic continuum which is
used in the Stieltjes imaging approach. Our approach has been implemented
in the framework of TDDFT and has been applied to study the ultrafast
internal conversion (IC) between the S2 and S1 states in pyrazine. The IC
takes place on a timescale of 20 fs leading to a change in the transition
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Fig. 12. Time-dependent normal mode displacements obtained by projection onto the
equilibrium ground state normal coordinates of pyrazine averaged over 60 trajectories.
The displacement of the dominant normal mode � 6a exhibits a periodicity of � 60 fs.
Reprinted with permission from Ref. 27, Copyright 2010, American Institute of Physics.

probabilities so that the initial ionization from the S2 to the D1 state turns
over continuously to the ionization from the S1 to the D0 state. Since both
ionization channels exhibit similar ionization energies the maximum of the
simulated photoelectron distribution remains in an almost constant energy
range which is in agreement with experimental “ndings. The agreement
of simulated TRPE spectra obtained from both approaches DC and SI
validates the use of SI in particular if the spectral moments can be e�-
ciently calculated without full diagonalization of the Hamiltonian matrix.
In summary, our results demonstrate that the approximate description of
electronic continuum together with Stieltjes imaging provides quantitative
agreement with the experimentally measured TRPE spectrum. Thus our
approach represents a viable tool for the investigation and interpretation
of the time-dependent photoionization processes in complex systems.

5.3. Ultrafast photodynamics of adenine
in microsolvated environment

The ultrafast dynamics of DNA bases has been intensively studied in
recent years in order to reveal molecular features which are responsible
for their intrinsic photostability. 140 In the case of adenine, experimental
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studies have shown that isolated adenine in the gas phase returns nonra-
diatively to the ground state within about one picosecond after photoex-
citation of the strongly absorbing � Š � � electronic state.141–143 In order
to identify the mechanism of the nonradiative relaxation several theoretical
studies have been performed with the aim to assign the conical intersections
which dominate the relaxation process.144–147 Recently, mixed quantum-
classical dynamics simulations both using high levelab initio multireference
CI32 as well as semiempirical CI52 have been performed giving a dynamical
picture of the relaxation process. According to these studies, the relaxation
proceeds in a two step mechanism. First, the initially excited state (S 3

32 or
S2

52) relaxes rapidly to the lowest excited state (S1) with a time constant
of about 20 fs. The second slower stepcorresponds to the transition from
the S1 state to the electronic ground state with a time constant of about
500 fs.

A fundamental issue in the photophysics of nucleobases is the role
played by water. The experimental study of adenine in solution148 using
femtosecond transient absorption spectroscopy has revealed that the life-
time of the S1 state of adenine in water of 180 fs is about 50% shorter than
in acetonitrile (440 fs) and is in general much shorter than in the gas phase
(1.2 ps).143 This shows that the realistic description of nucleobase dynamics
requires the explicit inclusion of solvent e�ects which is a challenging task
from the theoretical point of view. We wish to show here that the TDDFTB
nonadiabatic dynamics represents a general and highly e�cient method
which can be used to simulate the nonadiabatic dynamics of biochro-
mophores solvated by a large number of water molecules which are not
accessible to high levelab initio e�orts. Due to its accuracy which is compa-
rable to the full TDDFT method, TDDFTB nonadiabatic dynamics can be
used to investigate nonadiabatic processes in a whole variety of complex
systems such as solvated biochromophores, photoreceptors or nanostruc-
tures which are of interest for materials science applications.

5.3.1. Computational

The system studied here consists of the adenine molecule solvated by 26
water molecules. The initial structure has been prepared in several steps
starting with the equilibration of a water box consisting of 561 water
molecules with 30�A × 30�A × 30�A dimensions using constant temperature
molecular dynamics atT = 300 K and the TIP-3P force “eld. 149 After equi-
libration, the adenine molecule has beeninserted in the center of the water
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Fig. 13. The DFT/B3LYP optimized structure of microsolvated adenine. Reprinted
with permission from Ref. 86, Copyright 2009, American Chemical Society.

box and further equilibrated by using the AMBER force “eld 150 for adenine.
Subsequently, the “rst solvation shell has been isolated and optimized in
the framework of DFT using the B3LYP functional 125 combined with the
triple zeta valence plus polarization basis set (TZVP)123 as well using the
DFTB method. In order to check the accuracy of the TDDFTB method,
the absorption spectrum for the DFT optimized structure shown in Fig. 13
has been calculated both using TDDFT with the same functional and basis
set as above as well as using TDDFTB. The comparison of the absorp-
tion spectra in Fig. 14 demonstrates a qualitative agreement and gave us
con“dence to carry out the nonadiabatic dynamics simulations in the frame-
work of TDDFTB. The “rst intense absorption line which corresponds to
the � Š � � transition in adenine is located at 250 nm in TDDFT [cf. arrow
in Fig. 14(a)] and at 260 nm in TDDFTB [cf. arrow in Fig. 14(b)]. While
these line positions are very similar in both methods, then Š � � transition
is located at 240 nm within TDDFT and very close to the � Š � � transition,
at 268 nm, within TDDFTB. In fact, the relative position of the n Š � � and
� Š � � transition within TDDFTB is analogous to the “nding obtained by
the ab initio multireference perturbation con“guration interaction method
(CIPSI) combined with the PCM-IEF solvation model. 151 However, notice
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Fig. 14. Comparison of the absorption spectra of microsolvated adenine obtained using
(a) full TDDFT with the hybrid B3LYP functional and (b) TDDFTB method. The
insert shows the B3LYP/TZVP optimized structure used for spectrum calculation. The
right panels show the character of the main excitation contributing to the “rst intense
transition marked in the spectra by arrows. Reprinted with permission from Ref. 86,
Copyright 2009, American Chemical Society.

that the proper description of excited states of chromophores interacting
with water molecules is a particularly di�cult issue in the framework of
TDDFT and TDDFTB due to the possibility of long range charge transfer
between water and the chromophore. In the case of adenine the long range
charge transfer does not play a signi“cant role at least in the equilibrium
geometry. In order to study the photodynamics 100 initial conditions have
been sampled from a 10 ps classical trajectory atT = 300 K. The trajec-
tories have been propagated using our TDDFTB nonadiabatic dynamics
starting in the third excited state S3. Totally, seven excited states and the
ground electronic state have been included in the simulation.
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5.3.2. In�uence of solvation on the nonradiative
relaxation of adenine

In order to illustrate the applicability of our TDDFTB nonadiabatic
dynamics for the investigation of complex systems we present here the
simulation of the nonadiabatic relaxation of microsolvated adenine. From
the experimental work in water solution it is known that adenine in
water assumes two tautomeric forms termed 9H-adenine and 7H-adenine.148

However, since 9H-adenine is dominant (� 78%) we limit ourselves here
only to study the photodynamics of that form. The optimized structure of
microsolvated adenine presented in Fig. 13 shows that all nitrogen atoms of
adenine as well as the two hydrogen atoms of the amino group are saturated
by hydrogen bonds.

The time-dependent excited state populations obtained from the
ensemble of 100 trajectories are shown in Fig. 15. The initially populated
S3 state is depopulated with a time constant of 16 fs and the popula-
tion is transiently transferred to the lower lying S2 and S1 states as well
as to a lesser extent to several other energetically close-lying states (S4…
S7). Notice that no direct population transfer from the initially occupied
S3 state to the ground electronic state occurs. TheS0 state begins to
be continuously populated from the S2 and S1 states starting at � 20 fs

Fig. 15. Population of the ground and excited electronic states during the nonadiabatic
dynamics simulation for microsolvated adenine. Reprinted with permission from Ref. 86,
Copyright 2009, American Chemical Society.
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with the full population transfer occurring on the time scale of 200 fs. It
should be emphasized that the nature of the nonadiabatic dynamics of the
microsolvated adenine is similar to that of isolated adenine simulated by
using both the high level ab initio CI method32 and the semiempirical CI
method.52 However, the transition to the electronic ground state in micro-
solvated adenine is signi“cantly faster than in the gas phase (200 fs versus
� 550 fs32, 52 ). Notice that previously theoretically calculated lifetimes of
adenine in the gasphase are signi“cantly shorter than the experimental
ones.143 However, the experimental values are strongly wavelength depen-
dent and lie in the range between 1.2 ps and 9 ps (cf. Ref. 143). For the
purpose of comparison we have also calculated the lifetimes of gasphase
adenine in the frame of TDDFTB. The transition to the ground state is
again a two step process where theS2 to S1 transition occurs with the
time constant of 120 fs and S1 to S0 exhibits a time constant of 11 ps.
However, the S1 to S0 transition is strongly wavelength dependent which
means that it is highly sensitive to quantitative features of the potential
energy surfaces which are di�cult to reproduce by the available methods.
The general trend of the shortening ofthe lifetime in water is in agreement
with the experiments on adenine in solution.148

Thus the nonradiative relaxation of microsolvated adenine occurs in
a two step process in which “rst the initially excited � Š � � state (S3) is
depopulated on the time scale of 16 fs and subsequently the ground stateS0

is populated with a time constant of 200 fs. Notice that the populations ofS1

and S2 states grow parallel (cf. Fig. 15) and both of them are depopulated
as the population of the ground state grows.

Further insight in the relaxation process can be gained by examining the
character of the excited electronic states and their relative energies along
a selected trajectory as presented inFig. 16. As can be seen, in the initial
stage of the dynamics several excited states are very close to the initially
excited S3 state. After the initial excitation to the � Š � � electronic state,
within the “rst 10 fs the character of the electronic state changes ton Š � �

(cf. inserts at 0.25 fs and 7.25 fs in Fig. 16). This proximity of electronic
states with di�erent character leads to the coupling which induces several
state switchings before the system reaches theS1 electronic state after
� 75 fs. Subsequently, within� 25 fs the crossing with the ground electronic
state is reached and the trajectory continues to propagate in the ground
electronic state. The higher density of electronic states in microsolvated
adenine compared to the gas phase increases the number of pathways which
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Fig. 16. The electronic state energy along a selected nonadiabatic trajectory in micro-
solvated adenine. The actual state in which the trajectory resides is labeled by the green
dashed line. The insert on the left hand side shows the dominant electronic con“gurations
at 0.25 ( � Š � � ) and 7.25 fs (n Š � � ). Reprinted with permission from Ref. 86, Copyright
2009, American Chemical Society.

can lead to the crossing with the ground electronic state and thus causes
faster nonradiative relaxation.

In summary, we have presented the combination of the tight-binding
time-dependent density functional theory (TDDFTB) with Tully•s surface
hopping method on the example of the nonradiative relaxation of microsol-
vated adenine taking into account the “rst solvation shell. Our simulations
have revealed that the nonradiative transition to the ground electronic
state proceeds according to a two step mechanism involving the ultra-
fast relaxation of the initially excited � Š � � state with a lifetime of 16 fs
and subsequent transition to the ground state within 200 fs. Overall, the
dynamics of microsolvated adenine is thus faster than the one of gas phase
adenine.

Our results demonstrate that the TDDFTB nonadiabatic dynamics
represents a useful qualitative tool for the investigation of photodynamics
in complex systems which are beyond the reach ofab initio methods. This
opens the possibility to investigate photoinduced dynamics in systems such
as for example biochromophores interacting with the protein environments
or solvent, light harvesting systems, biosensors, photonic nanoarchitec-
tures, polymers etc. The knowledge about the mechanisms for nonradiative
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relaxation in these complex systems is mandatory in order to tune their
properties for future applications.

6. Applications of the Field-Induced Surface-Hopping
Method (FISH) for the Control of Ultrafast Dynamics
by Shaped Laser Fields

The scope of the FISH method will be illustrated on two prototype examples
for di�erent application areas using shaped laser pulses for control of photoi-
somerization products and for optimal dynamic discrimination of similar
molecules. In Sec. 6.1 we present the optimal pump-dump control of the
trans-cis isomerization of a prototype Schi� base molecular switch with the
aim to achieve selective isomerization. In Sec. 6.2 we theoretically investi-
gate the optimal dynamic discrimination by shaped laser pulses between
the very similar biomolecules ”avin mononucleotide and ribo”avin with
identical absorption and emission spectra. Our FISH simulations utilize
experimentally optimized laser “elds and show that the ”uorescence deple-
tion ratio between two molecules can be manipulated with such “elds, thus
achieving discrimination between them. Moreover, these results validate
for the “rst time the experimental optimal control technique applied on
complex systems.

6.1. Optimal control of trans-cis isomerization
in a molecular switch

Switchable molecules are used by Nature as photoreceptors in the vision
process and can be also employed as building blocks for molecular elec-
tronic devices. Thus the control and the mechanism of selective photo-
switching by tailored laser “elds is an interesting general issue which can
contribute to design of more e�ective photoswitches with desired function-
ality. The “rst application of our FISH method to the control of laser driven
dynamics will be illustrated on the example of the optimal pump-dump
photoisomerization of N-Methylethaniminium (N-MEI) with the chemical
composition [CH3NH = CHCH 3]+ . This molecule is representative for a
broad class of Schi� base photoswitches and serves to demonstrate that
our FISH method can be used to design laser pulses which induce selective
trans-cis isomerization. Moreover, weshow that selective photoswitching
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is realized by selecting isomerization pathways which avoid the region of
conical intersections.84

6.1.1. Computational

In order to control the trans-cis isomerization in N-MEI we use our FISH
method described in Sec. 4. For this purpose we employ the semiempirical
AM1 con“guration interaction (CI) method 152 for the description of the
electronic states and for propagation of trajectories in the framework of
MD •on the ”yŽ. Inclusion of all degrees of freedom in molecular dynamics
is of conceptual importance even inthe cases that few degrees of freedom
might appear to dominate the dynamics. The AM1 CI method reproduces
reasonably accurately both the spectroscopic properties as well as the shape
of the potential energy surfaces of small Schi� base molecules.1 Therefore
we use this procedure which is computationally practicable for optimization
of laser “elds.

The simulation of the laser-induced dynamics is performed by (i) gener-
ating initial conditions for an ensemble of 30 trajectories sampled from a
10 K canonical Wigner distribution [Eq. (24)], (ii) for each trajectory prop-
agated in the framework of AM1 CI MD •on the ”yŽ the density matrix
elements � ij = c�

i cj are calculated by numerical integration of the time-
dependent Schrödinger equation (42) and accounting for the hopping to
the ground state for small energy gaps between ground and excited state
after the duration of the applied “eld is over. The nuclear trajectories are
obtained by solution of Newton•s equations of motion (44), (iii) “nally, in
order to determine in which electronic state the trajectory is propagated,
the hopping probabilities are calculated according to Eq. (40) and the deci-
sion is made whether the trajectory is allowed to change the electronic state
by using a random number generator.

We have optimized the analytically parametrized laser “eld using
Eq. (41) with a genetic algorithm described brie”y in Sec. 4 in order to
selectively populate the cis isomer. The laser “eld entering Eq. (41) is
parametrized in the time domain as a Gaussian pulse train according to

E(t) =
�

n

En exp(Š� n (t Š tn )2) sin(( � n + � n (t Š tn ))t) ,

where En represents the “eld amplitude, � n describes the temporal width,
tn is the center of the Gaussian,� n is the pulse frequency, and� n is the
linear chirp parameter. The optimization was achieved by minimizing the
target functional J [t f ] = (180 Š | � (t f )|) + 500 Ekin (t f ) accounting both for
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a maximal torsion angle � and a minimal kinetic energy of the molecule,
preventing thermal back isomerization to the trans isomer, thus populating
the cis isomer. For further details cf. Ref. 84. The convergence has been
tested by applying the optimal pulse to an ensemble of 100 trajectories. The
shape of our optimized pulse as well as “eld-induced population changes of
the excited and ground states will be discussed below.

6.1.2. Selective trans-cis isomerization of N-MEI

The N-MEI has two isomers in the ground electronic state. Its global
minimum structure is the trans isomer while the energy of the cis isomer
is 0.13 eV higher. The optimal pulse inducing trans-cis isomerization is
shown in the upper part of Fig. 17 and consists of two parts which
are nearly overlapping. The maximum intensity of the optimal pulse is

Fig. 17. (a) (Upper): Optimal pump-dump pulse driving the trans-cis isomerization
of N-MEI, (lower): Wigner-Ville transform of the optimal pump (left) and dump
(right) pulse showing the temporal distribution of the pulse energies. The intensity is
represented by a greyscale bar. The Wigner…Ville transform is de“ned as W (t, � ) =
2Re

R�
0 d� eŠ i�� E � (t + � / 2)E (t Š � / 2). (b) Time-dependent populations of the S0 and

S1 electronic states. For the ground state, also the populations of the trans and the cis
isomers are shown. The Rabi oscillations are present during the “rst 100 fs. (c) Snap-
shots of the laser-induced dynamics. Reprinted from Ref. 84. Copyright 2009, American
Physical Society.
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1.7× 1014 WcmŠ 2 which is in the regime of strong but not ultrastrong “elds.
The time-energy structure of the optimal pulse obtained by the Wigner…
Ville transformation [cf. bottom part of Fig. 17(a)] shows that the pump
subpulse has constant energy centered around 6.6 eV while the dump pulse
is linearly down chirped. The energy of the dump pulse varies from 6 eV to
less than 2 eV in the time interval between 50 and 100 fs [cf. Fig. 17(a)]. Such
large bandwidth has beenrecently realized by white light continuum pulse
shaping.153 The laser induced population dynamics presented in Fig. 17(b)
shows that the pump pulse depopulates the ground state after� 20 fs.
During the subsequent 100 fs the populations of the ground and excited
states exhibit Rabi oscillations around the average value of 50%. Within
this period, the dump pulse successively depopulates the excited electronic
state, before the energy gap closes and the conical intersection is reached,
thus steering the dynamics towards the cis isomer. Since during the excited
state dynamics the energy gap between the excited and the ground elec-
tronic state becomes smaller as the system performs the rotation around the
C=N bond [cf. Fig. 17(c)] the energy of the dump pulse decreases with time
(down-chirp) in order to satisfy the resonance condition. The selectivity of
the isomerization process is re”ectedin the time-dependent population of
the cis and trans isomers [cf. Fig. 17(b)] giving rise to the “nal occupa-
tion of the cis isomer of � 75%. The occupation of the cis isomer is not
100% due to competing pathways through the conical intersection which
start to dominate after the pulse terminates. This is the reason why the
population of the cis isomer changes after the laser pulse has been switched
o�. Notice, that excitation with an unshaped pump pulse and subsequent
“eld free isomerization through the conical intersection between the “rst
excited singlet state and the ground state leads to the cis isomer only with
a yield of � 30%. The reason for this is that the excess of energy gath-
ered after passing through the conical intersection induces a hot ground
state and the return to the trans isomer prevails. This is an interesting
prototype example showing that it might be di�cult to achieve the desired
photochemical products by passing through a conical intersection. However,
the new pathways reachable by shaped laser “elds can easily suppress the
passage through the conical intersection and can eventually lead to selective
isomerization.

The snapshots of the laser-controlled dynamics shown in Fig. 17(c) illus-
trate that the cis isomer is reached within 160 fs and together with the time
evolution of the electronic state population [cf. Fig. 17(b)] con“rm that the
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pathway through the conical intersection is suppressed. Thus, the optimal
pump dump control can be used to e�ciently drive the selective photoiso-
merization of molecular switches.

6.2. Optimal dynamic discrimination

We wish to reveal the processes responsible for the discrimination of the two
very similar molecules ”avin mononucleotide (FMN) and ribo”avin (RBF)
using optimally shaped laser “elds90 which has been recently demonstrated
experimentally. The general concept of the optimal dynamic discrimina-
tion (ODD) has been recently proposed by Rabitz and Wolf et al.87, 88

The idea of the ODD relies on a theoretical analysis which has shown that
quantum systems di�ering even in“nitesimally may be distinguished by
means of their dynamics when a suitably shaped ultrafast control “eld is
applied. In the case of the two similar ”avins (di�ering only by replace-
ment of H by PO(OH) 2) the controlled depletion of the ”uorescence signal
has been used as a discriminating observable.89 The schematic represen-
tation of the discrimination process is presented in Fig. 18. In general,

Fig. 18. Schematic illustration of the discrimination of FMN and RBF by ”uorescence
depletion. Excitation with a shaped UV laser pulse leads to transition from S0 to S1

state, as indicated by the light grey arrow. After a time-delay � t during which dynamical
processes take place, an unshaped IR pulse is applied. In the case of FMN (left part of
the Figure), this leads to transitions to higher excited states where irreversible processes
such as ionization can occur (dark arrow), consequently the ”uorescence gets depleted
(crossed dark arrow). For RBF (right part of the Figure), excitation to higher states is
less favorable (crossed dark arrow), and ”uorescence will remain stronger than in FMN
(dark arrow). With di�erently shaped UV pulses, also the reverse situation is possible.
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a shaped UV pulse excites both molecules to theS1 state and induces
ultrafast dynamics which can follow slightly di�erent pathways in both
molecules. After a speci“ed time delay � t a second unshaped IR pulse
excites the molecule further to higher excited states and can induce dissi-
pative processes such as ionization which lead to irreversible depopulation
of the S1 state, and thus to depletion of the ”uorescence signal in one of
the species (cf. left part of Fig. 18) and not in the other one (cf. right
part of Fig. 18). Since for both molecules depletion can be minimized and
maximized independently the total ”uorescence yield obtained can be used
to quantitatively determine the amounts of both species.89 Although in
this study only ”avins have been considered, the results should be broadly
applicable to control systems whose static spectra show essentially indistin-
guishable features. In particular, this should allow in the future the selective
identi“cation of target molecules in the presence of structurally and spectro-
scopically similar background. This is an important issue in multiple areas
of science and engineering. Our FISH method o�ers a unique opportunity
not only to perform multistate dynamics •on the ”yŽ and to optimize the
laser pulses but also to apply directly the experimentally optimized pulses
and thus to reveal the processes which enable discrimination of similar
chromophores.

6.2.1. Computational

In order to achieve discrimination between FMN and RBF in the framework
of our FISH method we use experimentally optimized pulses obtained in
the framework of ODD87, 88 which maximize and minimize the ”uorescence
depletion ratio of both molecules, respectively.

For the multistate dynamics in the ground and the nine lowest excited
singlet states (S0…S9) under the in”uence of the shaped laser “elds, we
describe the electronic structure employing the semiempirical PM3 CI
method.154 We use an active space of 11 occupied and 6 virtual orbitals,
taking into account all single excitations out of 12 reference con“gurations
which have been identi“ed as the leading con“gurations in the electronic
states under consideration. In this way, the spectroscopic properties of the
two ”avin molecules are reasonably accurately reproduced as evidenced by
the comparison with TDDFT results obtained using the hybrid B3LYP
functional. They are also in agreement with experimental “ndings as
shown in Fig. 19. We calculate the needed energies, forces, nonadiabatic
couplings, and transition dipole moments •on the ”yŽ regarding all degrees
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Fig. 19. (a) Experimental absorption and emission spectra of ribo”avin (RBF) and
”avin mononucleotide (FMN). Reprinted with permission from Ref. 89. Copyright 2009,
American Physical Society. The arrows at 400 nm and 530 nm indicate the wavelengths of
the shaped UV control pulses and the collected ”uorescence, respectively. (b) Theoretical
absorption spectra of RBF and FMN obtained using the semiempirical PM3 CI method.
The leading HOMO-LUMO excitation for the lowest energy electronic transition, which
has � Š � � character, is depicted.
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of freedom. The nonadiabatic couplings and transition dipole moments are
needed between all states and are obtained using the method developed by
Thiel et al.53

For the simulation of shaped “eld-induced surface-hopping dynamics,
the following three steps are needed: First, initial conditions (30 coordi-
nates and momenta) are generated by sampling a 10 ps long ground state
trajectory at 300 K which was obtained by using the semiempirical PM3
method154 for both molecules. Second, the density matrix elements formu-
lated in Eqs. (32) and (33) were calculated along the trajectories. For this
purpose, numerical integration of the time-dependent Schrödinger equa-
tion (43) accounting for nonadiabatic couplings has been carried out. This
ensures that after the duration of the applied “eld is over, multistate nona-
diabatic dynamics can be further performed. The nuclear dynamics has
been carried out using the Langevin equation of motion [Eq. (45)], which is
integrated employing a modi“ed version of the velocity Verlet algorithm.155

For the atomic friction, an empirical coe�cient of � = 91.0 psŠ 1 for water
environment is used. In this way, dissipative e�ects on the nuclear motion
are approximately accounted for and the comparison of theoretical results
with the experiment which was carried out in water can be approximately
made. Moreover, in the case of long pulses, the dissipative e�ects play a
role due to the excess of energy gained during the dynamics. Third, in order
to determine in which state the trajectories are propagated, the hopping
probabilities are calculated using Eq. (7) on the basis of the solution of the
time-dependent Schrödinger equation (43).

The laser “elds obtained from experiment89 are used in the simulations
according to Eq. (43). For the shaped UV pulses, we use 50 experimental
spectral phases and amplitudes in order to reconstruct the “eld in the time
domain according to

E(t) =
�

n

An ei ( � n t +� n ) , (48)

where An represents the spectral amplitude, � n is the frequency, and
� n represents the spectral phase. The wavelengths corresponding to the
frequencies

�
� = 2�c

�

�
lie in the range between 394.6 nm and 405.6 nm.

The reconstructed pulses have a duration in the time domain of� 5 ps
and a maximum amplitude of � 6 · 1011 W cmŠ 2. The unshaped infrared
probe pulse with a wavelength of 800 nm has a maximum amplitude of
� 3 · 1012 W cmŠ 2 and a Gaussian envelope with a full width at half
maximum of 100 fs.
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Since the ”uorescence depletion relies on irreversible processes such
as ionization, these e�ects must be introduced approximately in the
Schrödinger equation (43) for the electronic states. This is possible to model
by adding an imaginary componenti � to the energy of the highest excited
state S9 which lies close to the experimentally determined ionization limit
in water.156 The parameter � can be chosen in order to achieve the irre-
versible population decay fromS9. Subsequently, the time-dependent coef-
“cients along the trajectories have to be recalculated and the hopping from
the S9 state to the ionized state has to be considered. By averaging over the
ensemble of trajectories the ionized populationsPioniz are obtained. This
allows for the description of the ”uorescence depletion after the duration
of the pulses is over which corresponds to the population of the excited
states decreased by ionization. Speci“cally, this is achieved in the experi-
ment by taking the di�erence between the two ”uorescence intensities corre-
sponding to the shaped UV pulse alone and to both the shaped UV and the
IR probe pulse, normalized to the ”uorescence intensity that corresponds
to the shaped UV pulse alone. In order to calculate this depletion signal
from our populations, we use the ionized populationPioniz to determine the
”uorescence depletionD as

D =
Pioniz (UV + IR ) Š Pioniz (UV)

1 Š Pioniz (UV)
.

6.2.2. Discrimination of RBF and FMN by shaped laser pulses

The RBF and FMN molecules represent particularly challenging systems for
the optical discrimination since they have nearly identical absorption and
”uorescence spectra as can be seen fromFig. 19(a). The theoretically calcu-
lated absorption spectra of RBF and FMN presented in Fig. 19(b) exhibit
very strong similarities as well. The electronic spectroscopy of ”avins is
primarily associated with their common chromophore � Š � � type tran-
sitions localized on the isoalloxazine ring and is in”uenced indirectly and
only very slightly by the chemical moieties (H versus PO(OH)2) on the
side chains. In order to discriminate both species experimentally, the laser
control employing a shaped ultraviolet component at 400 nm followed by an
unshaped infrared 100 fs component at 800 nm with a time delay of 500 fs
is used. The excitation with an unshaped UV component leads to indis-
tinguishable ”uorescence depletion signals of 26% for RBF and FMN as
shown in Fig. 20(a). The optimal UV pulses allowing for discrimination
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have been obtained experimentally byclosed-loop optimization of the ”uo-
rescence depletion ratio of FMN over RBF and vice versa. Speci“cally,
the maximization of the FMN over RBF ratio yielded a shaped UV/IR
pulse pair (termed pulse 1 in the following) that leads to distinguishable
”uorescence depletions values of 12.6% for RBF and 16.4% for FMN [cf.
blue and gold histograms on the left side of Fig. 20(a)]. Oppositely, mini-
mization of the FMN over RBF rat io has yielded a second pulse pair
(termed pulse 2 in the following) that achieves approximately the same
level of discrimination but reverses the ordering of the depletion signals [cf.
gold and blue histograms on the right side of Fig. 20(a)]. The temporal
shapes of the experimental pulses achieving the minimization and maxi-
mization of the depletion ratio are shown in Fig. 20(b). The pulses have been
reconstructed by extracting phases and amplitudes of the spectral compo-
nents from the experimental FROG trace. The time-wavelength structure
of both pulses obtained by Wigner…Ville transform is shown as well in
the Fig. 20(c).

The population dynamics induced by both pulses in RBF and FMN is
presented in Figs. 21 and 22. Both pulses 1 and 2 lead to a smaller popu-
lation of the higher excited states (S2Š 9) in RBF before the IR component
has been applied. It should be pointed out, that if no irreversible processes
such as ionization from the higher excited states are taken into account
both pulses invoke similar population dynamics and lead to the return of
the population from higher excited states to the S1 state after the pulses
have ceased. Therefore, in order to describe ”uorescence depletion the irre-
versible population of the higher excited states has to be introduced. We
achieve this by adding an imaginary component to the energy of highestS9

excited state which lies above the ionization limit as described in Sec. 6.2.1.

ŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠŠ �

Fig. 20. (a) Absolute experimental RBF and FMN depletion signals for optimized UV
pulse shapes at time delay for the IR pulse of 500 fs. Reprinted with permission from
Ref. 89. Copyright 2009, American Physical Society. Left part: Depletion for the optimal
pulse for maximizing the ratio D(FMN)/D(RBF), right part: Depletion for the optimal
pulse for minimizing the ratio D(FMN)/D(RBF). Absolute depletions induced by the
transform-limited pulse for both RBF (black) and FMN (grey) are statistically equiv-
alent at 26%. Optimal pulses pull apart the RBF (blue) and FMN (gold) distributions
to achieve discrimination between the two molecules. (b) Temporal structure of the two
shaped pulses for maximizing (left part) and minimizing (right part) the depletion ratio
D(FMN)/D(RBF). (c) Wigner…Ville transforms of the two shaped pulses, left: maxi-
mization, right: minimization of D(FMN)/D(RBF). Red corresponds to positive, blue to
negative values.
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Fig. 21. Upper panel: Temporal structure of the shaped pulse 1 for maximization of
D(FMN)/D(RBF) (blue) and of the unshaped IR probe pulse (red). Middle panel: Time-
dependent populations of the electronic states S0 (black), S1 (red), and S2 Š S9 (orange)
in RBF driven by the pulses shown in the upper panel. Lower panel: Time-dependent
populations of the electronic states S0 (black), S1 (red), and S2 Š S9 (orange) in FMN
driven by the pulses shown in the upper panel.

The value of the imaginary component has been calibrated for both
molecules so that with an unshaped UV pulse both molecules exhibit iden-
tical depletion ratios. Subsequently, we have used these values to calculate
the ionized populations presented in Fig. 23 using the shaped pulses 1
and 2. The application of both pulses leads to the ionization which sets
in RBF after 3 ps and is systematically lower for pulse 1 than for pulse
2. The situation is opposite for FMN where the pulse 1 causes stronger
ionization than the pulse 2. This means that for pulse 1 for maximizing
the ratio D(FMN)/D(RBF) the ”uorescence depletion is stronger for FMN
whereas for pulse 2 for minimizing that ratio the ”uorescence depletion
is stronger in RBF. The experimental and theoretical ”uorescence deple-
tion values are shown in Fig. 24. As can be seen, the calculated depletion
ratios of FMN and RBF are reversed by di�erent pulses in agreement with
the experimental depletion ratios. Notice, that our method nicely validates
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Fig. 22. Upper panel: Temporal structure of the shaped pulse 2 for minimization of
D(FMN)/D(RBF) (blue) and of the unshaped IR probe pulse (red). Middle panel: Time-
dependent populations of the electronic states S0 (black), S1 (red), and S2 Š S9 (orange)
in RBF driven by the pulses shown in the upper panel. Lower panel: Time-dependent
populations of the electronic states S0 (black), S1 (red), and S2 Š S9 (orange) in FMN
driven by the pulses shown in the upper panel.

the general trend of the depletion ratios induced by pulse 1 and pulse 2.90

However, quantitative agreement should not be expected due to the approx-
imate consideration of ionization which has been introduced only at a model
level. Furthermore, the measurements have been performed in water solu-
tion and the theoretical approach accounts for the solvent e�ects only at
the level of Langevin dynamics.

In order to reveal the physical background responsible for successful
discrimination we have calculated the averaged transition dipole moments
to higher excited states (cf. Fig. 25). The pulse 1 induces dynamical path-
ways which exhibit systematically higher transition dipole moments for
FMN than for RBF which explains the higher depletion of the ”uorescence
in FMN. In contrast, for the pulse 2 at later times after 3 ps this behavior is
reversed leading to higher transition dipole moments for RBF. Thus we can
conclude that successful optical discrimination relies on driving the system
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Fig. 23. Upper panel: Ionized populations of RBF for the dynamics driven by pulse 1
(black) and pulse 2 (grey). Lower panel: Ionized populations of FMN for the dynamics
driven by pulse 1 (black) and pulse 2 (grey).

Fig. 24. Comparison of theoretical (upper panel) and experimental (lower panel) deple-
tion ratios for FMN (dashed line) and RBF (full line) achieved by pulse 1 (left part) and
pulse 2 (right part), respectively.

to these regions of the potential energy surfaces where the one or the other
molecule exhibits systematically higher transition dipole moments and thus
can be more e�ectively excited.90 This might represent a general feature
that can be exploited for the discrimination between similar molecules.
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Fig. 25. Upper panel: Time-dependent averaged transition dipole moments from S1 to
the higher excited states S2 Š S9 for the dynamics driven by pulse 1 for FMN (grey) and
RBF (black). Lower panel: Time-dependent averaged transition dipole moments from S1

to the higher excited states S2 Š S9 for the dynamics driven by pulse 2 for FMN (grey)
and RBF (black).

In summary, our FISH method accounting for the full complexity of
the dynamical behavior of the FMN and RBF molecules in their environ-
ment, using ODD experimental pulses,has validated the conceptual scope
of discrimination between almost identical molecules by shaped laser “elds.

7. Conclusions and Outlook

We have presented a general theoretical approach for the simulation and
control of ultrafast processes in complex molecular systems. Our method-
ological developments are based on the combination of quantum chemical
nonadiabatic dynamics •on the ”yŽ with the Wigner distribution approach
for simulation and control of laser-induced ultrafast processes. Speci“cally,
we have developed an approach for the nonadiabatic dynamics in the frame-
work of TDDFT and TDDFTB using loca lized basis sets, which is generally
applicable to a large class of molecules and clusters.

Furthermore, the •“eld-induced surface hoppingŽ (FISH) method is
introduced, allowing us to include laser “elds directly into the nonadiabatic
molecular dynamics simulations and thus to realistically model their in”u-
ence on ultrafast processes. In particular, this approach has been combined
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with genetic algorithms to design shaped laser pulses which can drive a
variety of processes.

The applications of our approaches have been illustrated on selected
examples which serve to demonstrate their general scope as well as the
ability to accurately simulate experimental ultrafast observables and to
assign them to underlying dynamical processes. In particular, an approach
for the simulation of TRPES has been developed representing a powerful
tool to identify nonadiabatic processes involving conical intersections. For
the “rst time, we have demonstrated that experimentally optimized laser
“elds can be directly used in the framework of the FISH method to reveal
dynamical processes behind the optimal control. In addition, the FISH
method combined with the optimal control theory allows us to predict forms
of laser “elds capable to steer molecular dynamics in complex systems such
as large molecules and nanosystems in di�erent environments. Altogether,
our approaches based on the classical molecular dynamics and accounting
for electronic transitions induced by both nonadiabatic e�ects as well as
by light open new avenues for studying the femtochemistry of attractive
molecular and nano-systems which were not accessible earlier due to their
complexity.
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1. Introduction

Laser control of molecular dynamics actively exploits the coherence of
laser pulses in addition to their high intensity and well-de“ned power
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spectrum.1Š 4 These properties of laser pulses are encoded in a molecular
wave function to create an objective state using constructive quantum inter-
ference, while undesirable populations are minimized by using destructive
interference. The same principles of manipulating quantum interference are
employed in various research areas ranging from control of chemical reac-
tions to quantum information processing.

Ultrafast dynamics at conical intersections (CIs)5 has been reported for
various photochemical reactions, including the photochemical ring opening
of 1,3-cyclohexadiene,6,7 photodissociation of ammonia,8,9 hydrogen
transfer in the excited ammonia dimer,10 and H-atom elimination in the
excited states of phenol and pyrrole.11Š 13 Ultrafast radiationless decay
through CIs has been reported for theS1 state of azulene14Š 16 and the
S2 state of adenine,17 as well as for other heteroaromatic molecules and
their biological analogues.18,19 Evidence of vibrational coherence, even
after the internal conversion through CIs, has been observed in some
time-resolved experiments.20Š 23 Sorgueset al.20 performed a femtosecond
pump-probe experiment on tetrakis(dimethylamino)ethylene and observed
coherent oscillations associated with the umbrella mode (coupling mode)
of the amino groups. In the photoisomerization of retinal in rhodopsin (the
“rst step in vision), time-dependent oscillations in the absorption band of
the photoproducts were observed.21Š 23 These experiments indicate that
vibrational coherence can be created by and/or survive nonadiabatic tran-
sitions at CIs.24,25 This implies in turn that laser pulses can act coop-
eratively with CIs by utilizing them as •wave-packet cannons,Ž thereby
making CIs unique from the viewpoint of coherent control. As CIs often
connect di�erent conformers with high quantum yield, they could also be
regarded as molecular optical switches for triggering peptide folding, elec-
tronic devices, etc.

When controlling CI-induced dynamics, it is necessary to simultane-
ously manipulate di�erent kinds of wave packet dynamics to achieve phys-
ical objectives. These wave packet dynamics include the propagation of a
wave packet from the optically active region to the CI region and that from
the CI region to the target state. In the CI region, a portion of the wave
packet is transferred to another potential-energy surface (PES) while being
distorted during the nonadiabatic transition. The wave-packet components
that remain on the original PES may receive a� -phase shift, which is called
the geometric (Berry) phase.26Š 30 Through these processes, the local topog-
raphy of the CI can signi“cantly a�ect the subsequent dynamics. Between
the initial and the objective state, the wave packet obviously encounters
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many undesirable states. In addition, almost all the dynamics occurs in a
dark region that is not directly optically accessible. Thus, it is challenging
to realize a physical objective with a high degree of accuracy by adjusting
the laser pulse shape as control knobs.

If we restrict ourselves to varying the amplitude of each frequency
component of a laser pulse, the numberof control knobs is limited. However,
if we actively use the relative phases among the frequency components of a
laser pulse, the number of knobs increases exponentially. At least in prin-
ciple, this huge amount of information could be encoded in a wave packet
and its subsequent dynamics programmed to enable it to reach an objective
state by utilizing quantum interferences. This is the basic strategy of laser
control of molecular dynamics. Our primary concern is to “nd a way to
implement a huge number of control knobs in real molecular systems.

Closed-loop experiments are useful for this purpose, as they overcome
the problem of laboratory implementation by using a molecule as a simu-
lator to evaluate the •qualityŽ of a control pulse.31Š 35 Such experiments
have successfully been applied to both isolated systems and to molecules in
condensed phases.36Š 40 As schematically illustrated in Fig. 1, the success
of these experiments depends largely on the feedback control they employ,
which is implemented by so-called learning algorithms that require little
information about the molecular Hamiltonian. 31 In other words, they
cannot provide direct information about the molecular Hamiltonian, control
mechanisms, etc. It is natural to ask what we can learn from these feedback
experiments.

From a theoretical/computational viewpoint, one essential step of laser
control is to design a pulse shape to achieve a speci“ed objective. Pulse
design based on physical considerations is usually limited because of the
high complexity of molecules (although these ideas still play an important
role in understanding the underlying control mechanisms). More general
pulse design schemes are required that are based on control theory such as

Fig. 1. Schematic illustration of closed-loop (feedback) experiments.



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch14

572 Y. Ohtsuki and W. Domcke

optimal control theory. 41,42 Once the molecular Hamiltonian has been spec-
i“ed, these control theories can design laser pulses by maximizing (or mini-
mizing) quantitative criteria. Because computational cost often imposes
limitations on simulations, it is essential to develop e�cient methods for
solving the pulse-design equations.43Š 51 However, such feedforward control
schemes do not always result in a high degree of control in real systems
because of the lack of complete information about PESs especially for poly-
atomic molecules.

These theoretical/computational and experimental situations illustrate
the primary reason why both numerical analyses (simulations) with model
systems and closed-loop experimentscomplement each other when clari-
fying control mechanisms. By performing simulations and experiments, it
is expected to be possible to derive a set of basic rules for laser control for
manipulating quantum phenomena such as ultrafast dynamics at CIs and
for obtaining information about PESs. The primary purpose of this chapter
is to introduce and explain simulation techniques based on quantum control
theory by presenting case studies.

2. Quantum Control Theory

2.1. Time-dependent Schr¨ odinger equation

We assume semiclassical interactionbetween molecules and laser “elds, in
which the laser “elds are treated classically and the molecules are treated
quantum-mechanically. As the laser pulses used in ultrafast experiments
always have longer wavelengths than any characteristic length associated
with molecular systems, we can safely neglect the spatial dependence of
the laser “eld; this is known as the dipole approximation. By using the
gauge transformation of the potentials of the laser “eld,E(t), we derive the
following total Hamiltonian

H t
T = HT + V t = He + Tn Š µ · E(t) , (1)

whereV t = Šµ · E(t) describes the •length-formŽ interaction with µ being
the electric dipole moment operator. In Eq. (1), He denotes the electronic
Hamiltonian and Tn is the nuclear kinetic energy operator. The whole
system obeys the time-dependent Schr¨odinger equation,

i �
�
�t

|� T (t) � = H t
T |� T (t) � , (2)
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which includes all degrees of freedom (i.e. electronic, vibrational, and
rotational).

Concerning the nuclear degrees of freedom, we disregard the center
of mass and rotational motion in this chapter. The rotational degrees of
freedom describe the alignment/orientation of a molecule with respect a
space-“xed frame (i.e. the polarization vector of a laser pulse). A change in
the molecular orientation alters the torque imposed by the laser “eld, which
leads to rotational transitions through the orientational angles appearing
in the optical interaction, V t = Šµ · E(t). However, if we are interested in
the intramolecular dynamics induced by a laser pulse, it is often possible
to neglect the rotational motion to a good approximation, provided there
appear no highly excited rotational states in the dynamics.

We introduce basis functions to solve Eq. (2). We usually assume
the Born…Oppenheimer approximation, which involves adiabatic separa-
tion of the electronic and nuclear degrees of freedom. The adiabatic basis,
{| � i (R )�} , which describes the electronic eigenstate, satis“es the eigenvalue
problem for a given nuclear con“guration, |R � :

He|� i R � = Vi (R )|� i R � , (3)

with |� i R � = |� i (R )�| R � , and the R -dependent eigenvalue,Vi (R ), which
is called the i th adiabatic PES. Employing the closure relation

1 =
�

i

�
|� i R �dR � � i R |, (4)

we expand the total wave function, |� T (t) � ,

|� T (t) � =
�

i

�
|� i R �dR � � i R |� T (t) � =

�

i

�
dR |� i R � � i (R , t). (5)

The wave packets,{ � i (R , t) � � R |� i (t) �} , describe the time evolution of the
nuclear dynamics on the adiabatic PESs,{ Vi (R )} , and they interact with
each other through nonadiabatic interactions and/or optical transitions.
They obey the equations of motion

i �
�
�t

|� i (t) � = [ Tn + Vi (R ) Š µ ii (R ) · E(t)] |� i (t) �

+
�

j ( �=i )

[Vij (R ) Š µ ij (R ) · E(t)] |� j (t) � , (6)
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whereVi (R ) may include the correction term, � � i (R )|Tn � i (R )� . In Eq. (6),
the nonadiabatic interaction is speci“ed by Vi j (R ), and the transition
(permanent) dipole moment operator is de“ned by

µ i j (R ) = � � i (R )|µ |� j (R )� . (7)

The adiabatic PES, Vi (R ), determines the vibrational states in the i th
electronic state, {| � i v �} , that satis“es the eigenvalue problem

[Tn + Vi (R )] |� i v � � H i |� i v � = � � i v |� i v � , (8)

whereby the adiabatic eigenstate with the eigenvalue � � i v is expressed as

|� i v � =
�

dR |� i R ��R |� i v � . (9)

2.2. Minimal model analysis

Before discussing the formal treatment of quantum control problems, we
introduce typical procedures by adopting a minimal model that consists of
two electronic states. The equations of motion are expressed by

i �
�
�t

�
|� a (t) �
|� b(t) �

�
=

�
Ha ŠµabE(t) + Vab

ŠµbaE(t) + Vba Hb

� �
|� a(t) �
|� b(t) �

�
, (10)

with the initial condition [ |� a (t0)� | � b(t0)� ] =
� �
� � 0

a

� �
� � 0

b

��
. The subscripts,

a and b, indicate the ground and excited electronic states, respectively. As
we are interested in the time-dependent laser “eld,E (t), we account for
optical interactions through the transition dipole moment operator, µab

(µba), and neglect the permanentdipole moment operators,µaa and µbb.
The nonadiabatic interaction is expressed byVab = V •

ba.

2.2.1. First-order optical transitions

If we assume that the molecule is initially in the lowest vibrational state in
the ground electronic state, |� a0 � , the “rst-order solution with respect to
the optical interaction is given by

|� (1)
b (t) � =

i
�

� t

t 0

d� eŠ iH b ( t Š � ) /� µbaE(� )eŠ iH a ( � Š t 0 ) /� |� a0 � , (11)

where we have neglected the nonadiabatic transitions. The wave packet,�
� � (1)

b (t)
�
, is expressed as a superposition of the components excited at
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various instants, � � [t0, t], which contain amplitude and phase information
of the electric “eld. In other words, the time evolution of the wave packet
can be controlled by adjusting the shape of the laser “eld. To discuss the
control procedures in detail, we focus on the time after the laser pulse. Then
Eq. (11) is reduced to (except for an unimportant phase factor,ei� a 0 t 0 )

|� (1)
b (t) � =

i
�

eŠ iH b t/ � �E (Hb/ � Š � a0 )µba|� a0 � , (12)

where

�E(Hb/ � Š � a0 ) =
� �

Š�
d� ei (H bŠ � � a 0 ) � / � E (� ). (13)

Here, we consider the extreme case in which the Fourier components
of the laser “eld are virtually independent of the transition frequencies,
� bv ,a0 = � bv Š � a0 , for all vibronic states {| � bv �} that have non-zero
transition matrix elements with the initial state. Because �E(� bv ,a0 ) � �E0,
Eq. (12) is reduced to

|� (1)
b (t) � =

i
�

�E0 eŠ iH b t/ � µba|� a0 � , (14)

which is called a Franck…Condon wave packet. If we further ignore the coor-
dinate dependence of the transition moment function (the Condon approxi-
mation), the laser pulse creates a replica of the initial state on the electronic
excited state that evolves in time according toHb.

The control achievement is evaluated by the expectation value of a target
operator, A. An operator, A, which commutes (does not commute) withHb,
is often called a stationary (nonstationary) target. A typical example of a
stationary target is the population of a speci“ed vibrational state in the
b-state,

Pbv = |� � bv |� (1)
b (t) �| 2 =

1
� 2 | �E (� bv ,a0 )|2|µbv ,a0 |2, (15)

where µbv ,a0 = � � bv |µba|� a0 � . The degree of control is determined by the
power spectrum of the laser pulse.

We consider the case where the laser pulse is expressed as a sum of two
Gaussian subpulses with a temporal width of 2

�
ln 2 � G and an amplitude

of E 0
G . Assuming that its central frequency, � 0, is close to the transition

frequency, we extract resonance components to obtain

Pbv (� d) =
�
� 2

	
E 0

G � G

 2

|µbv ,a0 |2eŠ � 2
G ( � bv ,a 0 Š � 0 ) 2

[1 + cos(� bv ,a0 � d)], (16)
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where � d represents the delay of the second pulse with respect to the “rst
one. This is a real-time version of Young•s double-slit experiment, which
is called a quantum interferometer.52Š 55 The interference in Eq. (16) orig-
inates from the fact that the •which-pathŽ information is not disturbed
because we do not know which subpulse actually creates the state|� b v � .54,55

In a more general situation, we often aim to maximize the control
achievement for a nonstationary target at a speci“ed timet

J =
� � (1)

b (t) |A|� (1)
b (t) �

� � (1)
b (t) |� (1)

b (t) �
. (17)

If the operator, A, has a “nite maximum eigenvalue (the eigenstate of which
is denoted by |A0� ), an obvious solution to the maximization of J is to
realize the eigenstate|A0� . This is sometimes called a wave packet shaping
problem, which is one of the fundamental targets in quantum control. For a
nonstationary target, the phases of the laser pulse play an essential role in
controlling the wave packet. As an illustrative example of the phase control,
we choose the Franck…Condon wave packet as a target; i.e.|A0� = µba|� a0 � .
(Here, we do not consider the trivial solution of a delta-function pulse.) As
the denominator of Eq. (17) is independent of the pulse phases, we focus
on the numerator, which can be expressed as

J = � � (1)
b (t) |A|� (1)

b (t) � =
1
� 2 |

�

v

| �E (� bv ,a0 )||µbv ,a0 |eŠ i� bv t Š i� bv ,a 0 |2,

(18)

where � bv ,a0 is the phase associated withthe transition frequency, � bv ,a0 ,
and includes the pulse phase. To maximizeJ in Eq. (18), all the phases
should be identical to each other; i.e.� bv t + � bv ,a0 = � 0 mod (2� ). Consid-
ering the di�erence between two adjacent phases, we have

� � bv t + � � bv ,a0 = 0 mod (2� ), (19)

where � � bv = � bv Š � bv Š 1 and � � bv ,a0 = � bv ,a0 Š � bv Š 1,a0 , the latter of
which can be adjusted by varying the phases of the frequency components
in a laser pulse. If we consider the bound states of an anharmonic oscillator,
� � bv decreases with the vibrational quantum number. To satisfy the condi-
tion expressed by Eq. (19), � � bv ,a0 should increase to cancel the reduction
in � � bv . If we introduce such phase modulations into the control pulse, it
becomes a negatively chirped pulse; i.e. the higher vibrational states are
excited before the lower states (this has been con“rmed experimentally;
e.g. by Wilson•s group56).
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2.2.2. First-order nonadiabatic transitions

To examine the e�ects of nonadiabatic transitions on laser control, we
consider a special case in which at the initial time (t1) and the “nal time
(t f ), the wave packets are spatially localized far from the nonadiabatic tran-
sition region. Assuming the initial condition, |� b(t1) > =

�
v |� bv �Cbv (t1),

we calculate the “rst-order solution with respect to the nonadiabatic inter-
action, whereby the probability amplitude � � au |� (1)

a (t f )� is given by

� � au |� (1)
a (t f )� = Š

i
�

�

v

D (� bv ,au ; t f Š t1)

× � � au |Vab(R )|� bv �Cbv (t1)eŠ i� bv ( t f Š t 1 ) . (20)

Equation (20) consists of three parts. The “rst term, D(� bv ,au ; t f Š t1),
describes the free propagation that includes all the interference from
portions of the amplitude transferred to the a-state at one instant and
those transferred at another instant. From the de“nition, its magnitude is
expressed as

|D(� bv ,au ; t f Š t1)| =
�
�
�
�

� t f Š t 1

0
d�ei� bv ,a u �

�
�
�
� =

�
�
�
�
sin[� bv ,au (t f Š t1)/ 2]

� bv ,au / 2

�
�
�
� . (21)

This has a nonzero value onlywhen the energy di�erence, � bv ,au , satis“es
the relation |� bv Š � au | � �/ (t f Š t1). As tf increases, only the initial
vibronic states with eigenvalues close to that of|� au � can contribute to
the amplitude in Eq. (20); that is, this “rst term is associated with energy
conservation.

For the second term in Eq. (20), � � au |Vab(R )|� bv � , we can consider two
limiting cases. If we ignore the nuclear-coordinate dependence ofVab(R ),
such that Vab(R ) = V 0

ab, we have

� � au |Vab(R )|� bv � = V 0
ab� � au |� bv � , (22)

which is called the Condon approximation and there appears the Franck-
Condon overlap integral,� � au |� bv � . Around a CI, on the other hand, Vab(R )
typically depends on the nuclear coordinates considerably because of the
strong vibronic interaction. For the purpose of illustration, let us consider
another limiting case, in which the nonadiabatic transition occurs at the
point R 0. This “ctitious situation is modeled by Vab(R ) = V 0

ab� (R Š R 0)
and we have

� � au |Vab|� bv � = � � au |R 0�V 0
ab�R 0|� bv � . (23)
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Equation (23) means that the initial wave packet components,{| � bv �} , that
satisfy the energy conservation [Eq. (21)] are launched into thea-state at
R 0; i.e., Vab acts as a •wave-packet cannon.Ž The narrow active region of
Vab(R ) leads to a narrower spatial distribution, but to a wider momentum
distribution of the wave packet after the nonadiabatic transitions.

The remaining (third) term in Eq. (20) indicates that both the initial
amplitude and the phase ofCbv (t1) play an essential role in controlling the
probability amplitude � � au |� (1)

a (t f )� . As any physical target in the a-state is
expressed in terms of these amplitudes, the shape of the initial wave packet,
|� b(t1)� =

�
v |� bv �Cbv (t1), which can be designed using laser pulses, is

important to improve the control achievement.

2.2.3. Pre-target state

From the analysis in Sec. 2.2.2, it would be natural to think about
the •optimumŽ pre-target state, |� b(t1)� =

�
v |� bv �Cbv (t1), that real-

izes the highest control achievement.57Š 60 In this subsection, we consider
this problem in a general manner without using a perturbative treatment
for nonadiabatic transitions. Let U0(t f , t1) be an operator that describes
the time evolution of a molecular system from t1 to tf , i.e. |� a(t f )� =
U0(t f , t1)|� b(t1)� . The control achievement is expressed as

J = � � a(t f )|A|� a (t f )� = � � b(t1)|U•
0 (t f , t1)A U0(t f , t1)|� b(t1)� . (24)

If the optical interactions during this period can be neglected, the pre-target
state evolves in time according to the “eld-free molecular Hamiltonian.
We apply calculus of variations to Eq. (24) to determine the shape of the
•optimumŽ pre-target state. Introducing the Lagrange multiplier, � , which
represents the normalization condition of the pre-target state, we have the
unconstrained functional to be maximized,

J̄ = � � b(t1)|P A(t f , t1)P |� b(t1)� Š � [� � b(t1)|P |� b(t1)� Š 1], (25)

where A(tf , t1) � U•
0 (t f , t1)A U0(t f , t1) is a Hermitian operator. The

projector, P, is introduced to specify the optically accessible states as the
pre-target state is required to be created by laser pulses. From Eq. (25),
we have the eigenvalue equation

P A(tf , t1)P |� b(t1)� = � P |� b(t1)� . (26)

The pre-target state with the maximum eigenvalue leads to the maximum
expectation value ofJ in Eq. (24).
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The idea of introducing a pre-target state is general and is not restricted
to quantum control via nonadiabatic transitions. The pre-target state can
provide the information on the path to the target state within an opti-
cally dark region, which is useful for understanding the control mechanisms.
However, this does not imply that introducing a pre-target state is always
justi“ed. In addition to the numerical di�culties associated with solving
Eq. (26), introducing a pre-target state imposes a strong constraint on a
control problem. For example, we explicitly assume that the optical and
nonadiabatic interactions are temporally separated, which could consid-
erably a�ect the control mechanisms. Despite these de“ciencies, several
studies have fruitfully utilized the concept of the pre-target state.

In laser control, Grosset al.57 pioneered the idea of the pre-target state
to determine a bound target state in the electronic ground state using the
Rayleigh-Ritz principle. We applied this approach to an unbound wave
packet in the excited electronic state of NaI58 and to the adsorption mode
of NO/Pt under the in”uence of a speci“ed external “eld. 59 This approach
was also employed to determine a wave packet with a long lifetime by
eliminating radiationless transitions in the S1 � S2 internal conversion via
a CI in pyrazine.60 This is an extension of previous studies on electronically
localized eigenstates of vibronically coupled PESs of pyrazine, which are
related to the concept of quasi-periodic orbits and have lifetimes longer
than several nanoseconds in a two-dimensional model.61,62

2.3. Optimal control theory (OCT)

Optimal control theory (OCT) provides general and ”exible pulse-design
algorithms to achieve a speci“ed physical objective.41Š 51 In an optimal
control simulation, we calculate the molecular dynamics while designing the
control pulse according to OCT-based algorithms, which provide clues for
clarifying control mechanisms, etc. Here, we introduce the formal procedure
and provide some numerical techniques that are useful for optimal control
simulations.

2.3.1. Optimal control simulation

An optimal control pulse is designed to maximize an objective functional
that quantitatively evaluates the control achievement by the calculus of
variations. In this subsection, we explain the procedure by presenting
a case study. We express the equations of motion of a molecular
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system as

i �
�
�t

|� (t) � = [ H0 Š µE (t)] |� (t) � = H t |� (t) � , (27)

where|� (t) � are sets of nuclear wave packets,H0 is a “eld-free Hamiltonian
that includes nonadiabatic interactions and µ is the (transition) dipole
moment operator. The initial state is given by |� (t0)� = |� 0� . In a typical
example,45 the control objective is speci“ed in terms of two non-negative
Hermitian operators, A and B (t), so that the objective functional can be
expressed as

J = � � (t f )|A|� (t f )� +
� t f

t 0

dt� � (t) |B (t) |� (t) � Š
� t f

t 0

dt
1

� 	 (t)
[E (t)] 2.

(28)

This objective functional consists of three terms: the “rst term speci“es
the objective state at a speci“ed “nal time, t f , the second term represents
a constraint on the intermediate states, and the third term is a penalty
due to pulse ”uence with a positive function 	 (t) that weighs the physical
signi“cance of the penalty.

By introducing the Lagrange multiplier |� (t) � that represents the
constraint of the equation of motion in Eq. (27), we obtain the uncon-
strained objective functional

J̄ = J Š 2Re
� t f

t 0

dt� � (t) |
�

�
�t

+
i
�

H t


|� (t) � , (29)

where Re�· · · � is the real part of �· · · � . The “rst-order variation is
expressed as

� J̄ = Š
� t f

t 0

dt
2

� 	 (t)
{ E (t) + 	 (t) Im � � (t) |µ|� (t) �} �E (t)

+ 2Re{� � (t f )|A|�� (t f )� Š � � (t f )|�� (t f )�} + 2Re
� t f

t 0

dt

×
��

�
�t

� (t) |�� (t) � Š
i
�

� � (t) |H t |�� (t) � + � � (t) |B (t) |�� (t)
��

,

(30)

whereby pulse-design equations are derived. [For simplicity, we have
neglected the derivatives with respect to|� (t) � and � � (t) | as they just lead
to Eq. (27).] The optimal pulse is expressed as

E(t) = Š	 (t)Im � � (t) |µ|� (t) � , (31)
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where Im�· · · � is the imaginary part of �· · · � . The equation of motion for
the Lagrange multiplier associated with the constraint, Eq. (27), is given by

i �
�
�t

|� (t) � = [ H0 Š µE (t)] |� (t) � Š i � B (t) |� (t) � , (32)

with a “nal condition, |� (t f )� = A|� (t f )� . If we simultaneously solve the
pulse-design equations given by Eqs. (27), (31) and (32), we can perform
optimal control simulations: i.e. we determine the optimal laser pulse
together with the time evolution of the molecular system for the optimal
pulse.

In Sec. 2.2.3, we introduced a control scheme that utilizes a pre-target
state. Here, we discuss the scheme from the viewpoint of OCT. In the pre-
target scheme, optical excitation processes are temporally separated from
the ensuing wave-packet propagation with the “eld-free molecular Hamil-
tonian. These two processes are connected by a pre-target state,|� (t1)� =
|� 1� , at a speci“ed time, t1. To realize such a control in Eq. (28), we need
to choose the intermediate target operator asB (t) = |� 1� � (t Š t1)� � 1|.
To prevent the optimal pulse from appearing after t1, we need to replace
	 (t) with 	 (t) 
 (t1 Š t), where 
 (t1 Š t) = 1 for t1 > t and 
 (t1 Š t) = 0
for t1 < t . These conditions apparently impose strong restrictions on the
control mechanisms, although this may not always be the case.

In optimal control simulations, we have to solve the coupled nonlinear
di�erential equations of Eqs. (27), (31) and (32) (i.e. the pulse-design equa-
tions), which generally requires iteration methods. Because the simula-
tions are computationally intensive, it is frequently essential to develop
e�cient solution algorithms to perform the simulations. 43Š 51 If A and
B (t) are non-negative operators, there exist monotonically convergent
algorithms,45,47Š 49 whereby the above pulse-design equations at thekth
iteration step can be summarized as follows:

i �
�
�t

|� (k ) (t) � = [ H0 Š µĒ (k) (t)] |� (k ) (t) � Š i � B (t) |� (kŠ 1) (t) � (33)

with the “nal condition |� (k ) (t f )� = A|� (k ) (t f )� , and

i �
�
�t

|� (k ) (t) � = [ H0 Š µE (k) (t)] |� (k ) (t) � , (34)

with the initial condition |� (k ) (t0)� = |� 0� . The electric “elds at the kth
step are given by

Ē (k) (t) = Š	 (t)Im � � (k ) (t) |µ|� (kŠ 1) (t) � , (35)
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and

E (k) (t) = Š	 (t)Im � � (k ) (t) |µ|� (k ) (t) � . (36)

In Eq. (35), the wave packet is replaced by the wave packet obtained
in the previous step, so that Eq. (33) has a closed form with respect
to the Lagrange multiplier. Similarly, Eq. (34) is decoupled from the
Lagrange multiplier and has a closed form with respect to the wave packet.
The nonlinear terms with respect to the state vectors in Eqs. (33) and (34)
are often removed by employing the linearization approximation, in which
the state vectors are expanded in terms of those obtained in the previous
time step (e.g. |� (k ) (t) � = |� (k ) (t Š � t) � + |d� (k ) (t Š � t) /dt � � t + O(� t) 2).

When we consider spatially delocalized dynamics such as (half) colli-
sions, the wave packet often spreads beyond the grid region. As further prop-
agation causes “ctitious re”ection from the grid edge, we usually introduce
a certain cuto� function and divide the wave packet into two components,
|� (t) � = |� P (t) � + |� 1Š P (t) � .63,64 Here, |� P (t) � (|� 1Š P (t) � ) is the compo-
nent inside (outside) the grid region. When the time interval is divided into
N steps such that the nth time step is speci“ed by tn = t0 + n� t with
� t = ( t f Š t0)/N (n = 0 , 1, 2, . . . , N ), the algorithm can be summarized as

U(tn , tn Š 1)|� P (tn Š 1)� = |� P (tn )� + |� 1Š P (tn )� , (37)

where U(tn , tn Š 1) is the time-evolution operator associated with Eq. (27).
Due to the nature of the optimal control problem, the pulse-design

equations have the form of an inverse problem. However, there is no
general method to determine the “nal condition for the Lagrange multi-
plier in Eq. (32) for spatially delocalized dynamics. Therefore, we have to
modify the optimal control simulation. To illustrate the modi“cation for
the Lagrange multiplier, we consider the simple case in which the control
objective is speci“ed solely byA at the “nal time. If we restrict ourselves
to the target operator A that is expressed as a spatially delocalized quasi-
projector,65 we can numerically integrate the Lagrange multiplier using the
following algorithm

|� P (tn )� = U(tn , tn +1 )[|� P (tn +1 )� + A|� 1Š P (tn +1 )� ]. (38)

Because Eq. (32) has the same form as Eq. (27) whenB (t) = 0, they have
the same time-evolution operator. If the optically active region lies within
the grid region, the optimal pulse is expressed as

E(tn ) = Š	 (tn )Im� � P (tn )|µ|� P (tn )� . (39)
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As the pulse-design equations have a closed form with respect to the compo-
nents within the grid region, we can solve them using a monotonically
convergent algorithm.65,66

Because of the high computational cost, optimal control simulations
typically employ one- or two-dimensional models. To extend it to treat
higher-dimensional models, the multicon“guration time-dependent Hartree
(MCTDH) method has been proposed.67Š 69 The overall procedure is the
same as that explained above, except that the wave function,|� (t) � , and its
associated Lagrange multiplier,|� (t) � , have MCTDH forms. That is, their
vibrational wave functions are expressed as product sums of single-particle
wave functions, each of which belongs to a single vibrational coordinate.
Although the MCTDH equations of motion contain nonlinear terms with
respect to time-dependent expansion coe�cients, monoto nically conver-
gent algorithms are sometimes used to approximately solve the coupled
pulse-design equations.69

So far, we have restricted ourselves to the case where the time evolution
of an isolated molecular system is described by the Schr¨odinger equation.
However, a molecular system may not be isolated or we may be inter-
ested in speci“c degrees of freedom rather than all the degrees of freedom
of a molecule. In these cases, the whole system can be divided into a
relevant system and a reservoir.70 The relevant system is described by a
reduced density matrix and it satis“es the quantum Liouville equation that
includes relaxation operators with/without memory. These relaxation oper-
ators represent decoherence processes caused by the entanglement between
the relevant system and the reservoir. Optimal pulses are derived using
the calculus of variations under the constraint of the quantum Liouville
equation.44,46Š 48 From a mathematical viewpoint, the objective functional
in the density matrix formalism can have a linear form with respect to the
state vector (density operator), while that in the wave function formalism
has a bilinear form as given by Eq. (28). It is worth noting that for arbi-
trary target operators, A and B (t), there are monotonically convergent
algorithms for solving the optimal control problems that are expressed by
linear functionals.

2.3.2. Other (approximate) control methods

Roughly speaking, other (approximate) control methods can be classi-
“ed into three categories. Control methods belonging to the “rst cate-
gory use the formal theory of optimal control and the equations of motion
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with certain approximations are assumed. Examples include the above-
mentioned MCTDH factorization of a molecular wave function.69 Some of
them use (semi)-classical descriptions of molecular motion,71Š 73 which can
reduce the computational e�ort because they disregard the nonlocal nature
of quantum dynamics.

The second category of control methods assumes weak laser “elds,
which allows the pulse-design equations to be approximated up to a certain
order with respect to the optical interaction. The “rst-order approximation
provides an analytical expression for the optimal pulse.74 The second-order
approximation leads to an eigenvalue problem, in which the eigenvector
with the maximum eigenvalue corresponds to the optimal pulse.75Š 77 In
both these cases, optimal pulses are obtained without performing iterative
calculations.

The third category of methods consists of local control methods that are
characterized by instantaneous feedback.42,78Š 81 We explain the method
by using the equation of motion expressed by Eq. (27) and by assuming
that the control achievement is evaluated by a time-independent target
operator, A,

J = � � (t f )|A|� (t f )� =
� t f

t 0

dt
d
dt

� � (t) |A|� (t) � + � � (t0)|A|� (t0)� . (40)

The substitution of Eq. (27) into the integrand in Eq. (40) yields

d
dt

� � (t) |A|� (t) � =
i
�

� � (t) |{ [H0, A] Š [µ, A ]E(t) }| � (t) � . (41)

If the target operator commutes with the molecular Hamiltonian
(a stationary target) and the control pulse is expressed as

E(t) = Š	 (t)Im� � (t) |A µ |� (t) � , (42)

the derivative, d� � (t) |A|� (t) � /dt , will always be positive.42 We need to
choose an appropriate positive function, 	 (t), to make � � (t f )|A|� (t f )�
as large as possible. The restriction due to the stationary target can be
removed by solving the problem inversely because of the time reversibility
of the Schrödinger equation. That is, we can calculate the control pulse
by backward time propagation in which the nonstationary target state,
|A0� , and the •trueŽ initial state, |� 0� , are regarded as formal initial and
target states, respectively. LetU(t f , t0) be the time evolution operator that
includes the designed local control pulse. Because|� � 0|U(t0, t f )|A0�| 2 =
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|� A0|U(t f , t0)|� 0�| 2, the control achievement is guaranteed to have the same
value as that calculated by the formal solution obtained from the backward
time propagation.80

3. Case Studies

Two examples of optimal control simulations are presented.66,82 CIs are
characterized by e�cient nonadiabati c transitions and geometric (Berry)
phase e�ects. These e�ects are inseparably related with each other; however,
it is convenient to classify previous studies into two categories according to
their primary interest. In Sec. 3.1, we focus on shaping bound wave packets
under the in”uence of CI-induced nonadiabatic transitions.82 In Sec. 3.2,
geometric phase e�ects on the branching ratio of photodissociation products
are examined.66 In these case studies, we discuss how to actively use CIs
as wave packet cannons and/or� -phase shifters (geometric phase e�ects).

In addition to these case studies, there have been several optimal control
simulations,83Š 88 which mainly focus on the e�cient nonadiabatic transi-
tions caused by CIs and which include the cis-trans photoisomerization via
a CI of the Na-H2 collision complex83,85 or cyclohexadiene.86 These studies
aimed to create a localized wave packet near the CI to maximize the nona-
diabatic transition probability and the selectivity of the products, although
the target packet is chosen based on physical intuition rather than by the
calculus of variation. In another study, a set of pump and dump pulses are
obtained as the optimal pulse to improve the product yield.87 Ndong et al.88

reported the implementation of a (classical) NOT logical gate in acis-trans
photoisomerization model, in which the two isomers were regarded as the
two states of a bit.

3.1. Wave packet shaping utilizing CI-induced
nonadiabatic transitions

The “rst example considered here is the optimal control of ultrafast
cis-trans photoisomerization of retinal in rhodopsin. Femtosecond time-
resolved experiments reveal that thetrans product is formed within 	 200 fs
with a high quantum yield 21Š 23; this has been qualitatively explained
in quantum chemical studies by the involvement of a CI.89Š 93 The
experiments also found that a wave packet oscillation accompanies the
photoisomerization.22,23 This wave packet oscillation survives up to 2 ps
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in rhodopsin, but not in solution, suggesting that rhodopsin may provide
partial dynamic guidance in a decoherence-free environment. To consis-
tently explain these experimental observations, Hahn and Stock proposed
a two-dimensional, two-electronic-state CI model that consists of the •e�ec-
tiveŽ reaction (� ) and coupling (x) coordinates, which correspond largely
to the torsional angle and the stretching coordinate of the polyene chain,
respectively.24,25 In the diabatic representation, the (“eld-free) molecular
Hamiltonian is expressed as

H0 = Š
� 2

2I
� 2

�� 2 Š
� 2

2m
� 2

�x 2 +
�

W11 W12

W21 W22

�
, (43)

where I (m) is the reduced moment of inertia (the reduced mass) and
{ Wij ; i, j = 1 , 2} are diabatic potentials. By diagonalizing the diabatic-
potential matrix in Eq. (43), we obtain the adiabatic potentials, which
are shown in Fig. 2. The CIs appear at (�, x ) = (0 .52�, 0) and (1.48�, 0).
According to this model, the experimentally measured coherent signal is
attributed to wave packet oscillation along the reaction coordinate on the
diabatic potential.

In Ref. 82, an optimal control simulation was performed with the aim of
determining how to e�ciently manipulate a wave packet after nonadiabatic
transitions via CIs. Wave packet localization along the reaction coordinate,
� � [0.9�, 1.1� ], in the ground electronic state of the trans isomer was

Fig. 2. Two dimensional, two-electronic-state model PESs in the adiabatic representa-
tion, in which the CIs appear at ( �, x ) = (0 .52�, 0) and (1 .48�, 0).82 The parameters are
taken from Ref. 24.
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(a)

(b)

Fig. 3. (a) Optimal control pulse. (b) Time evolution of the target expectation value
(bold solid line), and that of populations of the adiabatically electronic ground (thin
solid line) and excited (dotted line) states. 82

chosen as a prototype control target, while no restriction was imposed on the
coupling mode. The control time was set totf = 500 fs, which is longer than
the photoisomerization time (	 200 fs). Figure 3 shows the optimal pulse
and the time-dependent target population. The control pulse consists of
several pulse trains. The pulse trains before	 350 fs adjust the wave packet
shape through multiple electronic transitions within the Franck…Condon
region of the cis isomer. The shaped wave packet is launched through CIs
to the target state at 	 400 fs. After 	 400 fs, the laser “eld is virtually
zero, indicating that the optimal pulse cooperatively works well with the
CI as a wave-packet cannon. At the control time, 39% of the population
is transferred in the target region. This successful control achievement is
mainly due to the wave packet energy not being explicitly speci“ed by the
target. In fact, if we choose one of the bound states of thetrans isomer
as a target, the control pulse appears after the nonadiabatic transitions to
adjust the wave packet energy.82
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(a)

(b)

Fig. 4. Time evolution of the reaction-coordinate wave packets of the Franck–Condon
(uncontrolled) wave packet: (a) P (reaction)

e (�; t ) and (b) P (reaction)
g (�; t ).82

To discuss the control mechanisms in detail, it is convenient to introduce
reaction-coordinate wave packets,P (reaction)

e,g (� ; t), and coupling-mode wave
packets, P (coupling)

e,g (x; t), which are obtained by tracing out the coupling
mode and the reaction coordinate, respectively. Here, the su�xese and
g denote the adiabatic excited and ground electronic states, respectively.
Figure 4 shows the time evolution of the Franck…Condon (uncontrolled)
wave packet along the reaction coordinate, which rapidly loses its initial
localized distribution because of the anharmonicity of the PES. In contrast,
as shown in Fig. 5, the controlled reaction-coordinate wave packets are char-
acterized by localized distributions both on the excited and ground PESs.
Breathing oscillations in the ground electronic state are induced and grad-
ually enhanced through multiple electronic transitions before	 350 fs. The
larger amplitude of the breathing oscillation leads to a narrower distribution
at one of the turning points, which is used to create a localized wave packet
in the excited electronic state around 350…400fs. There is also a considerable
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(a)

(b)

Fig. 5. Time evolution of the reaction-coordinate wave packets of the controlled wave
packet: (a) P (reaction)

e (�; t ) and (b) P (reaction)
g (�; t ).82

di�erence in the behaviors of the controlled and uncontrolled coupling-mode
wave packets. Speci“cally, the control pulse suppresses the coupling mode
excitation to minimize dephasing,94 which can be detrimental for quantum
control. (Here, the term •dephasingŽ refers to a wave packet spread over
an undesirable region.) As indicated by the dotted squares in Fig. 5, the
CIs transfer almost all the wave packet components in the excited PES
[Fig. 5(a)] to the ground PES while maintaining the spatially localized
distribution along the reaction coordinate [Fig. 5(b)], which shows one of
the characteristics of the CI as a wave-packet cannon. Because the CIs
minimize the dephasing associated with the nonadiabatic transitions, the
vibrational coherence implemented by the control pulse can survive to yield
a high degree of achievement.

The e�cient use of a CI as a wave packet cannon naturally leads to
the question about the e�ects of the local topography around the CI. As
changing the local topography will lead to di�erent active areas associated
with the CI, it may result in the wave packet being launched in a di�erent
way. For comparison, an optimal control simulation was performed using a
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Fig. 6. Adiabatic potential cuts along the coupling mode at � = 0 .52� . The solid and
dotted lines represent those in the original- and weak-coupling cases, respectively. 82

smaller coupling parameter. Figure 6 shows the potential cuts around the
CIs; the original-coupling and weak-coupling cases are indicated by solid
and dotted lines, respectively. One of the potential cuts has a double-well
structure in the original coupling case, whereas in the weak-coupling case,
its shape varies smoothly as a function of the reaction coordinate, resulting
in weaker dephasing. In fact, about 70% of the population reaches the
target region at the control time, which is about two times higher than the
original value. Wave packet calculations for reduced coupling indicate that
we can achieve similar control mechanisms as those for the original-coupling
case. However, the optimal pulse does not remove coupling-mode excitation,
suggesting that the weaker dephasing imposes a weaker restriction on the
preparation of the wave packet for the CI cannon.

3.2. Geometric phase e�ects on coherent control
of CI-induced dynamics

In addition to e�cient nonadiabatic transitions, the geometric (Berry)
phase e�ect is another consequence associated with CI-induced
dynamics.26Š 30 When the nuclear wave packet cycles around the CI,
the electronic wave function changes sign, as it adiabatically depends on
the nuclear motion. For the total molecular wave function to be single-
valued, the nuclear wave packet must acquire the opposite phase of the
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Fig. 7. Diabatic potential cuts along the OH stretching coordinate for planar phenol
(� = 0).

electronic wave function. This is a typical example of a geometric phase.
Here, we consider its e�ects on coherent control of chemical reactions by
examining the case study of photodissociation of phenol.66,95,96 Phenol
is a prototype molecule for investigating the photochemistry of aromatic
biomolecules.95Š 103

A two-dimensional, three-electronic-state model is taken from Ref. 96
to describe the photodissociation of phenol. It includes the OH-stretching
coordinate (r ) as a reaction coordinate and the CCOH dihedral angle (
 ) as
a coupling mode. Figure 7 shows the potential cuts of the diagonal diabatic
components along the reaction coordinate at
 = 0. The electronic states
involved are the �� � , � � , and S0(��) states. The model is characterized
by two CIs, resulting in two dissociation channels that lead to the 2� and 2
phenoxyl radicals and H(1s). This reduced-dimensionality model is consis-
tent with the experimental observations of Tsenget al.,13 who measured the
translational energy distribution of hydrogen atoms released from photoex-
cited phenol and found that the photoexcitation energy does not spread
signi“cantly over the intramolecular vibrational modes. In addition, within
this model, the Franck-Condon wave packet is predicted to have insu�cient
energy to exceed the barrier to reach the CI.96 As the initial vibrational
energy can compensate for this shortfall, we expect that the photodissoci-
ation probability could be enhanced by using vibrational-mediated passive
control. Such e�ects have recently been observed by Crim•s group.104
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The aim of the simulation is to achieve coherent control of the branching
ratio of photodissociation products through electronic transitions, in which
the laser pulse is designed to maximize either the2 + H(1 s) dissociation
probability or the 2� + H(1 s) dissociation probability. When enhancement
of the 2 + H(1 s) dissociation channel is chosen as the objective, the quasi-
projector that speci“es this target is expressed as

A =
�

drd
 |[2 + H(1 s)]r
 � a(r )� [2  + H(1 s)]r
 |, (44)

where

a(r ) = 1 Š
1

1 + exp[� (r Š rd)]
(45)

with � = 20.0�AŠ 1 and rd = 3 .0�A. The latter value is obtained from
the assumption that phenol is dissociated when the OH bond is longer
than 3.0 �A. When the control achievement is evaluated by this operator

(a)

(b)

Fig. 8. (a) Optimal pulse that enhances the dissociation probability of the 2� + H(1 s)
channel. (b) Time evolution of the dissociation probability of the 2 � + H(1 s) channel
(solid line) and that of the 2� + H(1 s) (dotted line), and that of the population in the
diabatic �� � state (dashed line). 66
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(a)

(b)

Fig. 9. (a) Optimal pulse that enhances the dissociation probability of the 2� + H(1 s)
channel. (b) Time evolution of the dissociation probability of the 2 � + H(1 s) channel
(solid line) and that of the 2� + H(1 s) (dotted line), and that of the population in the
diabatic �� � state (dashed line). 66

at time tf = 200 fs, we have the optimal pulse in Fig. 8(a) that leads to
47.1% [34.9%] of the population to the2 + H(1 s)[2� + H(1 s)] dissociation
channel. The optimal pulse has a simple structure with a central frequency
of 44380cmŠ 1.

In a similar manner, we obtain the optimal pulse that enhances the
2� + H(1 s) dissociation, which is shown in Fig. 9(a). Its central frequency
is 43980 cmŠ 1, which is 	 500 cmŠ 1 lower than that in Fig. 8(a). From
Fig. 8(b), the total dissociation probability is 79.1%, which is similar to
that in Fig. 8(b) (82.0%); however, 43.8% [35.3%] of the population disso-
ciates to the 2� +H(1 s) [2 +H(1 s)] channel. The optimal pulse changes the
branching ratio [2� +H(1 s)]/ [2 +H(1 s)] from 0.81 (Fig. 8) to 1.35 (Fig. 9).
As the calculated optimal pulses in Figs. 8(a) and 9(a) have simple struc-
tures, control is expected to be mainly achieved by actively utilizing the
CIs as wave packet cannons/� -phase shifters (geometric phase e�ects).

The population in the diabatic 1�� � state in Fig. 9(b) is reduced to
one-third of that in Fig. 8(b), although the total dissociation probabilities
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Fig. 10. Cuts of the probability density on the S1 adiabatic potential along the CCOH
dihedral angle � for various OH bond length r at t = 120 fs. The solid [dotted] lines
represent those created by the optimal pulse that enhances the 2 � + H(1 s) [2 � + H(1 s)]
dissociation. In each �gure, the probability densities are plotted in the range of
[0, 8 × 10Š 6].66

are similar in both cases. That is, in Fig. 9(b), a portion of the excited
population is created in the optically dark 1� � state because of vibronic
coupling with the optically active 1�� � state (known as the intensity-
borrowing e�ect). The central frequency of the optimal pulse is chosen
either to prevent vibronic coupling (Fi g. 8) or to e�ciently cause it (Fig. 9).
The control mechanisms are also supported by the cuts of the wave packets
on the “rst-excited adiabatic PES (S1) along the CCOH dihedral angle (
 )
in Fig. 10, in which the solid (dotted) lines show the cuts associated with
Fig. 8 (Fig. 9). The wave packet associated with Fig. 8 (solid lines) is an
even function of 
 immediately after the optical excitation to 1� � � state
as the transition moment function has a symmetric structure with respect
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Fig. 11. Schematic illustrations of the control mechanisms associated with (a) Fig. 8
and (b) Fig. 9.

to 
 . When the wave packet encounters the “rst CI at r = 1 .16�A, it is
bifurcated into two components with opposite phases because of geometric
phase e�ects. They introduce a node at
 = 0 into the wave packet, which
reduces the probability density around the second CI atr = 1 .96�A. In
turn, this suppresses the nonadiabatic transitions around the second CI
and enhances the dissociation probability to the2 + H(1 s) channel. After
the second CI, the geometric phase e�ects are canceled in the remaining
wave packet components on theS1 PES, resulting in the small peak in
the probability density around 
 = 0. On the other hand, the wave packet
associated with Fig. 9 (dotted lines) is an odd function of 
 immediately
after the optical excitation to the 1� � state, as it is created by vibronic
coupling, which is expressed by a linear function of
 around 
 = 0. The
wave packet is nonadiabatically transferred onto theS1 PES through the
CI while being slightly distorted from its original structure. Because of
wave packet broadening due to the anharmonicity of theS1 PES, there
exists a certain population within the active region of the second CI, which
enhances the dissociation in the2� +H(1 s) channel. Based on these results,
the control mechanisms are schematically illustrated in Fig. 11(a) and (b),
which correspond to those associatedwith Figs. 8 and 9, respectively. A
slight change in the population distribution around the second CI can lead
to e�cient control of the branching ratio of the dissociation products.
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4. Conclusions

Laser control of ultrafast dynamics at CIs has been discussed. In Sec. 2,
we “rst explained the basic idea of coherent control by adopting a two-
electronic-state model within the “rst-order perturbative approximation
with respect to optical and non-adiabatic interactions. We then introduced
more general control procedures based on a pre-target scheme, optimal
control theory and local control theory. Numerical techniques frequently
used in optimal control simulations were also examined. In Sec. 3, we
discussed control mechanisms by presenting case studies of two optimal
control simulations, i.e. a wave packet shaping in the photoisomerization
of retinal in rhodopsin and the control of branching ratio of photodissocia-
tion channels of phenol. These simulations show that optimally designed
laser pulses cooperate well with CIs to yield a high degree of achieve-
ment by actively using CIs as wave packet cannons and/or� -phase shifters
(geometric phase e�ects).
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1. Introduction

There has been much recent interest in the role of�� � and n� � excited
states (i.e. states that are formed by � � � � and � � � n electron
excitations) in promoting the non-radiative decay of azoles (e.g. pyrrole,
imidazole, etc.), phenols, and larger heteroaromatic molecules built from
such units (e.g. nucleobases like adenine, guanine,etc., and aromatic amino
acids like histidine, tryptophan and tyrosine).1 The strong UV absorptions
associated with these chromophores are generally attributable to� � � �
transitions, but these molecules also possess�� � (and, in some cases,n� � )
excited states. For brevity, we will focus attention on �� � excited states,
unless the discussion necessitates otherwise.� � � � transitions typically
have much smaller absorption cross-sections than� � � � transitions, but
�� � states can be populated „ either by direct photo-excitation (as in
imidazole and pyrrole), or by radiationless transfer following initial exci-
tation to an •optically bright• �� � state (as in phenols, indoles,etc.).
Sobolewski, Domcke and colleagues2, 3 showed that the diabatic potential
energy surfaces (PESs)associated with such�� � states will be repulsive
with respect to X…H (X=N, O, etc.) bond extension. Population in a �� �

excited state could thus decay by X…H bond “ssion and/or by radiationless
transfer to a lower electronic state (typically the ground state) via a conical
intersection (CI) between their respective diabatic PESs.

This chapter surveys recent (mainly experimental) studies of the
photofragmentation dynamics of various azoles and phenols and heavier
analogues based on such units, highlighting ways in which CIs promote
dissociation, and/or in”uence the dissociation dynamics. We start by
presenting an overview of some of the variants of photofragment trans-
lational spectroscopy (PTS) by which such experimental data can be
obtained, before proceeding to more detailed descriptions of the experi-
mental “ndings for the chosen molecules. The chapter concludes with a
brief prospective section.

2. Experimental Methods

2.1. Photofragment translational spectroscopy

An •ideal• PTS experiment might involve the following: photo-excitation
of the parent molecule of interest, in a known quantum state, at a well-
de“ned instant in time, with linearly polarized radiation (with associated
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polarization vector � phot ), and measurement of the nascent recoil veloci-
ties (speedsand directions) of all of the resulting fragments, with internal
quantum state resolution. Almost inevitably, some compromises are neces-
sary in order to realise such studies, but modern PTS experiments can
(in favourable cases) get quite close to this ideal. Wilson and colleagues4

pioneered the so-called •universal detection• PTS experiment, which has
since been re“ned and exploited by many other groups.5 This employs
pulsed laser photolysis of a selectedprecursor molecule in a skimmed molec-
ular beam issuing from a rotatable source into a chamber maintained at high
vacuum. Those fragments that •”y• a known distance into a known (small)
solid angle under collision-free conditions are ionized by electron bombard-
ment prior to entering a mass spectrometer and detection. Fragment speeds
and thus kinetic energies (Ekin ) are deduced from the measured times-of-
”ight (TOFs), with the laser pulse de“ning the zero of time. Angular distri-
butions are determined by observing how the measured fragment ”ux varies
as � phot is rotated, and characterised in terms of an angular anisotropy
parameter, � . Photo-excitation preferentially selects molecules that are
aligned so that their transition moment ( µ ) is parallel to � phot . Direct disso-
ciation occurs on a timescale that is much faster than a classical rotational
period. The resulting fragments will recoil along the axis of the breaking
bond in the photo-excited molecule, i.e. their recoil anisotropy will re”ect
the original µ ·� phot interaction. The angular distribution of the recoiling
fragments is given by

I (� ) = (1 + �P 2(cos �))/ 4�,

where � is the angle between� phot and the TOF axis, and P2(x) =
(3x2 Š 1)/ 2 is the second order Legendre polynomial.� takes limiting
values of +2 in the case of prompt dissociation following excitation via a
parallel transition (i.e. µ lies along the breaking bond) andŠ1 in the case
of a perpendicular transition (i.e. µ is orthogonal to the breaking bond).
Less anisotropic fragment recoil distributions (i.e. with � closer to 0) are
observed in the case of direct dissociations brought about by exciting a tran-
sition with µ at an intermediate angle to the bond of interest, and in the
case of predissociations „ i.e. where the excited state lifetime is comparable
to, or longer than, the rotational period of the parent molecule. Isotropic
recoil velocity distributions are one signature of a dissociation occurring
over an extended timescale, e.g. from highly vibrationally excited ground
state molecules formed by radiationless transfer from an excited electronic
state.
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Blank et al.6 applied these traditional PTS methods to the case of
pyrrole photolysis at � phot = 248 nm „ a wavelength at which N…H bond
“ssion was shown to be the main decay process. Let us assume that the
energy of the photolysis photon (Ephot ) is known, and that it is possible
to •cool• the parent pyrrole molecules through use of a skimmed molec-
ular beam so that they are all in their zero-point (v = 0) vibrational level
and in a narrow distribution of (low) J rotational states [i.e. the internal
energy, Eint (pyrrole) � 0]. Under these circumstances, determiningEkin for
the H atoms (or the pyrrolyl co-fragments) provides, via momentum conser-
vation arguments, a measure of the total kinetic energy release (TKER).
The population distribution over the internal energy states of the radical
fragment can thus be determined via theenergy conservation equation (1):

Ephot + Eint (pyrrole) = D0(H…pyrrolyl) + TKER + Eint(pyrrolyl) , (1)

where D0(H…pyrrolyl) is the N…H bond strength in pyrrole. This type of
PTS experiment is very general, since a wide range of atomic and molecular
fragments can be detected by mass spectrometry but, as Fig. 1(a) shows,
it o�ers limited resolution and sensitivity and will rarely be quantum state
speci“c (except, for example, when monitoring simple atomic products like
H or D). Nonetheless, the data in Fig. 1(a) already o�er one key result:
the TKER distribution of the H + pyrrolyl products from photolysis of
pyrrole at 248 nm peaks far from zero, implying that dissociation occurs on
a repulsive, excited state PES and not by unimolecular decay of hot ground
state molecules.

2.2. Ion imaging methods

Ion imaging techniques7, 8 provide another means of studying molecular
photodissociation processes. Again, the molecule of interest is typically
delivered in the form of a jet-cooled, skimmed molecular beam directed
towards the centre of the imaging detector and photolysed with the output
of a pulsed laser. The resulting fragments will recoil from the interac-
tion region with a range of velocities „ determined by the fragmenta-
tion dynamics. The “rst novel feature of the ion imaging technique is that
the fragment of interest is ionized, at source, and (in many cases) with
quantum-state selectivity, by resonance enhanced multiphoton ionization
(REMPI) methods. In the ideal limit, ionization will cause minimal pertur-
bation of the nascent velocity distribution of the photofragment of interest.
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Fig. 1. TKER distributions of the products of N…H bond “ssion following photolysis
of pyrrole at: (a) � phot = 248 nm derived from a traditional PTS study, with the circles
and triangles representing deduced distributions from dissociation on the 1�� � and S0

PESs, respectively; (b) � phot = 243 .1 nm, obtained using velocity map imaging methods;
(c) � phot = 250 nm, obtained by slice imaging methods „ with � phot aligned vertically,
in the plane of the page, in both cases; and (d) � phot = 250 nm, obtained by HRAPTS
methods. The vibrational quantum numbers of the pyrrolyl products associated with the
prominent features in (d) are labelled. (Adapted from Refs. 6, 9, 11 and 15.)

The expanding ion cloud isthen accelerated through a sequence of electric
“elds so as to impact on a time and position sensitive detector. The resulting
image of ion intensity versus position is a two-dimensional (2-D) depiction
of the full 3-D velocity distribution o f the state-selected fragment ion of
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interest which, in a well-designed experiment, can be recovered by image
reconstruction methods.

Temps and co-workers9, 10 imaged the H atom fragments resulting from
photolysis of pyrrole at various UV wavelengths including� phot = 243.1 nm.
As Fig. 1(b) shows, image analysis returned a TKER distribution for
the H + pyrrolyl fragments that was v ery similar to tha t determined in
the earlier PTS study (at � phot = 248 nm). Imaging methods o�er some
signi“cant advantages. Ionization at source encourages high collection e�-
ciencies; all ionized fragments with the mass to charge (m/z ) ratio of
interest contribute to the measured image. Second, the entire photofrag-
ment velocity (i.e. speed and angular) distribution is carried in a single
image. The image shown in Fig. 1(b) suggests that the recoil velocity distri-
bution of the H atoms from pyrrole photolysis at � phot = 243.1 nm is rela-
tively isotropic, but Wei et al.9 deduced some preference for recoil along
axes perpendicular to� phot „ i.e. for dissociation characterised by a nega-
tive recoil anisotropy parameter, � = Š0.37± 0.05. Imaging methods also
o�er the advantage of fairly widespread applicability: all atoms and many
small radical fragments are amenable to detection by REMPI methods. As
Fig. 1(b) hints, the achievable kinetic energy resolution remains a challenge
for imaging methods. Resolution may be constrained by a number of factors
including the following: the spread of internal (or transverse translational)
energies in the parent molecular beam;space charge e�ects (arising from the
Coulombic repulsions between ions in the interaction region); the precision
with which the point of ion impact on the position sensitive detector can
be determined; and the “delity with which the measured 2-D image can be
transformed into the 3-D velocity distribution of interest. Several strategies
for minimising such limitations have now been demonstrated.8 The slice
image shown in Fig. 1(c), and the TKER spectrum derived from analysis of
this image, illustrate the current state of the art with regard to resolution
achieved using imaging methods to study the UV photolysis of pyrrole.11

2.3. H Rydberg atom photofragment translational
spectroscopy

In the speci“c case of H atom photofragments, such as those arising from
X…H bond “ssion in the case of azoles, phenols,etc., the technique of H
Rydberg atom (HRA) PTS 12, 13 is without peer in terms of kinetic energy
resolution. This technique shares elements in common with both universal
detection PTS and ion imaging methods. The hydrogen containing molecule
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of interest (seeded in an inert carrier gas like He or Ar) is introduced into the
interaction region in the form of a pulsed, skimmed molecular beam directed
along an axis orthogonal to the detection axis, where it is subjected to
pulsed laser photolysis. As in ion imaging, the nascent H (n= 1) atoms are
immediately •tagged• at source (i.e. prior to their escaping from the inter-
action region). Tagging in this case, however, involves two colour double
resonant excitation via the n = 2 state to a Rydberg state with high prin-
cipal quantum number (n � 80). These Rydberg atoms are still neutral
species, and thus immune from the e�ects of space charge blurring. The
Rydberg electron has only a small binding energy and can easily be “eld
ionized and the H atom fragments detected (as protons) after travelling
a known distanced to a detector. The collection e�ciency is intrinsically
low since, in order to have any chance of being detected, the nascent H
atom photofragment must recoil into the small solid angle subtended by
the detector. Furthermore, to determine the fragment recoil anisotropy it
is necessary to make at least threeseparate TOF measurements (at� = 0,
54.7 and 90� ).14 But, as Fig. 1(d) shows, the TKER spectrum of the
H + pyrrolyl fragments from photolysis of pyrrole (at � phot = 250 nm)
measured using the HRAPTS technique shows much greater detail: features
attributable to the formation of pyrrolyl radicals in speci“c vibrational
modes are readily apparent.15 Furthermore, the sharpness of these peaks
indicates that the pyrrolyl fragments are formed with a narrow spread of
rotational energies. The remainder of this chapter highlights many of the
dynamical insights that follow given such detailed information about the
product energy disposal following UV photo-excitation of a range of azoles,
phenols and heavier analogues.

3. Results

3.1. Azoles

Ab initio calculations of selected portions of the PESs of the ground and
“rst few excited states of pyrrole (an illustrative azole) have played a very
important role in rekindling interest in the photochemical importance of
1�� � states.2, 3 This section surveys recent “ndings involving simple azoles
like pyrrole, imidazole and pyrazole, the structures of which are shown in
Fig. 2. The photochemistry exhibited by the various azoles shows many
features in common, but also some important di�erences.
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pyrrole imidazole pyrazole

� (HOMO) 3 /s � * (LUMO)

N N

N

N

N

Fig. 2. Equilibrium structures of pyrrole, imidazole and pyrazole, together with
illustrations of the � HOMO and 3 s/ � � LUMO of imidazole.

We start by considering imidazole, which is in many regards the simplest
system. The “rst excited singlet state of this molecule is a1�� � state (of 1A��

symmetry) formed by electron promotion from the highest occupied molec-
ular orbital (HOMO) „ a � orbital (see Fig. 2) „ to the lowest unoc-
cupied molecular orbital (LUMO). The latter orbital possesses substantial
Rydberg (3s) character in the vertical Franck…Condon (vFC) region but
acquires progressively more� � anti-bonding valence and, eventually, H(1s)
character upon extending the N…H bond (RN…H ). As with ammonia,13, 16

the 1�� � PES is repulsive with respect to RN…H , and displays a CI with
the ground state (henceforth labelledS0) PES in this coordinate at planar
geometries as depicted in Fig.3(b). Photoexcitation to the 1�� � state (at
� phot � 240 nm) results in prompt dissociation, and formation of ground
( �X ) state imidazolyl radical (plus H atom) products, with an anisotropic
recoil velocity distribution wherein the H atoms recoil preferentially in
the plane perpendicular to � phot . As Fig. 4(a) shows, most of the photon
energy in excess of that required to dissociate the N…H bond [determined as



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch15

Exploring Nuclear Motion Through Conical Intersections 611

1 2 3 1 2 3 1 2 3

P
ot

en
tia

l E
ne

rg
y/

eV

RN-H/ Å

1A••

1B2

2A2

2B1

2B2

2A2

2B1

2B2

2 2A B2 1/

2B2

1��*/ CIS0

0

1

2

3

4

5

6

7

1��*

1��*

1��*

S0
S0 S0

1A•

1 1�� ��*/ * CI

0

1

2

3

4

5

6

7

RN-H/ Å RN-H/ Å

1A••

1A••
1A•

(a) (b) (c)

Fig. 3. Sections (along RN …H ) through the calculated (CASPT2) PESs for the S0 and
“rst excited 1�� � states of (a) pyrrole, (b) imidazole and (c) pyrazole. In each case the
sections are complemented by illustrative potentials for the next excited 1 �� � state, and
for the “rst excited 1�� � state, and by labels indicating the symmetries of the asymptotic
radical products (adapted from Ref. 23).

D0(H…imidazolyl) = 33240± 40 cmŠ 1] is released as product translational
energy, and the vibrational energy disposal in the imidazolyl products can
be understood by recognising the changes in equilibrium geometry of the
“ve-membered ring that accompany the excitation and dissociation steps
[i.e. by dynamical Franck…Condon (dFC) considerations].17

The longest wavelength absorption in pyrrole is also associated with
excitation to a 1�� � state. The absorption is particularly weak, re”ecting
the higher (C2v ) symmetry of pyrrole. The � � � � (1A2…1A1) transition
in this molecule is formally electric dipole forbidden, but gains oscillator
strength through vibronic interaction with one or more of the 1�� � excited
states that lie higher in energy (and are responsible for the much stronger
absorption at shorter UV wavelengths). As in imidazole, the ground state
PES correlates diabatically with electronically excited radical products,
while the 1�� � PES is repulsive with respect to N-H bond extension
and displays a CI with the S0 PES at planar geometries and extended
RN…H „ as shown in Fig. 3(a). Again like imidazole, � � � � excitation
(at � phot � 254 nm) induces prompt N…H bond “ssion, yielding H atoms
and ground ( �X ) state pyrrolyl fragments with anisotropic recoil velocity
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distributions. 9, 15 As Fig. 1(d) showed, most of the excess energy is again
released as product translational energy, but the vibrational energy disposal
in the radical product is generally more complex than in the case of imida-
zole. Di�erent H + pyrrolyl( �X ,v) product channels show di�erent recoil
anisotropies, and the branching into the various vibrational levels of the
pyrrolyl product varies with photolysis wavelength. The overall distribu-
tion, however, remains centred at TKER � 7000 cmŠ 1.15

These observations have been explained by assuming that the disso-
ciation of pyrrole following excitation to the 1�� � state displays a high
degree of vibrational adiabaticity „ which can be rationalised as follows.
The � � � � transition acquires intensity through vibronic interaction. 18

The photo-excited 1�� � level(s) will thus involve one or more quanta of the
non-totally symmetric mode(s) that promote the vibronic transition. Each
such level contributes a lifetime broadened resonance within the overall
� � � � obsorption, and will thus be populated with a � phot dependent e�-
ciency. The identities of the product states formed at any given� phot , and
their state-speci“c recoil anisotropies, are understandable if the (skeletal)
mode(s) that promote the � � � � transition are conserved as the excited
molecules evolve on the1�� � PES. These parent vibrations act as •specta-
tors• to the N…H bond “ssion, and map through into the eventual pyrrolyl
products; the mean product TKER is thus determined primarily by the fall
in PE between the vFC region and the dissociation asymptote. Femtosecond
pump-probe studies of pyrrole photolysis in this long wavelength region
(at � phot = 250 nm) have returned two timescales for H atom production
(� 100 fs and � 1 ps), which could be explicable in terms of, respectively,
direct and temporarily frustrated (at the 1�� � / S0) bond “ssion on the
1�� � PES.19

As noted previously, the UV absorption cross-sections of imidazole and
pyrrole both increase greatly at shorter wavelengths. In both cases, this
absorption is associated with� � � � electronic excitations. H atom TOF
spectra measured following excitationof both molecules at these shorter
wavelengths show an increasingly dominant, isotropic component at low
TKER. 15, 17 This is generally attributed to •statistical• decay of highly
vibrationally excited S0 molecules formed following e�cient radiationless
transfer from the 1�� � state,20, 21 probably supplemented by dissociations
following unintended multiphoton excitations via the 1�� � state. In the case
of imidazole, for example, density functional theory/multireference con“g-
uration interaction (DFT/MRCI) calculations 22 provide a rationale for the
experimental “nding [see Fig. 4(b)] that there are (at least) two decay
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Fig. 4. TKER distributions of the products of N…H bond “ssion following photolysis of
imidazole at � phot =(a) 234 nm and (b) 220 nm, obtained by HRAPTS. The vibrational
quantum numbers associated with the dominant imidazolyl product peaks are indicated;
peaks marked with an asterisk arise from photolysis of imidazole molecules carrying one
quantum of the N…H out-of-plane wagging mode, � 24 .

pathways following excitation to the 1�� � (1A� ) state. One involves transfer
to the 1�� � (1A�� ) PES, via one or more CIs accessed byappropriate
distortions of the heavy atom ring, and subsequent fragmentation on the
1�� � PES yielding fast H + imidazolyl( �X ) co-fragments „ reminiscent of
behaviour seen at longer� phot [Fig. 4(a)] where the 1�� � PES is populated
directly. The second involves radiationless transfer to theS0 PES „ e.g.
by successive1�� � (1A� ) � 1 �� � (1A�� ) � S0(1A� ) couplings, mediated by
CIs between the relevant PESs, and subsequent unimolecular decay, or via
alternative CIs between the �� � (1A� ) and S0 PESs, which could facilitate
ring opening (i.e. C…N bond “ssion) and/or H atom loss.22

Pyrazole, like imidazole, is a “ve-membered heterocycle containing two
nitrogen atoms. Upon extending RN…H , its ground state PES correlates
diabatically with radical products in the second (2B2) excited electronic
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state. The predicted energy separation between the excited states arising
from the � � � � HOMO and � � � � HOMO Š 1 promotions in the vFC
region is � 0.6 eV, but the energy separation between the ground (2A2)
and “rst excited ( 2B1) states of the pyrazolyl radical to which these 1�� �

states correlate is just 0.033 eV.23, 24 Both 1�� � PESs exhibit CIs with
the diabatic S0 PES at extendedRN…H „ as shown in Fig. 3(c). Relative
to pyrrole and imidazole, the photophysics of pyrazole is further compli-
cated by the fact that, in the vFC region, both 1�� � excited states lie
above the minimum of the “rst 1�� � state. The long wavelength onset
of UV absorption by pyrazole is � 225 nm. The H atom products formed
when exciting at � phot > 214 nm exhibit a broad velocity distribution
peaking at low TKER „ characteristic o f excitation to (and indirect decay
from and/or multiphoton excitation via) the 1�� � state.23 Fast H atoms,
displaying anisotropic recoil velocity distributions characteristic of excita-
tion to, and prompt decay on, a 1�� � PES are also observed when pyrazole
is excited at shorter wavelengths, however. The partner pyrazolyl radicals
are formed in selected vibrational levels of both the 2A2 and 2B1 electronic
states with relative probabilities that likely re”ect the coupling between the
two 1�� � states at extendedRN…H .

As Fig. 3 showed, the1�� � PES(s) of the various azoles all form CIs with
the S0 PES at extendedRN…H . However, the in”uence of these CIs on the
fragmentation dynamics is not that obvious. In the case of the direct� � � �
excitations, the ground and excited molecules, and the eventual radical
products, all have planar equilibrium geometries (the nitrogen atoms remain
sp2 hybridised). Thus there is little reason for the dissociating molecules to
diverge from the minimum energy path on the 1�� � PES (i.e. to follow the
diabatic path) and evolve through the CI to ground state radical products.
The minimum energy geometries of the1�� � states are also planar, but
radiationless transfer from a 1�� � state to a dissociative 1�� � PES will,
again, involve ”ux traversing through a CI. 20, 22 Symmetry conservation
requires that any transfer to a 1�� � PES must necessarily involve an out-
of-plane (a�� ) coupling mode. On average, therefore, molecules that evolve
on the 1�� � PES after radiationless transfer from the 1�� � state are more
likely to sample the CI at large RN…H with non-planar geometries, and to
follow the adiabatic path towards electronically excited (2B2) state radical
products. Such products have not been recognised experimentally „ quite
possibly because the dissociating molecules have insu�cient energy in the
RN…H coordinate to reach the excited asymptote and thus turn back towards
the CI and transfer to the S0 PES, as envisioned in the original theoretical



September 21, 2011 16:57 9in x 6in Conical Intersections: Theory, Computation and Experiment b1085-ch15

Exploring Nuclear Motion Through Conical Intersections 615

0 2000 4000 6000 8000 10000 12000

TKER/cm-1

(a) (b)

Fig. 5. (a) Measured image of the CH 3(v = 0) fragments resulting from photolysis of
jet-cooled N-methylpyrrole molecules at � phot = 239 .02 nm, with � phot aligned vertically
in the plane of the page. (b) TKER distribution of the CH 3(v = 0) + pyrrolyl products
derived from this image.

treatment of Sobolewski and Domcke.2 Alternatively, of course, 1�� � popu-
lation may transfer directly to the S0 PES via one or more1�� � / S0 CIs. H
atoms from the subsequent dissociation ofS0 molecules formed by either of
these routes would be expected to contribute to the slower, isotropic part
of the product TKER distribution, as discussed previously.

Such behaviour is not limited simply to N…H bonds in azoles. Figure 5(a)
shows an image of the CH3(v=0) fragments resulting from photolysis of
jet-cooled N-methylpyrrole molecules at� phot = 239.02 nm (i.e. on a reso-
nance 640 cmŠ 1 above the origin of the1�� � transition), with � phot vertical
(i.e. in the plane of the page). The associated TKER distribution [Fig. 5(b)]
shows a substantial fast peak, centred at TKER� 6500cmŠ 1, attributable
to N…CH3 bond “ssion on the “rst excited 1A2(1�� � ) PES and formation of
ground state radical products.25 N…CH3 bond “ssion has also been reported
in the 193 nm photolysis of this molecule.26, 27

3.2. Phenols

As in the azoles, electron promotion from the� HOMO in a phenol to a
mixed 3s(Rydberg)/ � � (valence) orbital will result in population of a 1�� �

state and, in this case, eventual O…H bond “ssion. Such behaviour was
predicted by Domcke and co-workers28, 29 and observed, at� phot = 248 nm,
by detection of translationally excited phenoxyl radicals using multimass
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Fig. 6. (a) Sections (along RO …H ) through the calculated (CASPT2) PESs for the
S0 and “rst two excited 1 �� � and 1 �� � states of phenol, illustrating the “rst three
H + C 6H5O dissociation limits. Two possible dissociation routes result in formation
of phenoxyl radicals in the ground ( �X 2B 1) state, but di�er depending upon whether
the excitation energy is above or below the “rst 1�� � / 1 �� � CI. A third dissociation
pathway involves coupling via a higher 1 �� � / 1 �� � CI and formation of excited ( �B 2A 2)
state phenoxyl products (after Ref. 37). (b), (c) and (d) show TKER spectra arising
from excitation at � phot = 275 .113 nm, 242 nm and 222 nm, respectively.

ion imaging methods.30 As Fig. 6(a) shows, however, the electronic struc-
ture of phenol shows important di�erences to that of pyrrole and imidazole.
The “rst excited singlet state of phenol is a 1�� � state, that is bound in
the RO…H stretch co-ordinate. The absorption cross-section for the� � � �
transition is larger than that of the � � � � excitation; the 1�� � state in
phenol will typically be populated indirectly, via radiationless transfer from
a photo-prepared1�� � state.

We begin by considering phenol-h6. HRAPTS studies reveal two wave-
length regions in which O…H “ssion occurs dynamically.31 These we distin-
guish as the long (� phot > 248 nm) and short (� phot � 248 m) wavelength
regimes. Excitation at the origin of the 1�� � � S0 transition ( � phot =
275.113nm) results in a bimodal H atom TOF (and TKER) spectrum,
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comprising a set of resolved peaks at TKER� 6000 cmŠ 1 and a slower
component centred at TKER � 2000cmŠ 1 [see Fig. 6(b)]. Both recoil
velocity components are isotropic. Broadly similar spectra are observed
upon reducing � phot (i.e. exciting higher vibrational levels of the 1�� �

state) „ though the vibronic structure of the phenoxyl products within the
higher TKER feature ceases to be resolvable. This is illustrated in Fig. 6(c),
which shows the TKER spectrum derived from H atom TOF measurements
at � phot = 242.0 nm. This wavelength lies just within the short wavelength
regime, and careful inspection of this spectrum reveals additional, weak
resolved features at high TKER. These become increasingly evident as� phot

is reduced further [Fig. 6(d)], before eventually coalescing into a broad
unresolved feature centred at TKER � 12000cmŠ 1. The recoil velocity
distribution of these fast H atoms is anisotropic (� � Š 0.5), implying
that O…H bond “ssion occurs on a timescale that is fast compared with
the parent molecular rotational period.31 Recent femtosecond pump-probe
studies of phenolŠh6 photolysis at � phot = 200 nm return a time constant
of 103± 30 fs for the high TKER feature,32 reinforcing the conclusion that
dissociation following excitation in the short wavelength regime can occur
on an ultrafast timescale.

Analysis of numerous TKER spectra recorded in the range 275.113�
� phot � 206 nm led to the conclusion that, in no case, does dissociation
result in H + phenoxyl( �X ,v=0) fragments.31 Only by assuming that the
fastest peak in Fig. 6(b) is associated with formation of phenoxyl frag-
ments carrying one quantum in vibrational mode � 16a

a is it possible to
arrive at an internally consistent value of the O…H bond strength:D0(H-
phenoxylŠh5) = 30015 ± 40 cmŠ 1. � 16a is an out-of-plane (a�� ) ring torsion
mode. The pattern of product peaks evident in TKER spectra obtained
within the short � phot regime [e.g. Fig. 6(d)] is similarly o�set. In this latter
case, the fastest feature is attributable to formation of phenoxyl radicals
carrying one quantum of the ring puckering vibration, � 16b .

Analogous studies involving phenol-d6 reveal no fast D atom prod-
ucts when exciting at the 1�� � � S0 origin though, as with phenol-h6,
D atom loss is observed once� phot < 248 nm.31 The partner (phenoxyl-
d5( �X )) fragments are formed in a broad spread of vibrational levels, the
identities of which are more clearly revealed in related photolysis studies
of phenol-d5.33 All involve a quantum of � 16b and one or more quanta in

aFor phenolic systems we use Wilson mode labelling notation, as it allows a convenient
way of highlighting the mapping between the parent and radical modes of vibration.
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� 18b (the in-plane C…O wag) and/or� 19a (a combination of in-plane ring
breathing and C…O stretching motions). Studies of phenol-d5 photolysis at
much shorter wavelengths (� phot = 193 nm) have revealed formation of elec-
tronically excited phenoxyl-d5( �B ) products at low TKER. The calculated
CASPT2(12/11)/aug-cc-pVTZ PESs (“g. 6(a)) suggest that this asymp-
tote is accessed by photoexciting to the second1��* state and subse-
quent coupling to the second1�� � PES via the relevant 1�� � / 1�� � CI.
Electronically excited phenoxyl-d5( �A) products have also been reported by
Crim and coworkers following vibrationally mediated photodissociation of
phenol-d5.34 This study involved initial excitation of the ground state O ŠH
stretch fundamental prior to UV excitation to total energies above that of
the “rst 1�� � / 1�� � CI. These experimental results lend support to earlier
theoretical predictions35 that the introduction of O…H stretching excitation
should encourage dissociating molecules to follow the adiabatic path at the
1�� � / S0 CI (to H + phenoxyl- d5( �A) products).

The 1�� �
(v=0) levels of phenolŠh6 and phenol-d1 (C6H5OD) exhibit

markedly di�erent ”uorescence lifetimes (� f � 2 ns and � 16 ns, respec-
tively). 36–38 Pino et al.39 noted a clear correlation between� f and the calcu-
lated 1�� � / 1�� � energy gaps for a range of substituted phenols and their
complexes with NH3 and explained the measured variations in� f , and the
di�ering O…H/D bond dissociation probabilities, by assuming that phenol
molecules excited to low-lying vibrational levels within the 1�� � state disso-
ciate by H atom tunnelling through the barrier under the 1�� � / 1�� � CI.

Symmetry conservation provides a rationale for the foregoing observa-
tions. The S0 and 1�� � states of phenol both haveA� electronic symmetry
in Cs, whilst the 1�� � state has A�� symmetry. Earlier MRCI calculations
suggested that O…H torsion,� OŠ H (of a�� vibrational symmetry), has the
largest non-adiabatic matrix coupling element at both the S0/ 1�� � and
1�� � / 1�� � CIs,40 but did attempt to address the speci“c vibrational energy
disposal observed in the phenoxyl products. Our more recent analysis41 recog-
nises the need to consider phenol in the non-rigid molecular symmetry group
G4 (isomorphous with C2v ), rather than Cs. In this representation, � O-H and
� 16a are distinguished by their respective symmetries (b1) and (a2). Only the
latter has the appropriate symmetry to couple the 1�� � (1B2) and 1�� � (1B1)
states and result in excitation of odd quanta of� 16a. The measured energy
disposals thus provide further support for the 1�� � � 1�� � route to H +
phenoxyl( �X 2B1) products, despite the necessity of tunnelling through the
substantial energy barrier under the1�� � / 1�� � CI.

Figure 7 serves to highlight the similarities between the internal energy
(Eint ) spectra of the radical products obtained following excitation of a
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number of di�erent phenols at their respective 1�� � …S0 origins. The Eint

spectrum measured in the case of phenol-h6 [Fig. 7(a), � phot = 275.113nm]
can be assigned by reference to the calculated (DFT/B3LYP/6-311+G�� )
anharmonic wavenumbers for the various product normal modes. The peaks
demonstrate selective formation of phenoxyl-h5 products with v 16a = 1 , 3
and 5, built on zero, one and two quanta of� 18b (the C…O in plane wagging
mode); all of these levels havea2 (in G4) overall vibrational symmetry.
Activity in � 18b is likely the result of modest changes in the C…C…O angle on
O…H bond extension. A range of behaviours are observed when exciting to
1�� � state levels with v > 0. In some cases, the mode promoted in excitation
behaves as a •spectator• to the O…H bond “ssion and maps through into the
radical product; in other cases we see clear evidence of mode mixing, with
parent nuclear motion introduced in the 1�� � …S0 excitation appearing in
other vibrational modes of the product, or released as product translation.

Studies of substituted phenols provide a route to deeper understanding
of the dynamics involved in coupling between the various PESs of phenol.
TKER spectra obtained following long wavelength photolysis of phenol-d5

show many similarities with those from phenol-h6. Again, excitation at the
1�� � ŠS0 origin yields a well-resolved set of peaks at TKER� 6000 cmŠ 1.
Close examination of the populated product modes reveal some di�er-
ences, however, for example, the reduced extent of the progression in� 16a

[Fig. 7(b)].33

Introducing an electron withdrawing halogen (Y) atom at the para ( p-)
position in phenol leads to a reduction in the yield of O…H bond “ssion
products across the series F> Cl > Br.42 Fast H atoms consistent with
eventual dissociation on the1�� � PES were observed when exciting at the
1�� � ŠS0 origins of p-”uorophenol and (weakly) p-chlorophenol, but not
from p-bromophenol. The Eint spectrum of the p-”uorophenoxyl fragments
[Fig. 7(c)] shows selective population of levels with v16a = odd, and in
modes � 18b and � 9b (an asymmetric C…F and C…O wagging motion) „
both of which are understandable on dFC grounds. Fast H atom products
were detected from all three of thesep-halophenols, however, when exciting
within their respective short wavelength regimes (� phot < 238 nm).42 The
Y dependent di�erences in behaviour at long excitation wavelengths can
be understood by recognising the possible alternative C…Y bond “ssion
pathways „ which ion imaging experiments show to be signi“cant frag-
mentation channels in both p-bromophenol andp-iodophenol.43

Introducing a methyl group to the phenol ring can be expected to
increase the overall vibrational state density and thus the likelihood of
intramolecular vibrational redistribution. 44, 45 Yet, as Fig. 7(d) shows for
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Fig. 7. Internal energy ( E int ) spectra of the radical products resulting from
O…H “ssion following excitation at the 1�� � � S0 origins in: (a) phenol- h6

(� phot = 275 .113 nm), (b) phenol- d5 (� phot = 273 .815 nm), (c) p-”uorophenol (� phot =
284.768 nm), (d) p-methylphenol ( � phot = 283 .023 nm), and (e) 4-hydroxyindole
(� phot = 284 .893 nm). Vibrational quantum numbers associated with the various product
peaks are indicated by the superposed combs.
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the case of p-methylphenol, the vibrational energy disposal in the p-
methylphenoxyl fragments formed by exciting p-methylphenol at the origin
of its 1�� � Š S0 transition ( � phot = 283.023nm) is very reminiscent of
that in the p-”uorophenoxyl( �X ) products from p-”uorophenol. Again, this
fragmentation is now considered to proceed via initial� � � � excitation,
and subsequent tunnelling through the energy barrier under the1�� � / 1�� �

CI (facilitated by out-of-plane mode � 16a) leading to eventual O…H bond
“ssion.

Our “nal example of a phenolic system is unusual in that the obvious
chromophore is an indole. Huanget al.46 suggested that the short ”uores-
cence lifetime of 4-hydroxyindole in its 1�� � state (� f = 0 .18 ± 0.1 ns)
was due to e�cient keto-enol isomerisation on the excited state PES.
As Fig. 7(e) shows, however, excitation at the1�� � …S0 origin yields trans-
lationally excited H atom photoproducts. The vibrational energy disposal
in the radical co-fragment is very reminiscent of that found for phenol-h6,
with additional activity in product mode � 19a (as seen in otherp-substituted
phenols), suggesting that, again, dissociation involves tunnelling through
the energy barrier under the 1�� � / 1�� � CI and eventual dissociation on
the 1�� � PES.47 4-hydroxyindole presents a further potential complica-
tion, since the N…H bond on the indole ring might also be expected to disso-
ciate upon UV photoexcitation (see Sec.3.3). Given the evident similarities
between the variousEint spectra shown in Fig. 7, and the good agreement
between experiment and the results of companion CASPT2(10/9)/aug-cc-
pVTZ PES calculations (both with regard to the product mode frequencies
and the parent dissociation energy), we can be con“dent that the observed
products arise as a result of O…H bond “ssion. As shown in Sec. 3.3, the
threshold energy for the competing N…H bond “ssion channel is likely to
fall at shorter UV excitation wavelengths.

Replacing the oxygen atom in phenol by a sulphur atom changes the
heteroatom lone pairs from 2p to 3p orbitals, with the consequence that
the HOMO of thiophenol is an admixture of the sulphur 3px lone pair and
the 2p� benzene system with much of the amplitude localised on the sulfur.
The decreased conjugation (relative to that in phenol) reduces the energy
separation between the ground (�X 2B1) and “rst excited ( �A2B2) states
of the thiophenoxyl radical (to � 3000 cmŠ 1, cf � 8100cmŠ 1 in phenoxyl).
Excitation of thiophenol at � phot = 285.8 nm, within the longest wave-
length absorption band associated with its 1�� � Š S0 transition, yields H
atom photoproducts with a structured, bimodal and isotropic TKER distri-
bution „ as shown in Fig. 8. 44, 48 The bimodality re”ects branching into
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Fig. 8. Internal energy ( E int ) spectrum of the thiophenoxyl radical products resulting
from photolysis of thiophenol at � phot = 285 .8 nm. Vibrational quantum numbers asso-
ciated with the various product peaks are indicated by the superposed combs.

both �X and �A states of the thiophenoxyl product. Similar TKER spectra
are observed at shorter� phot , but the H atom products now show clear
recoil anisotropy (� � Š 0.8). This evolving behaviour has been explained
within the framework of ab initio PESs for the ground and “rst few excited
states of thiophenol.49 Dissociation following excitation at the � � � n/ �
origin is deduced to involve predissociation, by tunnelling to the dissocia-
tive 1�� � PES, and subsequent branching at the1�� � / S0 CI at extended
RS…H whereas, at shorter� phot , the 1�� � state is assumed to be populated
directly.

Inspection of Fig. 8 reveals that the thiophenoxyl ( �X ) products are
formed in the v = 0 level and in excited vibrational levels involving � 18b , � 6a

(both of which motions were active also in phenoxyl radicals resulting from
long wavelength photolysis of phenol) and� 1 (a ring breathing motion);
all have a� vibrational symmetr y. Recent photodetachment experiments50

provide the “rst de“nitive determination of the energy splitting between
the v = 0 levels of the �X and �A states of the thiophenoxyl radical. This has
impacted on, and allowed re-evaluation of, our previous assignment48 of the
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vibrational structure associated with thiophenoxyl ( �A) radicals resulting
from UV photolysis of thiophenol. Speci“cally, the re-analysis implies popu-
lation of similar vibrational levels in both the �A and �X state radicals.
Such energy disposal can be understood if the out-of-plane torsion� SŠ H

(which disappears upon S…H bond “ssion) is the nuclear motion control-
ling the branching between H+ thiophenoxyl ( �A and �X ) products at the
1�� � /S 0 CI. Kim and co-workers have shown that the electronic branching
in the thiophenoxyl products can be tuned by speci“c substitutions at the
p-position.51 Substituents that, in the S0 state, cause the S…H bond to
move out of the ring plane are found to favour �A state radical products
upon photolysis „ as expected, if such substitutions encourage the disso-
ciating ”ux to approach the 1�� � / S0 CI at non-planar geometries and thus
favour the adiabatic path to the excited product asymptote. Our recent full
wavelength studies of a range ofpara-substituted thiophenols52 show this
branching to be both substituent and excitation wavelength dependent.

3.3. Larger analogues

Azoles and phenols illustrate two generic classes of behaviour. In the former
case, as noted in Sec. 3.1, the1�� � state can be populated directly by
photon absorption. Dissociation occurs on the1�� � PES, the topology of
which „ for these molecules „ favours the retention of planar geometry.
The dissociating molecules thus funnel straight through from the upper
cone of the1�� � / S0 CI, yielding ground state radical products (or, in the
case of pyrazole, radicals in their ground and low lying “rst excited states).
In the phenols, however, absorption is primarily to optically bright 1�� �

states; passage through a CI is required if these molecules are to dissociate
on a 1�� � PES. At long wavelengths, the consensus view is now that H atom
loss from the photo-excited1�� � molecules involves tunnelling through the
energy barrier associated with the1�� � / 1�� � CI. In contrast to the azoles,
therefore, the energy disposal in the products from photodissociation of
phenols will be sensitive not just to any optically induced changes in equi-
librium geometry, but also to the nuclear motions that promote coupling
to the 1�� � PES (e.g. out-of-plane skeletal modes like� 16a, as implicated
in the HRAPTS studies of a range of phenols).

The available data suggests that these generic behaviours extrapolate to
larger analogues of both the azoles and phenols. Indole, for example, can be
viewed as a pyrrole unit fused to a benzene ring at the 2 and 3 positions, and
fast H atoms attributable to N…H bond dissociation on a1�� � PES have
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been identi“ed following UV excitation of this molecule at � < 263 nm.53

Fast CH3 radicals have also been reported following 248 nm photolysis of
N-methylindole, and attributed to N…CH3 bond “ssion on the 1�� � PES.26

The nucleobase adenine can be pictured as a variant of indole in which the
CH groups at the 1, 3 and 7 positions have been replaced by N atoms. It can
exist in no fewer than 12 tautomers, of which the N9…H tautomer (shown in
Fig. 9) is the most stable. TKER spectra derived from H atom TOF data

Fig. 9. Structural formulae of tyrosine (phenol), purine (imidazole), adenine, guanine,
tryptophan (indole), and uracil, that serve to illustrate the base chromophore from which
each derives (indicated in brackets).
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alignment, 718, 721, 732, 742, 743
aminobenzonitrile, 27
2-aminopurine, 678
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autocorrelation function, 262, 329
avoided crossing, 18…20, 29, 266, 267,

376, 402, 406, 409, 410
azobenzene, 672, 694, 696, 701

base pairing, 681, 701
base stacking, 681, 687, 701
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cis-trans photoisomerization, 585
classical path approximation, 383
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closed-loop learning control, 501
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dimethylaminobenzonitrile

(DMABN), 678
dinucleotide, 685…687, 701
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electron/proton transfer, 52, 75
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electronic population dynamics, 659
electronic population transfer, 261,
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electronic relaxation, 722, 727, 730,
735

electronic relaxation dynamics, 679
electronic wavepacket, 716, 725, 728,
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electronic…vibrational coupling, 716
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emission anisotropy, 718, 719
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181, 188
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fragment ion signal, 646
frozen Gaussian, 350, 352, 378
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harmonic oscillator function, 656
h coordinate, 721…723, 735
Hellmann…Feynman theorem, 435,

446
hexa”uorobenzene, 673
hierarchical electron-phonon (HEP)

model, 319
homotope, 164
homotopy, 159, 164, 165
hop, frustrated, 390, 392…394, 401,

406
hopping path, 182
hopping probability, 427, 429, 506,

520
hydrogen abstraction reaction, 275
hydrogen bond, 52, 58, 59, 63…67,

70…75, 78
hydrogen detachment, 58
hydrogen-exchange reaction, 157, 183
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16, 18…20, 22, 42
intersection space coordinate, 6, 8, 9,
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intramolecular vibrational
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isopropoxy, 223, 234, 236, 237, 242
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Jahn…Teller model, 187, 190, 191
Jahn…Teller selection rule, 120
Jahn…Teller stabilization energy, 724,
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Kekule structure, 29
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Koopmans• correlation,
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253, 286, 307, 308, 332
linearly interpolated transit path, 74
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local excited (LE) state, 678
locally excited state, 69
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mapping procedure, 465
Marcus reorganization energy, 724
Markovian approximation, 304, 320,

325, 339
Markovian closure, 305, 320, 324…326,

330, 333, 340, 341
mean-“eld approximation, 396
methaniminium, 484, 486
methoxy, 222, 223, 234, 237, 239, 240
mixed quantum-classical approaches,

465, 466
mixed quantum-classical dynamics,

304, 500, 541
mixed quantum-classical method,

417, 465
mixed quantum-classical systems, 466
mixed quantum-classical treatments,

465
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261, 324, 353, 395, 465, 583
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466, 500
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518, 552
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dynamics, 375, 376, 409
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nonadiabatic process, 416
nonadiabatic trajectory dynamics,
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641
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nonradiative transition, 635
normal coordinate, 126, 129, 134
normal equations, 215, 228, 230, 241
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Ohmic bath, 321, 340
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optimal control simulation, 579,

581…583, 585, 586, 589, 596
optimal control theory, 517, 562, 572,

579
orthogonalization correction,

480…482, 490

parabolic approximation, 12
parallel transition, 605
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path integral, 163, 178
Pauli approximation, 119
Pauli spin matrix, 124
perpendicular transition, 605
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phenol, 604, 608, 609, 615, 616, 618,
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photoactive yellow protein (PYP), 44,

303
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polarization, 716, 717, 719, 722, 727,

732, 733, 737
polarization anisotropy, 716, 717, 719,

727, 732, 733, 737
population relaxation, 722, 734
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spawning, 347…350, 354…362
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spin-boson Hamiltonian, 304
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132, 140…145, 147, 150, 151
state-averaging procedure, 441, 445
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533…535, 539, 540
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surface hop, 388, 391…393, 404, 409
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surface hopping method, 465, 467,
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fewest, 378, 400
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341
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time-resolved photoelectron

spectroscopy (TRPES), 502, 503,
512, 531, 633, 635, 645, 663
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electronic, 716, 725
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Wigner rotation matrix, 185
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zero electron kinetic energy (ZEKE)
spectrum, 198

zwitterionic structure, 29
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